REA-ERP: Challenges of using REA in an ERP
System

Dieter Mayrhofer!, Christian Huemer!, Peter Regatschnig?

'TU Vienna, %eventus Marketingservice GmbH
{mayrhofer, huemer}@big.tuwien.ac.at, 2peter.regatschnig@eventus.at

Abstract. The Resource-Event-Agent (REA) ontology is a powerful and
well accepted approach towards the design of enterprise information systems
in the academic world. However, it still lacks application in industry products.
Software like ERP applications might benefit from REA data structure by
building their product’s core on a robust, economic theory based, business
ontology. Consequently, we have lately started a feasibility study with an
Austrian ERP vendor, in which we investigate whether or not the ERP vendor
can use the REA ontology as basis for their new ERP system. This paper
is aimed at raising questions about uncertainties in REA we came across in
our study so far.

1 Introduction

The Resource-Event-Agent (REA) ontology developed by McCarthy, Geerts and oth-
ers [1] is the most prominent business ontology for accounting information systems.
REA is a widely accepted framework for the design of conceptual models of the ac-
countability infrastructure of enterprise information systems. In its beginnings, REA
described the resource flows within and between companies capturing what is cur-
rently occurring and what has occurred in the past. This is known as the operational
layer. Later REA was extended by a planning layer and a policy layer capturing what
should, could, or must be occurring sometime in the future [2, 3]. Today, REA may
be considered as a powerful business ontology capturing all relevant data to generate
the conceptual design of an Accounting Information System (AIS) as well as of an
Enterprise Resource Planning (ERP) system.

During the last 30 years, REA has achieved wide acceptance in the academic
world but still lacks implementation in industrial products. To the best of our knowl-
edge, there are no maintained ERP systems based on REA available, which are used
by companies. Thus, it is still unknown if REA can live up to the requirements of
an ERP system. Furthermore, REA instance examples are rare, which may help
database designers in a great extent to understand the concepts behind REA.

In order to assess these uncertainties we lately started conducting a feasibility
study with an Austria based ERP vendor, who considers to use REA for the data
structure of a revamped generic ERP system. We are right now in an early state
of sketching the ERP data structure according to REA. However, there are already
questions arising from this task concerning the proper use of REA. Furthermore,
performance concerns may arise when using REA in its intended way. We would like
to use these questions and concerns for an open discussion in this paper. We believe,
that we can point out some areas of REA which need more research and are crucial
for industrial acceptance.

In the following, we talk about the major uncertainties we stumbled upon so
far: (i) positions in commitments, (ii) performance with identifiable resources in
commitments/events, (iii) negotiation, and (iv) unhappy paths.

2 Uncertainties

Uncertainty 1: Is each position in one separate commitment or are they
one combined commitment? In REA, a binding contract is established if two
parties commit to exchange resources in the future. This contract consists of at least
two commitments, which are in reciprocity to each other (cf. Figure 1). For example,
in an order one party Agent A commits to provide two specific resources Prod 1 and
Prod 2 to party Agent B. In return (reciprocity), party Agent B commits to pay a
certain amount of money to party Agent A.

] saleReciprocityContract »

v o2
_| Sy
| A
T _paymentReceiptCommitment
I
LT
» _ Customer > :
I
|
F
[&'mmmnentk\jsewespmmpe >] saleCommitmentReservesProduct » T CashAccountsType >
T
¢ i
] ProductType > - ———— — — 1<] Product >
Fig. 1. Commitment relational model
Contract
Sales
Prod A — .
Commitment 1 Payment
. Cash
Commitment
Sales
Prod B Commitment 2
Contract
Sales Payment
0 Prod A 7 Commitment Commitment Cash
Prod B

Fig. 2. Commitment instance

When looking at REA instance examples (cf. Figure 2), we see two possibilities:
(i) one commitment for each resource Prod 1 and Prod2 or (ii) one commitment
combining both resources. Is REA meant to capture each position in a separate
commitment as shown in (i)? This would mean, that the customer legally commits
to each single position instead of committing to the whole order at once as shown
in (ii). This also leads to many more rows in the database which may cause worse
database performance.

Uncertainty 2: If multiple identifiable products of the same type are re-
served through stockflows in one commitment/event, is it allowed to ad-
ditionally save the cumulated quantity as a product type stockflow? When
looking at Figure 3, the usual way to reserve identifiable resources is (i) by reserving
each of them (Prod A1 to A500). Imagine someone ordering 500 products of the same
type, this would take some considerable time to query the complete order, where I
am not interested in each single instance of the 500 products (i.e., each single serial
number). Thus, we would propose additionally to the stockflows of the identifiable
products (ii) one cumulated stockflow with a quantity of 500 to the product type.
Consequently, when displaying an order, we do not have to query over all 500 prod-
ucts. Instead, it is sufficient enough to query over all product type stockflows, in
this case just one. In other cases, I can however still query the serial numbers of the
products in the order.

