
Searching Models, Modeling Search:
On the Synergies of SBSE and MDE

Marouane Kessentini
Computer Science Department

Missouri University of Science and Technology
Rolla, USA

marouanek@mst.edu

Philip Langer, Manuel Wimmer
Business Informatics Group

Vienna University of Technology
Vienna, Austria

{langer,wimmer}@big.tuwien.ac.at

Abstract—In the past years, several researchers applied search-

based optimization algorithms successfully in the software
engineering domain to obtain automatically near-optimal
solutions to complex problems posing huge solution spaces. More
recently, such algorithms have also been proven useful for solving
problems in model engineering. However, applying search-based
optimization algorithms to problems in model engineering
efficiently and effectively is a challenging endeavor demanding
for expertize in both, search-based algorithms as well as model
engineering formalisms and techniques. In this paper, we report
on our experiences in applying such search-based algorithms for
model engineering problems and propose a model-driven
approach to ease the adoption of search-based algorithms for the
area of model engineering.

Index Terms—Search-based Engineering, Model Engineering,
Model-driven Software Engineering, Genetic Algorithms

I. INTRODUCTION
Model-driven Engineering (MDE), as one of the most

prominent protagonists of model engineering [8], is a discipline
that relies on models as first class entities and that aims to
develop, maintain, and evolve software systems by performing
model transformations [1] on models abstracting from concrete
implementations of the systems.

As many other domains of software engineering, the MDE
community is currently concerned with finding exact solutions
to these problems causing high efforts to actually achieve these
solutions. An alternative approach is to search for solutions that
fall within a specified acceptance margin. Search-based
optimization techniques are well suited for this purpose.
Although, Search-based Software Engineering (SBSE) has
been successfully applied to a number of different MDE tasks,
such as model transformation[2][12], model evolution [4][9],
model analysis [4], and model transformation testing [10],
applying SBSE to complex MDE problems necessitates
expertise in both, search-based optimization algorithms and
MDE formalisms and techniques. It is thus desirable to define a
generic process supported by a dedicated framework that can
be applied to solve various MDE problems by using search-
based algorithms with low adaptation effort and expertise.

II. RELATED WORK
The term SBSE was coined by Harman and Jones in

2001[11]. As its name implies, SBSE treats software

engineering problems as search problems, and seeks to apply
search techniques in order to solve them.

MDE represents one of the application domains of SBSE.
We define Search-based Model-Driven Engineering (SBMDE)
as the application of optimization techniques to solve MDE
problems. The approach is motivated by the fact that, for many
MDE problems, it is infeasible to apply a precise analytic
algorithm that produces the “optimal” solution to the problem.
Thus, as indicated by a recent SBSE survey [2], the application
of search techniques in MDE is emerging, but still not as
prominent as for traditional code-based software engineering.

To improve the design quality, many SBSE approaches
have been proposed [14][15][16]. Most of these works search
to find the best combination of refactorings that can improve
quality metrics. Due to the large number of possible refactoring
combinations, different metaheuristic search approaches are
used and compared. The clustering problem is also studied
using search-based techniques [19][20]. The majority of these
studies are based on the use of cohesion and coupling to find
the best clustering of model elements that increases cohesion
and decreases cohesion. The generation of test cases to test
metamodels/models and transformation mechanisms are also
considered as an optimization problem [17][18] where the goal
is to find the best set of test cases that covers metamodel
elements and transformation possibilities.

Although a few reusable frameworks emerged to ease
adopting of search-based approaches for software engineering
problems, there is no framework (i) that specializes on adopting
SBSE for MDE, (ii) that exploits the benefits of MDE itself,
and (iii) allows developers to remain in the technical space of
MDE when developing search-based algorithms for MDE.

