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Recently, several theoretical proposals addressed the generation of an active optical frequency standard based
on atomic ensembles trapped in an optical lattice potential inside an optical resonator. Using atoms with a narrow
linewidth transition and population inversion together with a “bad” cavity allows us to realize the super-radiant
photon emission regime. These schemes reduce the influence of mechanical or thermal vibrations of the cavity
mirrors on the emitted optical frequency, overcoming current limitation in passive optical standards. The coherence
time of the emitted light is ultimately limited by the lifetime of the atoms in the optical lattice potential. Therefore
these schemes would produce one light pulse per atomic ensemble without a phase relation between pulses. Here
we study how phase coherence between pulses can be maintained by using several inverted atomic ensembles,
introduced into the cavity sequentially by means of a transport mechanism. We simulate the light emission
process using the Heisenberg-Langevin approach and study the frequency noise of the intracavity field.
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I. INTRODUCTION

The concept of an active frequency standard in the optical
domain was recently proposed and studied by several authors
[1–8]. The main idea is to create a “superradiant” laser
operating deep in the bad cavity regime where the decay rate
κ/2 of the cavity field significantly exceeds the linewidth γab

of the lasing transition. Then the fundamental linewidth �ωST

of the steady-state operating laser can be described by the
generalized Schawlow-Townes formula that can be written as

�ωST = g2Na0

I0γab

(
γab

κ/2 + γab

)2

(1)

in the practically interesting range � � (γab + κ/2) [9–11].
Here � = ωa − ωc is the difference between the cavity
resonance frequency ωc and the frequency ωa of the lasing
transition, g is the coupling coefficient, Na0 is the steady-state
occupation of the upper lasing level, I0 is an average number
of photons in the cavity mode. The frequency ω of the emitted
radiation is connected with the resonance frequency ωc of the
cavity and with the frequency ωa of the atomic transition via
cavity pulling, namely

ω = 2ωcγab + ωabκ

2γa + κ
. (2)

In the bad cavity regime, any fluctuation (thermal or me-
chanical) of the cavity length has much less influence on
the spectrum of the output light than in conventional lasers,
operating in the good cavity regime. Fluctuations of the
cavity length are currently the main limiting factor for
the performance and even more for the transportability of
modern passive optical frequency standards. An active optical
frequency standard could help to overcome these limitations.

Two main approaches towards an active optical frequency
standard are proposed today: the optical lattice laser [1–3] and
the atomic beam laser [4–8]. The first approach suggests to use
trapped atoms with narrow optical transitions [such as 1S0 ↔
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3Pi, (i = 1,2,3) transitions in divalent atoms] confined to the
Lamb-Dicke regime inside an optical lattice potential as a gain
medium to build the laser. The necessary population inversion
can be provided by additional repumping fields, coupling
the lower lasing state with some higher levels from which
the atoms decay to the upper lasing level (three-level laser
scheme). The general operation principle of such an optical
lattice bad cavity laser has been demonstrated experimentally
using a Raman system to mimic a narrow linewidth optical
transition [12].

The main limitation to the performance of this optical
lattice laser is the limited lifetime of the atoms in the optical
trap. A laser whose gain medium is a single ensemble of
trapped atoms cannot keep the phase longer than the atom
trap lifetime. Another problem emerges from the pumping
laser which can shift the frequency of the lasing transition.
Although the authors of [2] claim that ac Stark shift-induced
fluctuations of the atomic transition frequency are negligible
at the mHz level for repumping rates of the order of 103 s−1

and for a pumping laser intensity-stabilized to 1%, also the
frequency of the laser depopulating the low lasing level needs
to be quite well stabilized. In [8], it is proposed to use a
four-level lasing scheme with a nonstable lower lasing state
to avoid the pumping-induced shift, however this scheme still
suffers from the problem of limited trap lifetime.

