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Abstract—In the past years, several researchers applied search-

based optimization algorithms successfully in the software 
engineering domain to obtain automatically near-optimal 
solutions to complex problems posing huge solution spaces. More 
recently, such algorithms have also been proven useful for solving 
problems in model engineering. However, applying search-based 
optimization algorithms to problems in model engineering 
efficiently and effectively is a challenging endeavor demanding 
for expertize in both, search-based algorithms as well as model 
engineering formalisms and techniques. In this paper, we report 
on our experiences in applying such search-based algorithms for 
model engineering problems and propose a model-driven 
approach to ease the adoption of search-based algorithms for the 
area of model engineering. 

Index Terms—Search-based Engineering, Model Engineering, 
Model-driven Software Engineering, Genetic Algorithms 

I. INTRODUCTION 
Model-driven Engineering (MDE), as one of the most 

prominent protagonists of model engineering [8], is a discipline 
that relies on models as first class entities and that aims to 
develop, maintain, and evolve software systems by performing 
model transformations [1] on models abstracting from concrete 
implementations of the systems. 

As many other domains of software engineering, the MDE 
community is currently concerned with finding exact solutions 
to these problems causing high efforts to actually achieve these 
solutions. An alternative approach is to search for solutions that 
fall within a specified acceptance margin. Search-based 
optimization techniques are well suited for this purpose. 
Although, Search-based Software Engineering (SBSE)  has 
been successfully applied to a number of different MDE tasks, 
such as model transformation[2][12], model evolution [4][9], 
model analysis [4], and model transformation testing [10], 
applying SBSE to complex MDE problems necessitates 
expertise in both, search-based optimization algorithms and 
MDE formalisms and techniques. It is thus desirable to define a 
generic process supported by a dedicated framework that can 
be applied to solve various MDE problems by using search-
based algorithms with low adaptation effort and expertise. 

II. RELATED WORK 
The term SBSE was coined by Harman and Jones in 

2001[11]. As its name implies, SBSE treats software 

engineering problems as search problems, and seeks to apply 
search techniques in order to solve them. 

MDE represents one of the application domains of SBSE. 
We define Search-based Model-Driven Engineering (SBMDE) 
as the application of optimization techniques to solve MDE 
problems. The approach is motivated by the fact that, for many 
MDE problems, it is infeasible to apply a precise analytic 
algorithm that produces the “optimal” solution to the problem. 
Thus, as indicated by a recent SBSE survey [2], the application 
of search techniques in MDE is emerging, but still not as 
prominent as for traditional code-based software engineering.  

To improve the design quality, many SBSE approaches 
have been proposed [14][15][16]. Most of these works search 
to find the best combination of refactorings that can improve 
quality metrics. Due to the large number of possible refactoring 
combinations, different metaheuristic search approaches are 
used and compared. The clustering problem is also studied 
using search-based techniques [19][20]. The majority of these 
studies are based on the use of cohesion and coupling to find 
the best clustering of model elements that increases cohesion 
and decreases cohesion. The generation of test cases to test 
metamodels/models and transformation mechanisms are also 
considered as an optimization problem [17][18] where the goal 
is to find the best set of test cases that covers metamodel 
elements and transformation possibilities. 

Although a few reusable frameworks emerged to ease 
adopting of search-based approaches for software engineering 
problems, there is no framework (i) that specializes on adopting 
SBSE for MDE, (ii) that exploits the benefits of MDE itself, 
and (iii) allows developers to remain in the technical space of 
MDE when developing search-based algorithms for MDE. 

III. APPLYING SEARCH-BASED ENGINEERING IN MDE 
In this section, we summarize our experiences of applying 

SBSE techniques, in particular genetic algorithm (GA) [13], for 
MDE problems. In the following we focus on the process of 
applying GA, as well as the interfaces that have to be realized 
for adopting GA for a specific problem. After introducing the 
process of GA in general, we show how we applied GA to 
solve optimization problems in the MDE domain and discuss 
some lessons learned. 

In Figure 1, the general process of GA, as well as the 
interfaces to be realized for applying GA to a specific 
optimization problem, is depicted. In general, the following 
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interfaces have to be realized: encoding of the individuals, 
creation of an initial population of individuals, evaluation of 
individuals using a fitness function to determine a quantitative 
measure reflecting their ability to represent a solution for the 
problem under consideration, selection of the individuals to 
transmit from one generation to another, and the creation of 
new individuals using genetic operators (crossover and 
mutation) to explore the search space. In the following, we 
show how we have realized this process for two important 
MDE problems. 

 
Figure 1: Interfaces of Genetic Algorithms. 

A. Experience 1: Model Transformation as Optimization 
Problem 
In [2][12], we introduced an optimization-based approach 

to automate model transformations. In particular, model 
transformations are treated as a combinatorial optimization 
problem where the transformation of a source model is 
obtained by finding, for each of its model elements, a similar 
transformation from an already existing example base, i.e., an 
example comprises a source model, a target model, and trace 
links between source and target model elements. 
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Figure 2: Searching for Target Models. 