III. APPLYING SEARCH-BASED ENGINEERING IN MDE
In this section, we summarize our experiences of applying

SBSE techniques, in particular genetic algorithm (GA) [13], for
MDE problems. In the following we focus on the process of
applying GA, as well as the interfaces that have to be realized
for adopting GA for a specific problem. After introducing the
process of GA in general, we show how we applied GA to
solve optimization problems in the MDE domain and discuss
some lessons learned.

In Figure 1, the general process of GA, as well as the
interfaces to be realized for applying GA to a specific
optimization problem, is depicted. In general, the following

978-1-4673-6284-9/13 c© 2013 IEEE CMSBSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

51

interfaces have to be realized: encoding of the individuals,
creation of an initial population of individuals, evaluation of
individuals using a fitness function to determine a quantitative
measure reflecting their ability to represent a solution for the
problem under consideration, selection of the individuals to
transmit from one generation to another, and the creation of
new individuals using genetic operators (crossover and
mutation) to explore the search space. In the following, we
show how we have realized this process for two important
MDE problems.

Figure 1: Interfaces of Genetic Algorithms.

A. Experience 1: Model Transformation as Optimization
Problem
In [2][12], we introduced an optimization-based approach

to automate model transformations. In particular, model
transformations are treated as a combinatorial optimization
problem where the transformation of a source model is
obtained by finding, for each of its model elements, a similar
transformation from an already existing example base, i.e., an
example comprises a source model, a target model, and trace
links between source and target model elements.

PSO
& SA

Base of examples

Source model
Target Model

Coherence Similarity
Fitness functions

Input Output

Figure 2: Searching for Target Models.

Due to the large number of possible combinations, a

heuristic-search strategy has been used to build the
transformation solution from a set of individual model element
transformations (cf. Figure 2). To apply search-based
techniques, we had to determine the following aspects: Search
algorithm: For generating the solutions, we used two strategies
based on two search-based algorithms, namely particle swarm
optimization (PSO) [6] and simulated annealing (SA) [7];
Individual encoding: For representing models in the technical
space of SBSE, we used a predicate representation that
serializes models into a simple human-readable text format.
Because of the complex structure of models as well as the type
information, we could not reuse a generic binary encoding;
Fitness function: The example base comprises models that are
considered as good solutions for the current transformation
problem. The fitness functions are evaluating a produced
solution, i.e., the target model, concerning its deviation to the
existing target models in the example base, as well as

additional design metrics for determining the quality of the
target model.

B. Experience 2: Model Change Detection as Optimization
Problem
Recently, we proposed an approach for detecting model

changes, such as refactoring applications, that have been
applied between two successive versions of a model [9]. In
particular, we addressed the problem that several different
model evolutions may describe the transition from the same
initial model version to the revised one. Due to the large
number of possible change combinations, a heuristic-search
strategy has been used to build the sequence of change
operation applications from a given set of change operation
types (cf. Figure 3). We implemented the search-based
approach in the following manner: Search algorithm: For
computing the solutions, we used and adapted genetic
algorithm (GA) as global heuristic search method to compute
the sequence of change operations; Individual encoding: For
representing change models that have to be optimized, we used
a predicate representation that represents model evolutions as
sequences of change operation applications; Fitness function:
In the first version, we used a mono-objective approach
searching for change sequences that are able to produce as
much as possible a similar model than the given revised model.
Thus, we apply the detected changes on the initial model by
executing the operations as given by the change sequence. The
output of this execution is a computed revised model that is
compared using model differencing approaches [5] with the
actual revised model.

GA
Base of change types

Initial model Change Model

Length Similarity
Fitness functions

Input Output

Revised model
Figure 3: Searching for Change Sequence.

C. Lessons Learned
Generalizing from the two case studies where we applied

SBSE in the context of MDE, we may derive a general
approach for realizing the interfaces of GA as depicted in
Figure 4. In our cases, we switched from the MDE field to the
SBSE field by encoding models into a dedicated format and by
tailoring existing search-based algorithms to this representation
using a general purpose programming language. The computed
solutions are also transferable again to the MDE field for
reasoning on their quality. Some fitness functions are basic
functions, such as computing the number of elements, others
are complex functions, often referred to as model management
operators, such as model differencing. For bridging the gap
between MDE and SBSE, we used model transformations
(model-to-text) to encode the models in SBSE-specific formats.