The atomic beam approach allows us to overcome the atom
lifetime limitation. Here, a continuous beam of active atoms,
previously pumped to the upper lasing state, passes through
the cavity. The theory of laser generation for this system
was presented in [4] and the generalization to Ramsey-type
interaction between the atoms and the intracavity light was
performed in [6]. In [5] the author claimed that laser radiation
with 0.5-Hz linewidth and 120-nW power can be attained with
a beam of hot 88Sr atoms prepumped to the 3P1 upper lasing
state (natural linewidth 7.6 kHz), with a cavity of 800 μm waist
and κ = 11 MHz. The flux required for the lasing is 4.3 × 1011

atoms per second. At the same time, the theory developed
in [4] does not take into account the motion of the atoms
along the cavity axis while passing through the resonator. This
motion will lead to additional line broadening and a first-order
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Doppler shift. The latter will fluctuate together with the mean
transversal atomic velocity which depends on the environment,
thermal fluctuation of the nozzle, etc. Accurate compensation
of all these effects appears to be a very challenging task.
In [7], a similar idea is proposed for the creation of an extreme
ultraviolet laser using metasable noble gas beams.

We note that for lasing transitions with longer wavelengths
(such as infrared transitions in some molecules) it may be
possible to combine the Ramsey-type lasing scheme [6] with
mechanical blocking of the particles that would pass through
the interaction regions with different phases of the field,
similarly to [13].

In the present work we investigate an intermediate, alter-
native approach to the schemes presented above, consisting in
dynamically moving trapped atomic ensembles into (and out
of) the cavity. These ensembles will be prepared in the upper
lasing state outside the cavity, circumventing perturbations
due to ac Stark shifts. Transport will be realized by means
of a moving red-detuned one-dimensional (1D) optical lattice,
transport of more than 2 × 105 ultracold atoms over a distance
of up to 20 cm with fast transport velocities of up to 6 m/s and
strong accelerations of up to 2.6 × 103 m/s2 have already been
demonstrated experimentally [14]. To confine the atoms to the
Lamb-Dicke regime inside the cavity, an auxilary blue-detuned
stationary optical lattice is used in our scheme. Both the
red-detuned and blue-detuned optical lattices should have
“magic frequencies” [15] providing equal light shift for both
states of the lasing transitions.

The operational sequence for two ensembles consists of
four stages. In the first stage, one atomic ensemble is positioned
inside the cavity and starts to emit light into the cavity mode,
whereas a second ensemble is trapped outside the cavity,
pumped into the upper lasing state, and transported towards the
cavity; see Fig. 1. In the second stage, when a significant part
(but not all) of the atoms in the first ensemble are transferred
to the ground state, the second ensemble is introduced into

FIG. 1. (Color online) Schematic of two atomic ensembles (black
dots) in two moving optical lattices during the first stage of the lasing
process. The first atomic ensemble emits light into the resonator mode
while being slowly pulled through the cavity waist; the second one is
prepared and transported towards the cavity.

the cavity. The atoms of the second ensemble start to emit
photons into the cavity mode mainly via stimulation emission,
maintaining the optical phase. In the third stage the first
ensemble is extracted from the cavity and a new inverted
ensemble is prepared (either by loading new atoms or by
repumping) while the second ensemble emits the light. The
fourth stage is identical to the second one up to permutation
of the ensembles. To avoid the time-dependent second-order
Doppler effect, one should keep a constant velocity of the
moving optical lattice while atoms cross the cavity waist. This
process can be repeated as many times as necessary to keep
the phase of the laser field.

In the following, we model the lasing process using the
Heisenberg-Langevin approach and study the phase stability
of the emitted light.

II. MODEL

A. Operator Heisenberg-Langevin equations

We employ a model based on the set of quantum Langevin
equations following [9,16]. One or two ensembles A1 and A2

of homogeneously broadened two-level atoms with transition
frequency ωab are held in a cavity characterized by a cavity
damping constant κ . The finesse of the cavity is assumed to
be sufficiently high to justify the mean-field approximation.
The atoms interact with the radiation field of a single excited
mode of the cavity which we consider as a plane wave with
frequency ωc. By adding up the individual atomic operators,
we define the macroscopic atomic operators