 
Due to the large number of possible combinations, a 

heuristic-search strategy has been used to build the 
transformation solution from a set of individual model element 
transformations (cf. Figure 2). To apply search-based 
techniques, we had to determine the following aspects: Search 
algorithm: For generating the solutions, we used two strategies 
based on two search-based algorithms, namely particle swarm 
optimization (PSO) [6] and simulated annealing (SA) [7]; 
Individual encoding: For representing models in the technical 
space of SBSE, we used a predicate representation that 
serializes models into a simple human-readable text format. 
Because of the complex structure of models as well as the type 
information, we could not reuse a generic binary encoding; 
Fitness function: The example base comprises models that are 
considered as good solutions for the current transformation 
problem. The fitness functions are evaluating a produced 
solution, i.e., the target model, concerning its deviation to the 
existing target models in the example base, as well as 

additional design metrics for determining the quality of the 
target model.  

B. Experience 2: Model Change Detection as Optimization 
Problem 
Recently, we proposed an approach for detecting model 

changes, such as refactoring applications, that have been 
applied between two successive versions of a model [9]. In 
particular, we addressed the problem that several different 
model evolutions may describe the transition from the same 
initial model version to the revised one. Due to the large 
number of possible change combinations, a heuristic-search 
strategy has been used to build the sequence of change 
operation applications from a given set of change operation 
types (cf. Figure 3). We implemented the search-based 
approach in the following manner: Search algorithm: For 
computing the solutions, we used and adapted genetic 
algorithm (GA) as global heuristic search method to compute 
the sequence of change operations; Individual encoding: For 
representing change models that have to be optimized, we used 
a predicate representation that represents model evolutions as 
sequences of change operation applications; Fitness function: 
In the first version, we used a mono-objective approach 
searching for change sequences that are able to produce as 
much as possible a similar model than the given revised model. 
Thus, we apply the detected changes on the initial model by 
executing the operations as given by the change sequence. The 
output of this execution is a computed revised model that is 
compared using model differencing approaches [5] with the 
actual revised model.  

GA
Base of change types

Initial model Change Model

Length Similarity
Fitness functions

Input Output

Revised model  
Figure 3: Searching for Change Sequence. 

C. Lessons Learned 
Generalizing from the two case studies where we applied 

SBSE in the context of MDE, we may derive a general 
approach for realizing the interfaces of GA as depicted in 
Figure 4. In our cases, we switched from the MDE field to the 
SBSE field by encoding models into a dedicated format and by 
tailoring existing search-based algorithms to this representation 
using a general purpose programming language. The computed 
solutions are also transferable again to the MDE field for 
reasoning on their quality. Some fitness functions are basic 
functions, such as computing the number of elements, others 
are complex functions, often referred to as model management 
operators, such as model differencing. For bridging the gap 
between MDE and SBSE, we used model transformations 
(model-to-text) to encode the models in SBSE-specific formats. 

Whereas we achieved promising results of applying SBSE 
for solving MDE problems, we also faced major challenges. 
First, selecting an appropriate optimization algorithm for a 
specific problem is the major challenge. While the decision 
whether a mono-objective or a multi-objective technique 
should be applied is determined by the understanding of the 
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specific problem, the selection of the actual algorithm out of 
the huge set of existing ones requires for a subsequent 
evaluation. Second, concerning the formulation of the fitness 
functions, efficiency is the main goal. Often, it is even 
necessary to trade precision with efficiency. Third, because of 
the first two challenges, the availability of well-understood 
case studies to reason on the quality of the computed solutions 
is of paramount importance. To achieve an objective 
evaluation, several runs of the algorithms, several kind of 
inputs, automatic and manual evaluation methods have to be 
considered. Fourth, while MDE dictates the usage of models to 
raise the abstraction and ease analyzing the problem domain, 
current adoptions of SBSE for MDE are hard-coded for 
specific encodings and employ general purpose programming 
langauges. Here the question arises whether domain-specific 
languages may stimulate the adoption of SBSE for MDE by 
exploiting the MDE paradigm itself. Applying search-based 
algorithms for solving problems in MDE is possible but 
challenging. However, as we have experienced in our recent 
case studies, several of the components that realize certain parts 
of a search-based application bear the potential for reuse across 
different applications of search-based algorithms in MDE. 
Therefore, we propose a framework leveraging MDE 
techniques for applying SBSE in the context of MDE, not only 
to increase efficiency and reuse, but also to lower the barriers 
of applying SBSE for MDE. One major goal of this framework 
is to lift those artifacts that currently have to be developed in 
the SBSE space to the MDE space, such as the realization of 
the fitness function, as well as the configuration and 
composition of optimization operators. In the following, we 
sketch initial ideas of such a model-based framework focusing 
on GA in a first step. 
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Configuration
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Combination of Existing 
GA Components

Model Engineering
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Genetic 
Algorithm 
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Figure 4: Realizing GA Interfaces in the context of MDE. 