Whereas we achieved promising results of applying SBSE
for solving MDE problems, we also faced major challenges.
First, selecting an appropriate optimization algorithm for a
specific problem is the major challenge. While the decision
whether a mono-objective or a multi-objective technique
should be applied is determined by the understanding of the

52

specific problem, the selection of the actual algorithm out of
the huge set of existing ones requires for a subsequent
evaluation. Second, concerning the formulation of the fitness
functions, efficiency is the main goal. Often, it is even
necessary to trade precision with efficiency. Third, because of
the first two challenges, the availability of well-understood
case studies to reason on the quality of the computed solutions
is of paramount importance. To achieve an objective
evaluation, several runs of the algorithms, several kind of
inputs, automatic and manual evaluation methods have to be
considered. Fourth, while MDE dictates the usage of models to
raise the abstraction and ease analyzing the problem domain,
current adoptions of SBSE for MDE are hard-coded for
specific encodings and employ general purpose programming
langauges. Here the question arises whether domain-specific
languages may stimulate the adoption of SBSE for MDE by
exploiting the MDE paradigm itself. Applying search-based
algorithms for solving problems in MDE is possible but
challenging. However, as we have experienced in our recent
case studies, several of the components that realize certain parts
of a search-based application bear the potential for reuse across
different applications of search-based algorithms in MDE.
Therefore, we propose a framework leveraging MDE
techniques for applying SBSE in the context of MDE, not only
to increase efficiency and reuse, but also to lower the barriers
of applying SBSE for MDE. One major goal of this framework
is to lift those artifacts that currently have to be developed in
the SBSE space to the MDE space, such as the realization of
the fitness function, as well as the configuration and
composition of optimization operators. In the following, we
sketch initial ideas of such a model-based framework focusing
on GA in a first step.

Population
Generator

Fitness
Function

Selection
Configuration

Cross-over
Configuration

Individual
Encoding

Mutation
Configuration

M2M Transformation &
Model to Predicates

Initial Population
Provider

Interpretation &
Evaluation of Predicates

Manual Search for
Optimal Configuration &
Combination of Existing
GA Components

Model Engineering
Space

Genetic Algorithm
Engineering Space

Genetic
Algorithm
Interfaces

Individual
Decoding

M2M Transformation &
Predicates to Model
Figure 4: Realizing GA Interfaces in the context of MDE.

IV. MDE FOR SBSE FOR MDE

A. Individual Encoding
The first task is to realize the encoding of models into the

technical space of GA. Therefore, one typically has to
transform the input models into formats dictated by the used
GA framework. When implementing the encoding for our
recent case studies, we realized that an intermediate modeling
language, formalized by the encoding metamodel, which
follows certain GA-specific patterns and which is close to a

common format suitable for GA encoding, would enable
employing a generic bidirectional model-to-text
transformation, as well as generic components realizing
multiple of the remaining steps in the GA automatically, such
as selection, cross-over, and mutation. Having designed such
an encoding metamodel, the input models would just have to be
transformed into the encoding metamodel using model-to-
model transformations.

In Figure 5, we sketch a generic encoding metamodel that
can be extended (in terms of subclassing) for a particular
problem domain to obtain a problem-specific encoding
metamodel. As a result, each concrete encoding metamodel
consists of concrete metaclasses that describes the structure of
an individual, which again consists of an ordered set of
individual atoms, which in turn can be parameterized with
parameters and parameter values. In the context of the case
study related to model changes detection, an individual would
be an ordered set of model changes (i.e., individual atoms),
which can be parameterized in terms of the model elements the
specific model change affected. Besides representing
individuals, often auxiliary models are necessary for computing
the fitness of individuals. For instance, in the case study
outlined for changes detection, the initial and the revised model
would act as such auxiliary models. The encoding metamodel
shall act as the central hub for the remaining artifacts that need
to be specified for realizing the complete GA process. Thus, it
should be possible to specify and apply all components on
model-level (according to the encoding metamodel) and not as
it is done now, on the level of the raw predicate encoding.