M̂χ (t) = −i
∑
j∈Aχ

σ̂
j

ba(t), N̂χ
a (t) =

∑
j∈Aχ

σ̂ j
aa(t),

(3)
N̂

χ

b (t) =
∑
j∈Aχ

σ̂
j

bb(t),

where χ = 1,2 is the index of the corresponding atomic
ensemble, σ̂

j

ba = (|b〉〈a|)j , σ̂
j
aa = (|a〉〈a|)j , σ̂

j

bb = (|b〉〈b|)j ,
|a〉 and |b〉 are the upper and lower lasing states, respectively.
The equation for the photon annihilation operator â is

˙̂a = −κ

2
â + g(M̂1�1(t) + M̂2�2(t)) + F̂γ (t), (4)

where �χ (t) describes the time dependence of the coupling
of the χ th atomic ensemble with the cavity mode, F̂γ is the
Langevin force. Here we suppose for the sake of simplicity
that all the atoms have the same coupling coefficient g and
that ωab = ωc. The last approximation is valid if |ωab − ωc| �
(κ/2 + γab).

In our model we suppose that when a certain atomic
ensemble starts to interact with the cavity field, all the atoms
of this ensemble have been pumped into the state |a〉. During
the interaction time, the set of equations for the macroscopic
atomic operators (3) of the χ th ensemble is

˙̂M
χ = −γabM̂

χ + g�χ (t)
(
N̂χ

a − N̂
χ

b

)
â + F̂

χ

M (t),

˙̂N
χ

a = −γaN̂
χ
a − g�χ (t)(â+M̂χ + M̂χ+â) + F̂ χ

a (t), (5)

˙̂N
χ

b = γaN̂
χ
a + g�χ (t)(â+M̂χ + M̂χ+â) + F̂

χ

b (t),
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where γa is the spontaneous decay rate of the upper lasing
state, γab is the decay rate of atomic coherence, and F̂M , F̂a ,
and F̂b are the Langevin forces. Here we neglect loss of atoms
from the trap during the interaction time. It is easy to show
that F̂a = −F̂b in this case. The mean values of the Langevin
forces are [9]〈

F̂ χ
a (t)

〉 = 〈
F̂

χ

b (t)
〉 = 〈

F̂
χ

M (t)
〉 = 〈

F̂γ (t)
〉 = 0. (6)

Correlation functions of the Langevin forces corresponding to
the intracavity field are

〈F̂+
γ (t)F̂γ (t ′)〉 = κn̄T δ(t − t ′), (7)

〈F̂γ (t)F̂+
γ (t ′)〉 = κ(n̄T + 1)δ(t − t ′), (8)

〈F̂+
γ (t)F̂+

γ (t ′)〉 = 〈F̂γ (t)F̂γ (t ′)〉 = 0, (9)

where n̄T is the number of thermal photons in the cavity mode.
We suppose that the temperature is low enough to set n̄T = 0.
In this case the correlations between the Langevin forces for a
specific atomic ensemble are〈

F̂ χ
a (t)F̂ χ

a (t ′)
〉 = γa

〈
N̂χ

a (t)
〉
δ(t − t ′), (10)

〈
F̂

χ+
M (t)F̂ χ

M (t ′)
〉 = (2γab − γa)

〈
N̂χ

a (t)
〉
δ(t − t ′), (11)

〈
F̂

χ

M (t)F̂ χ+
M (t ′)

〉 = (
2γab

〈
N̂

χ

b (t)
〉 + γa

〈
N̂χ

a (t)
〉)
δ(t − t ′), (12)

〈
F̂

χ+
M (t)F̂ χ+

M (t ′)
〉 = 〈

F̂
χ

M (t)F̂ χ

M (t ′)
〉 = 0, (13)

〈
F̂ χ

a (t)F̂ χ

M (t ′)
〉 = 〈

F̂
χ+
M (t ′)F̂ χ

a (t)
〉 = 0, (14)

〈
F̂ χ

a (t)F̂ χ+
M (t ′)

〉 = γa〈M̂χ+(t)〉δ(t − t ′), (15)

〈
F̂

χ

M (t ′)F̂ χ
a (t)

〉 = γa〈M̂χ (t)〉δ(t − t ′). (16)

Langevin forces corresponding to different atomic ensembles
are uncorrelated.