IV. MDE FOR SBSE FOR MDE 

A. Individual Encoding 
The first task is to realize the encoding of models into the 

technical space of GA. Therefore, one typically has to 
transform the input models into formats dictated by the used 
GA framework. When implementing the encoding for our 
recent case studies, we realized that an intermediate modeling 
language, formalized by the encoding metamodel, which 
follows certain GA-specific patterns and which is close to a 

common format suitable for GA encoding, would enable 
employing a generic bidirectional model-to-text 
transformation, as well as generic components realizing 
multiple of the remaining steps in the GA automatically, such 
as selection, cross-over, and mutation. Having designed such 
an encoding metamodel, the input models would just have to be 
transformed into the encoding metamodel using model-to-
model transformations. 

In Figure 5, we sketch a generic encoding metamodel that 
can be extended (in terms of subclassing) for a particular 
problem domain to obtain a problem-specific encoding 
metamodel. As a result, each concrete encoding metamodel 
consists of concrete metaclasses that describes the structure of 
an individual, which again consists of an ordered set of 
individual atoms, which in turn can be parameterized with 
parameters and parameter values. In the context of the case 
study related to model changes detection, an individual would 
be an ordered set of model changes (i.e., individual atoms), 
which can be parameterized in terms of the model elements the 
specific model change affected. Besides representing 
individuals, often auxiliary models are necessary for computing 
the fitness of individuals. For instance, in the case study 
outlined for changes detection, the initial and the revised model 
would act as such auxiliary models. The encoding metamodel 
shall act as the central hub for the remaining artifacts that need 
to be specified for realizing the complete GA process. Thus, it 
should be possible to specify and apply all components on 
model-level (according to the encoding metamodel) and not as 
it is done now, on the level of the raw predicate encoding. 

 
B. Population Generator and Fitness Function 

In the first step of the GA, we have to provide a generator 
for an initial population (cf. Figure 6). Therefore, arbitrary 
model engineering languages, such as EOL1, or dedicated 
frameworks, such as Ecore mutator2, may be used to generate 
instances of the respective subclass of the metaclass individual 
in the encoding metamodel. With the selection of the most 
appropriate framework or language, the user has the flexibility 

                                                           
1 http://www.eclipse.org/epsilon/doc/eol 

2 http://code.google.com/a/eclipselabs.org/p/ecore-mutator 
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Figure 5: Model-based Framework for Encoding Individuals. 
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to decide whether to generate random instances or to follow 
other generation strategies (e.g., pre-computed solutions by 
enumeration-based approaches that have to be optimized). 
Besides providing an initial population, a problem-specific 
fitness function has to be developed based on the encoding 
metamodel (cf. Figure 6). Therefore, we propose to use an 
extensible component called fitness evaluator that consists of 
an individual interpreter and the actual fitness function. The 
individual interpreter is necessary, because in many cases the 
solution has to be processed (e.g., compared, transformed, or 
simulated, etc.) before its fitness can be evaluated. The result of 
this processing can be saved in terms of an auxiliary model 
(e.g., a difference model, transformation trace, etc.). This 
auxiliary model can now be used by the actual fitness function, 
which can easily be realized by a model query (e.g., number of 
differences, or other quality metrics). 

 
C. Selection, Cross-over, and Mutation 

The selection is typically a query obtaining a subset of 
individuals that satisfy a certain fitness threshold. As the 
generic encoding metamodel dictates that every individual has 
to be an instance of individual (indirectly) and the framework 
knows how to compute the fitness (using the fitness evaluator), 
it is easy to provide a configurable component for that. The 
same is true for the cross-over component. Basically, an 
individual consists of parameterized individual atoms. Thus, 
new child individuals can be produced by intermingling the 
atoms of two parent individuals. 

Also for the mutation, generic components can be provided, 
as the order of the atoms as well as the concept of parameters 
and parameter values are explicitly represented in the generic 
encoding metamodel. Thus, individuals can be mutated by re-
ordering their atoms or assigning new parameter values 
randomly. To limit the search space, additional validation 
constraints can be attached to the encoding metamodel. Of 
course, generic components might not always satisfy all needs 
of users for applying GA to a MDE problem. Thus, users 
should be empowered to plug-in alternative implementations of 
these components. The main benefit, also if these 
implementations have to be provided by the users themselves, 
is that these components can still be realized using MDE 
techniques in contrast to implementing those on the level of the 
raw encoding. Probably we might need predefined mutation 
operations. Alternatively this can be done by changing the 
order of the individual atoms and their parameter values. 

V. NEXT STEPS 
In this paper, we proposed an MDE-based framework for 

easing the adoption of SBSE to other MDE problems. The next 
step is to realize the sketched framework based on EMF. As 
soon as we complete a first prototype, we will evaluate it by re-
producing existing hand-crafted applications of SBSE to MDE 
problems using the proposed framework instead.  
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Figure 6: Model-based Framework for Generating an Initial 
Population and Evaluation of Fitness. 
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