B. Population Generator and Fitness Function

In the first step of the GA, we have to provide a generator
for an initial population (cf. Figure 6). Therefore, arbitrary
model engineering languages, such as EOL1, or dedicated
frameworks, such as Ecore mutator2, may be used to generate
instances of the respective subclass of the metaclass individual
in the encoding metamodel. With the selection of the most
appropriate framework or language, the user has the flexibility

1 http://www.eclipse.org/epsilon/doc/eol

2 http://code.google.com/a/eclipselabs.org/p/ecore-mutator

Input
Metamodel

Input
Metamodel

Input
Metamodel

Input
Metamodel

Input
Metamodel

Input
Model

«conformsTo»

Input
Metamodel

Input
Metamodel

Encoding
Metamodel

Input
Metamodel

Input
Metamodel

Encoding
Model

«conformsTo»

«transform»

«encoded»

Generic
Encoding

Metamodel

«extends»

AuxiliaryModel

slot : String
language : Package
roots : EObject

DomainEncoding

Individual

* 1

IndividualAtom

/atoms *

Parameter

/params *
ParameterValue

/paramValues *

Figure 5: Model-based Framework for Encoding Individuals.

53

to decide whether to generate random instances or to follow
other generation strategies (e.g., pre-computed solutions by
enumeration-based approaches that have to be optimized).
Besides providing an initial population, a problem-specific
fitness function has to be developed based on the encoding
metamodel (cf. Figure 6). Therefore, we propose to use an
extensible component called fitness evaluator that consists of
an individual interpreter and the actual fitness function. The
individual interpreter is necessary, because in many cases the
solution has to be processed (e.g., compared, transformed, or
simulated, etc.) before its fitness can be evaluated. The result of
this processing can be saved in terms of an auxiliary model
(e.g., a difference model, transformation trace, etc.). This
auxiliary model can now be used by the actual fitness function,
which can easily be realized by a model query (e.g., number of
differences, or other quality metrics).

C. Selection, Cross-over, and Mutation

The selection is typically a query obtaining a subset of
individuals that satisfy a certain fitness threshold. As the
generic encoding metamodel dictates that every individual has
to be an instance of individual (indirectly) and the framework
knows how to compute the fitness (using the fitness evaluator),
it is easy to provide a configurable component for that. The
same is true for the cross-over component. Basically, an
individual consists of parameterized individual atoms. Thus,
new child individuals can be produced by intermingling the
atoms of two parent individuals.

Also for the mutation, generic components can be provided,
as the order of the atoms as well as the concept of parameters
and parameter values are explicitly represented in the generic
encoding metamodel. Thus, individuals can be mutated by re-
ordering their atoms or assigning new parameter values
randomly. To limit the search space, additional validation
constraints can be attached to the encoding metamodel. Of
course, generic components might not always satisfy all needs
of users for applying GA to a MDE problem. Thus, users
should be empowered to plug-in alternative implementations of
these components. The main benefit, also if these
implementations have to be provided by the users themselves,
is that these components can still be realized using MDE
techniques in contrast to implementing those on the level of the
raw encoding. Probably we might need predefined mutation
operations. Alternatively this can be done by changing the
order of the individual atoms and their parameter values.

V. NEXT STEPS
In this paper, we proposed an MDE-based framework for

easing the adoption of SBSE to other MDE problems. The next
step is to realize the sketched framework based on EMF. As
soon as we complete a first prototype, we will evaluate it by re-
producing existing hand-crafted applications of SBSE to MDE
problems using the proposed framework instead.