B. Equivalent c-number stochastic Langevin equations

As a next step we introduce the stochastic c-number
Langevin equations which are equivalent to the operator
Langevin equations (4) and (5). To establish a unique relation
between operators and c-number variables we have to define
the correspondence between products of c numbers and
products of operators. In [16] and in a number of subsequent
papers [4,9,11], the normal ordering â+, M̂+, N̂a, N̂b, M̂, â is
chosen and the c-number Langevin equations were derived in
such a way that the equations for first and second moments
of c-number variables A,M,Na,Nb are identical to corre-
sponding equations for normally ordered operator variables
â, M̂, N̂a, N̂b. This choice leads to a redefinition of correlation
functions for c-number Langevin forces Fa,Fb,FM,FM∗.

In our case this choice of normal ordering leads to self-
contradicting correlation functions; see Appendix A for
details. Moreover, the choice of normal ordering for atomic
operators M̂,N̂a,M̂

+ is ambiguous, in contrast to the choice
of normal ordering of field operators â and â+.

To overcome these difficulties we use here the following
rules: (1) The equations for first moments of operators and
c-number values should be identical; (2) the equations for
second moments of c-number field variables A and A∗ should
be identical to the corresponding mean values of normally
ordered field operators â and â+; (3) the equations for second
moments of c-number atomic variables Mχ ,N χ

a ,M∗
χ should

be identical to corresponding equations for mean values of
symmetrized products of operator variables M̂χ , N̂

χ
a ,M̂χ+.

Using these rules one can find the correlation functions for
c-number Langevin forces in a similar way as in [16]:〈

Fχ
a (t)

〉 = 〈
Fχ

b (t)
〉 = 〈

Fχ

M (t)
〉 = 〈Fγ (t)〉 = 0,

(17)
〈F∗

γ (t)Fγ (t ′)〉 = 〈F∗
γ (t)F∗

γ (t ′)〉 = 〈Fγ (t)Fγ (t ′)〉 = 0,

and 〈
Fχ

k (t)F ξ

l (t ′)
〉 = 2Dχ

klδ(t − t ′)δχξ , (18)

where the diffusion coefficients Dχ

kl are

2Dχ
aa = γa

〈
N χ

a (t)
〉
, (19)

2Dχ

MM = 2Dχ

M∗M∗ = 0, (20)

2Dχ

MM∗ = γab Nχ , (21)

2Dχ

aM = γa

2
Mχ , (22)

2Dχ

aM∗ = γa

2
M∗

χ . (23)

Here Nχ = N χ
a + N χ

b .
Equations (4) and (5) are already written in proper order,

so that it is easy to get the equations for the corresponding
c-number variables (for the sake of brevity, the argument t is
omitted here):

Ȧ = −κ

2
A + g(M1�1 + M2�2), (24)

Ṁχ = −γabMχ + g�χ

(
2N χ

a − Nχ

)
A + Fχ

M, (25)

Ṅ χ
a = −γaN χ

a − g�χ (A∗Mχ + AM∗
χ ) + Fχ

a . (26)

In the bad-cavity regime, the field variable A follows the
atomic variables adiabatically:

A = 2g

κ
(M1�1 + M2�2). (27)

It yields the full set of equations for the atomic variables

Ṁ1(t) = −γabM1(t) + G
[
M1(t)�2

1(t) + M2(t)�1(t)�2(t)
](

N 1
a (t) − N1

2

)
+ F1

M (t), (28)

Ṅ 1
a (t) = −γaN 1

a (t) − G

[
M1(t)M∗

1(t)�2
1(t) + M1(t)M∗

2(t) + M∗
1(t)M2(t)

2
�1(t)�2(t)

]
+ F1

a (t), (29)
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Ṁ2(t) = −γabM2(t) + G
[
M2(t)�2

2 + M1(t)�1(t)�2(t)
](

N 2
a (t) − N2(t)

2

)
+ F2

M (t), (30)

Ṅ 2
a (t) = −γaN 2

a (t) − G

[
M2(t)M∗

2(t)�2
2(t) + M1(t)M∗

2(t) + M∗
1(t)M2(t)

2
�1(t)�2(t)

]
+ F2

a (t), (31)

where G = 4g2/κ . Using Eqs. (28)–(31) and correlation
functions for Langevin forces (19)–(23), we simulate the lasing
process.