Sales Sales
Prod Al Commitment Prod Al Commitment
Prod A2 Prod A2
Prod Type A
Prod A500 Prod A500 Quantity 500

Fig. 3. Commitment reserving products and product type

Uncertainty 3: Negotiation - how to handle negotiation in REA? Let’s
assume following example: My company sends out a RequestForQuote for 10 specific
candy bars (there is no legal commitment yet). Three companies reply to this Re-
questForQuote with a quote (company A 10 Euro, company B 15 Euro, and company
C 20 Euro). Thus, they commit themselves to deliver the candy bars for the stated
money. We now pick company A and send them a counter offer which says, that
we would order the candy bars for 8 Euro (consequently, we commit to this price).
Company A accepts this counter offer. Now, my company and company A both com-
mitted to transfer 8 Euro for 10 candy bars.

In REA, we have a reciprocity between two commitments, namely OrderCom-
mitment and PaymentCommitment. Does it make sense to reflect the negotiation
process by updating the commitment instance in each negotiation step (which will
not store the history of the negotiation process in that case)? Or should we introduce
an additional entity in the REA model which handles the negotiation process and
also allows to reveal the history of the negotiation process? Satoshi and McCarthy
[4] have presented some work on introducing state machines for the negotiation pro-
cess of commitments. However, there is still no common agreement how to handle
negotiation in REA.

Uncertainty 4: How to deal with unhappy paths and complaints (e.g.,
product return)? Many papers and textbooks on REA consider the ”"happy path”.
”?Unhappy paths” are mentioned rarely and often in simple ways. Lets assume we
have sent two cameras to a customer. With one of the two cameras the customer is
not satisfied because he or she believes it is not working properly. In REA literature,
this case is often solved by a product return: the customer returns the product and

we return the cash. Figure 4 shows one possible simple data structure which allows
to support this case. However, in real world this case can be more complicated. Here
are some scenarios: (i) the product is returned and the money is returned, (ii) the
product is returned and we ship a new one, (iii) the product is returned but we
figure out that it is still working and resend the same unit to the customer, (iv) the
product is returned and we put credit on the customers account, (v) the product is
not returned and we give the customer a discount, (vi) the product is not returned
and the customer just pays one product and we do not collect the payment for the
second product, (vii) the second product was a wrong delivery caused by us, (viii)

] Deliver > <) ilitation » >+ | CashReceiptEvent >
\4
| |
______________ | L
+ +
] saleDuality >
T +
f——————= L a
A A
] cashReturnEvent >] ProductReturnEvent >
_] DeliverySaleEvent_Materializes_Claim »>] CashReceiptEvent_Settles_Claim »>

Fig. 4. Complaints

You see, that there are many ways how a complaint can be resolved. In a generic
ERP system, we have to consider all of these cases. A case may comprise of various
events which affect the claims and the duality. Furthermore, how can we model the
intention of a customer to return a product? Is REA mighty enough to capture
the history of these complaints? Sometimes it is a subjective matter if a duality is
reconciled or not, how should we handle these cases?

3 Conclusion

We are in the first month of our feasibility study and came across those four un-
certainties mentioned above among others. We hope, that this paper is a start of a
broader discussion on how to make REA more suitable for industry and real world
scenarios. We believe that a reference model for REA purchase and sale business ac-
tivities can be the basis for such discussions and might help many ERP/IS database
designers to get started with REA.

References

1. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for Account-
ing Systems in a Shared Data Environment. The Accounting Review 57(3) (1982)

2. Geerts, G.L., McCarthy, W.E.: An Ontological Analysis of the Economic Primitives
of the Extended-REA Enterprise Information Architecture. International Journal of
Accounting Information Systems 3(1) (2002) 1 — 16

3. Geerts, G.L., , McCarthy, W.E.: Policy-Level Specification in REA Enterprise Informa-
tion Systems. Journal of Information Systems 20(2) (2006) 3763

4. Horiuchi, S.; McCarthy, W.E.: An Ontology-Based State Machine for Catalog Orders.
In: Proceedings of the 5th International Workshop on Value Modeling and Business
Ontologies (VMBO 2011), Ghent, Belgium. (2011)