REFERENCES
[1] T. Mens, P. Van Gorp: A Taxonomy of Model Transformation.

Electr. Notes Theor. Comput. Sci. 152:125-142 (2006).
[2] M. Harman, S.A. Mansouri, Y. Zhang: Search-based software

engineering: Trends, techniques and applications. ACM
Computing Surveys 45(1) (2012).

[3] M. Kessentini, H. Sahraoui and M. Boukadoum: Model
Transformation as an Optimization Problem. In Proc. of
MODELS, (2008).

[4] M. Shousha, L. Briand, Y. Labiche: A UML/SPT Model
Analysis Methodology for Concurrent Systems Based on
Genetic Algorithms. In Proc. of MODELS, (2008).

[5] D.S. Kolovos, R.F. Paige, F.A.C. Polack. Model Comparison: A
Foundation for Model Composition and Model Transformation
Testing. In Proc. 1st International Workshop on Global
Integrated Model Management (GaMMa), (2006).

[6] J. Kennedy and R.C Eberhart: Particle swarm optimization. In
Proc. of Int. Conf. on Neural Networks, (1995).

[7] D.S. Kirkpatrick, Jr. Gelatt and M.P. Vecchi: Optimization by
simulated annealing. Science, 220(4598):671-680, (1983).

[8] J. Bézivin: On the unification power of models. Software and
System Modeling 4(2):171-188 (2005).

[9] A. ben Fadhel, M. Kessentini, P. Langer, M. Wimmer: Search-
based detection of high-level model changes. In Proc. of ICSM,
(2012).

[10] M. Kessentini, H. A. Sahraoui, M. Boukadoum: Example-based
model-transformation testing. Autom. Softw. Eng. 18(2): 199-
224, (2011).

[11] M. Harman, B.F. Jones: Search-based software engineering.
Information & Software Technology 43(14): 833-839, (2001).

[12] M. Kessentini, H.A. Sahraoui, M. Boukadoum, O. Ben Omar:
Search-based model transformation by example. Software and
System Modeling 11(2): 209-226, (2012).

[13] J.R. Koza.: Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, (1992).

[14] A. Ouni, M. Kessentini, H. Sahraoui and M. Boukadoum,
Maintainability Defects Detection and Correction: A Multi-
Objective Approach. Autom. Softw. Eng., (2012).

[15] M. Harman, and L. Tratt, Pareto optimal search based
refactoring at the design level, In Proc of GECCO, (2007).

[16] M. O’Keeffe, and M. O. Cinnéide, Search-based Refactoring for
Software Maintenance. Journal of Systems and Software, 81(4),
502–516, (2008).

[17] B. Baudry, F. Fleurey, J.-M. Jezequel, and Y. L. Traon.
Automatic test cases optimization using a bacteriological
adaptation model. In Proc. of ASE, (2002).

[18] M. Kessentini, H.A. Sahraoui, M. Boukadoum: Example-based
model-transformation testing. Autom. Softw. Eng. 18(2): 199-
224 (2011).

[19] K. Praditwong, M. Harman, X. Yao: Software Module
Clustering as a Multi-Objective Search Problem. IEEE Trans.
Software Eng. 37(2): 264-282, (2011).

[20] K. Mahdavi, M. Harman, R.M. Hierons: Finding Building
Blocks for Software Clustering. In Proc. of GECCO, (2003)

Encoding
Metamodel

Population
Generator

Fitness
Evaluator

«definedFor» «definedFor»

Input
Metamodel

Input
Metamodel: Individual

Input
Metamodel

Input
Metamodel: Fitness

«produces» «produces»

Individual
Interpreter

Fitness
Function

«consistsOf» Input
Metamodel

Input
Metamodel: AuxiliaryModel

«produces»

«uses»

Input
Metamodel

Input
Metamodel: Individual«evaluates»

Figure 6: Model-based Framework for Generating an Initial
Population and Evaluation of Fitness.

54