C. Simulation of c-number Langevin forces

In the present work we solve the set of equations (28)–(31)
using the simplest Euler algorithm. Namely, introducing
vectors x = (M1,N̂

1
a ,M2,N̂

2
a ) we rewrite (28)–(31) as

ẋ(t) = r(t,x) + f (t), (32)

where r(t,x) is the deterministic (“regular”) part of
the right-hand side of Eqs. (28)–(30), and f (t) =
(F1

M (t),F1
a (t),F2

M (t),F2
a (t)) is a stochastic part. Then the

algorithm is

x(ti+1) = x(ti) + [r(ti ,x) + f̃ (ti)]�t, (33)

where �t = ti+1 − ti , and

f̃ (ti) = 1

�t

∫ ti+1

t=ti

f (t)dt (34)

is a set of random variables with zero mean and with
correlations

〈f̃k(ti)f̃m(tj )〉 = 2Dkmδij

�t
. (35)

Here Dkm is one of the diffusion coefficients (19)–(23).
Note that stochastic terms corresponding to different atomic
ensembles are independent.

It is convenient to introduce two real column vectors F1(ti)
and F2(ti) such that

Fχ (ti) =

⎛
⎜⎝

F̃χ
a (t)

Re
[
F̃χ

M (ti)
]

Im
[
F̃χ

M (ti)
]

⎞
⎟⎠ . (36)

Then the correlators (35) can be rewritten in matrix form as

〈Fχ (ti)(Fχ (tj ))T 〉 = δij

�t
Dχ , (37)

where the covariance matrixDχ can be derived from (19)–(23)
and (35):

D = 1

�t

⎛
⎜⎝

γaNa Re[M] γa

2 Im[M] γa

2

Re[M] γa

2 N γab

2 0

Im[M] γa

2 0 N γab

2

⎞
⎟⎠ . (38)

(Here and below in this section an index χ and an argument ti
are omitted for the sake of brevity.) The matrix D is positive
semidefinite according the Sylvester’s criterion. Indeed, the

determinant of this matrix is

|D| = Nγabγa

4�t

[
NNaγab − MM∗ γa

2

]
� 0, (39)

because |M|2 � NaNb � NaN , and γab � γa/2.
Consider a column vector

A = X−1 · F , (40)

where X = (X(1),X(2),X(3)) is a matrix constructed of the
normalized eigenvectors ofD corresponding to the eigenvalues
λ1, λ2, λ3. Correlations of elements of A can be found as

〈Ak(ti)Am(tj )〉 = δij δkm�m. (41)

Therefore the elements of A are independent random values
with zero means and given dispersions. These values can
be easily simulated, and the Langevin forces can then be
calculated by the inversion of (40).

III. SIMULATION

In this section we specify our model and present the results
of simulations of the lasing process. Consider the functions
�1(t) and �2(t) describing the time dependence of the coupling
between an atomic ensemble and the cavity mode. We suppose
that this coupling is provided by the motion of the optical lattice
confining the atoms. It seems to be necessary to keep a constant
velocity of the atomic ensemble during its motion through
the cavity to avoid the time-dependent second-order Doppler
effect. Usually the transversal distribution of the electric field
is Gaussian. For this reason, we take the functions �1(t) and
�2(t) of the form

�χ (t) = exp

[
− 18

(
t − t

χ

i

)2

T 2

]
, (42)

in the ith lasing cycle. Here t
χ

i is the time when the χ th
ensemble crosses the symmetry axis of the cavity, and T is
the time for moving the atomic ensemble through the cavity
between two points where the amplitude of the intracavity field
is e−9/2 	 1% of its value (on the cavity axis). We neglect any
coupling outside these points. Therefore T = τ1 + 2τ2, where
τ1 is the duration of stages 1 and 3, and τ2 is the duration of
stages 2 and 4; see Fig. 2.

We now simulate the lasing process and study the depen-
dence of intracavity field phase fluctuations on the temporal
parameters of the lasing cycle, summarized in the ratio

R = τ1

τ1 + τ2
, (43)

which describes the temporal overlap of different atomic
ensembles inside the cavity. It follows from general consid-
erations that the lower the R (more overlap), the better the
polarization of the “old” ensemble will be inherited by the
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FIG. 2. Time dependence of atom-cavity coupling expressed by
the coupling functions �1(t) and �2(t) for different stages of the lasing
cycle.

“fresh” one. An ideal system would be a continuous delivery
of inverted atoms trapped in the optical conveyor belt, however
such a device remains to be realized experimentally. If the
experimental setup traps the atoms in a pulsed regime and if
it contains only two moving optical lattices, then the atomic
ensemble should be loaded into the optical lattice, prepared in
the upper lasing state, and transferred into the cavity during
the time τ1. Therefore τ1 (and R) cannot be made arbitrarily
small. This difficulty could in principle be overcome by
scaling to more than two moving optical lattices in one setup,
however, significantly enhancing the experimental complexity.
Therefore it is interesting to find the optimal range of R where
the phase transfer between two ensembles still works.

In our simulation we use the following parameters for the
atomic ensemble and the laser cavity: κ = 105 s−1 (this value
can be attained in a cavity with a finesse of about 5 × 104

and a cavity length about 10 cm), γa = γab = 5 × 10−3 s−1

(this value is typical for the spontaneous decay rate of the
3P2 state of divalent atoms; see [17,18]), g = 2.5 s−1 (this
value corresponds to a cavity mode waist of about 1 mm, the
wavelength of the lasing transition is about 700 nm and the
cavity length is about 10 cm), and an average number of atoms
in one ensemble N = 2 × 105. An important feature of any
realistic preparation and trapping of the atomic ensembles is
that the number of trapped atoms fluctuates. We suppose that
the dispersion of the number of atoms in one ensemble is 10%.

For all lasing stages we simulate the lasing process
according the method described in Sec. II using the functions
(42). At the start of stage 2 and stage 4 of the lasing process,
we chose the number N of atoms in the second and the
first ensemble respectively, including random fluctuations. We
suppose that atoms enter the cavity mode in the upper lasing
state |a〉 with zero polarization. We then trace the intracavity
field variable A over 1500 lasing cycles. This process is
repeated several times which allows us to study the Allan
dispersion σ 2

φ of the phase φ of the laser field:

σ 2
φ (�t) = 1

2 〈(φi − φi+1)2〉, (44)

where φi and φi+1 are the phases averaged over the ith and
(i + 1)th adjanced time intervals, each of which has a duration

FIG. 3. (Color online) Phase diffusion coefficient versus the
duration of the lasing cycle for different values of the ensemble
overlap parameter R.

of �t . In our case σ 2
φ (�t) ∝ �t , as is typical for a random

phase walk. This process can be approximately described by
the equation

dφ

dt
= f (t), 〈f (t)〉 = 0, 〈f (t)f (t ′)〉 = 2Dδ(t − t ′).

(45)

It is easy to show that the phase diffusion coefficient D is
connected with the Allan dispersion σ 2

φ as

σ 2
φ (�t) 	 2D

3
�t. (46)

So one can easily find the phase diffusion coefficient D using
the calculated Allan dispersion.

The phase diffusion coefficient is of significance here, as for
laser radiation with negligible amplitude fluctuations and with
phase fluctuations described by a Markovian process (45), the
power spectral density is a Lorentzian function with linewidth
at half maximum �ω = 2D [19]. In our case, the laser operates
in the pulsed regime and the spectrum has a more complicated
shape, as indicated in Fig. 5. Here, 2D is the linewidth of
the narrow central peak corresponding to the main carrier
component of the spectrum.

Dependencies of the phase diffusion coefficient D on the
duration 2(τ1 + τ2) of the lasing cycle for different values of R

are presented in Fig. 3. To discuss these results, let us consider
the time dependencies of amplitude |A| and phase φ of the
intracavity field A for some particular realizations; see Fig. 4.
We see that if the lasing cycle is too short, the atoms have not
enough time to develop a significant polarization. Therefore
almost all the atoms leave the cavity before they can transfer
their energy to the cavity mode, and the intracavity field is
extremely weak; see Fig. 4(a). Weakness of the intracavity
field leads to a comparatively large contribution of Langevin
forces which in turn leads to a large phase diffusion coefficient.
On the other hand, if the lasing cycle is too long, the atoms
of the first ensemble transfer all their energy to the intracavity
field during stage 1; see Fig. 4(c). Therefore at the beginning
of stage 2, when the “fresh” ensemble is introduced into the
cavity, the first ensemble has already lost the polarization. Of
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FIG. 4. Behavior of amplitude and phase of the intracavity field
in a particular realization over several lasing cycles for R = 0.25
and different durations of lasing cycle. (a) 2(τ1 + τ2) = 0.2 s; (b)
2(τ1 + τ2) = 0.5 s, behavior of the amplitude in the first two lasing
cycles and of the phase in established regime are shown in the insets;
(c) 2(τ1 + τ2) = 1.2 s.

course, any transfer of polarization and passing on of the phase
is impossible in this case.

For the optimal duration of the lasing cycle, atoms have
enough time to develop significant polarization, and this
polarization survives until the introduction of the next atomic
ensemble into the cavity; see Fig. 4(b). In this case, during
the first few lasing cycles, the amplitude of the pulses grows
from pulse to pulse [see inset in the upper graph in Fig. 4(b)],
and the phase fluctuates considerably [see the lower graph in
Fig. 4(b)]. After several cycles, a quasistationary regime with
phase-linking between successive ensembles is established,
and only weak phase diffusion remains [see inset in the lower
graph in Fig. 4(b)]. Note that for nonoptimal regimes presented
in Figs. 4(a) and 4(c), the phase fluctuations in the first few
pulses are practically the same as in the quasistationary regime;
the phase cannot be kept longer than a few cycles.

We obtain optimal values for the lasing cycle of about 0.4–
0.6 s length for the experimental parameters introduced above.
This result can be understood intuitively by comparing it to the

FIG. 5. Power spectral density of the intracavity field for τ1 =
0.0625 s, τ2 = 0.1775 s.

characteristic duration tp of a single superradiance pulse of an
atomic ensemble coupled to the cavity; see Appendix B. For a
single ensemble (N = 2 × 105, G = 2.5 × 10−4) we estimate
tp 	 0.1 s. In the dynamic implementation discussed here, this
time should be increased following the time dependence of
�(t). Because one lasing cycle consists of two superradiation
pulses, one understands that the optimal timing of these pulses
corresponds to about 2–3 tp. Also we note that the optimal
lasing cycle duration decreases with smaller R because the
simultaneous coupling of two atomic ensembles with the
cavity mode results in a shorter radiation pulse.

Finally, let us consider the one-sided power spectral density

SA(ν) = |Aω(2π (ν − ν0))|2
π

= 4
∫ ∞

0
〈Re [A(0)A∗(τ )]〉 cos(2πν)dτ, (47)

where ν0 = 2πωab. The power spectral density for τ1 + τ2 =
0.25 s (which corresponds to a total duration of one lasing
cycle of 0.5 s), R = 0.25, averaged over 60 realizations, each
with 1500 cycles, is represented in Fig. 5. One can observe a
high central peak corresponding to the main lasing component
with the frequency ν0, and a number of sufficiently lower
sideband peaks at frequencies corresponding to multiples of
the repetition frequency of the transport cycles (2 Hz in our
case).

IV. CONCLUSION

We proposed to keep the phase coherence between pulses
of a bad-cavity active optical frequency standard by sequential
coupling and decoupling of prepumped atomic ensembles with
the optical cavity mode. We studied the phase diffusion of
the intracavity field and demonstrated that for the optimal
duration of the lasing cycle (about a few durations of the
superradiation pulse of a single atomic ensemble), a phase
diffusion coefficient D as low as a few 10−6 can be realized. We
found that this phase relay process is robust to 10% fluctuations
of the atom number introduced into the cavity. We conclude
that the method of sequential coupling may be a promising
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approach towards the creation of an active optical frequency
standard.
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APPENDIX A: SELF-CONTRADICTION OF
CONVENTIONAL CHOICE OF CORRELATION

FUNCTIONS

As it was mentioned in Sec. II C, usually the correspondence
between operator and c-number variables is based on the
requirement that products of c-number variables correspond
to the normally ordered operator variables with the normal or-
dering â+, M̂+, N̂a, N̂b, M̂, â [16]. This convention gives the

diffusion coefficients Dχ

kl , different from (19)–(23). Instead,
one can obtain (see [9] for details)

2Dχ
aa = γa

〈
N χ

a (t)
〉 − g�χ (t)〈M∗

χ (t)A(t) + Mχ (t)A∗(t)〉,
(A1)

2Dχ

MM = 2g�χ (t)〈Mχ (t)A(t)〉, (A2)

2Dχ

M∗M∗ = 2g�χ (t)〈M∗
χ (t)A∗(t)〉, (A3)

2Dχ

MM∗ = (2γab − γa)〈Na(t)〉, (A4)

2Dχ

aM = 2Dχ

aM∗ = 0. (A5)

If one tries to use these diffusion coefficients for the
numerical simulation of Langevin forces, one obtains an
inconsistency. Indeed, if one introduces the real column vector
(36), then the covariance matrix D occurs to be

D = 1

�t

⎛
⎜⎝

γaNa − GMM∗ 0 0

0 Na

(
γab − γa

2

) + G�2 M2+M∗2

4 G�2 M2−M∗2

4i

0 G�2 M2−M∗2

4i
Na

(
γab − γa

2

) − G�2 M2+M∗2

4

⎞
⎟⎠ (A6)

after adiabatic elimination of the field variables A, A∗. This
matrix must be positive-semidefinite because it is a covariance
matrix of real random values Fa , Re[FM], Im[FM]. However,
this is not true in the general case. For example, if γab = γa/2,
the last diagonal element of the matrix D is always negative.
The first diagonal element is also negative, if G � γa (which
corresponds to the high-cooperativity regime) and if the atomic
polarization is not drastically suppressed by some reasons. In
any of these cases, the matrix D is not positive-semidefinite
according to Sylvester’s criterion. So the conventional choice
of correlation functions occurs to be self-contradicting.

APPENDIX B: DURATION AND SHAPE OF
SUPERRADIANCE IMPULSE

Consider one single ensemble of N two-level atoms
coupled to the resonance mode of the bad cavity in the
high-cooperativity regime, i.e., when Ng2 � γabκ . We study
the time dependence of the intracavity field using the set of
equations for c-number variables A, M, Na when �(t) = 1.
For the sake of simplicity we neglect the Langevin forces and
suppose that initially all the atoms are in the upper lasing state.
Of course such simplification obstructs the correct behavior
when the superradiance pulse starts. However, this model can
reproduce the shape of the pulse because the interaction of the
atomic ensemble with the thermal bath will play a significant
role only in the very beginning, or in the very end of the
pulse.

We adiabatically express the field variable A = 2gM/κ

via the atomic polarization M similarly to (27). Then
the set of equations for the atomic variables reads

as

Ṁ = −γabM + GM
(
Na − N

2

)
, (B1)

Ṅa = −γaNa − GMM∗, (B2)

where G = 4g2/κ . In the high-cooperativity regime we ne-
glect the first terms on the right-hand side of these equations.
Then we introduce Q = MM∗. The set of equations trans-
forms to

Q̇ = G(N − 2Na)Q, (B3)

Ṅa = −GQ. (B4)

The solution to this set of equations reads as

Q(t) = N 2

4 cosh2[GN (t − t0)/2]
, (B5)

Na(t) = N
1 + exp[GN (t − t0)]

, (B6)

where t0 is the time when the atomic polarization (and therefore
the intracavity field) is maximal. Here we took into account
that Na(−∞) = N , M(−∞) = 0.

The superradiance pulse has the shape

A(t) = 2g

κ

N exp(iφ)

2 cosh[GN (t − t0)/2]
, (B7)

where φ is the phase of the intracavity field. The characteristic
duration tp of this pulse (measured to the half of its height) is

tp = 4arccosh 2

GN 	 5.27

GN
. (B8)
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