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Abstract
Temporal Data Mining is a core concept of Knowledge Discovery in Databases handling time-oriented data. State-
of-the-art methods are capable of preserving the temporal order of events as well as the information in between.
The temporal nature of the events themselves, however, can likely be misinterpreted by current algorithms. We
present a new definition of the temporal aspects of events and extend related work for pattern finding not only by
making use of intervals between events but also by utilizing temporal relations like meets, starts, or during. The
result is a new algorithm for Temporal Data Mining that preserves and mines additional time-oriented information.

Categories and Subject Descriptors (according to ACM CCS): H.2.8 [Information Systems]: Database
Applications—Data Mining

1. Introduction

Data Mining is a central part of Knowledge Discovery in
Databases (KDD). A very important data type is time, and
one of the most successful approaches for Temporal Data
Mining is the search for temporal patterns. Methods for tem-
poral pattern finding include clustering, classification, and
association rules. Their main goal is disclosing local struc-
tures of interest [LS06]. State-of-the-art methods are capa-
ble of preserving the temporal order of events as well as
the information in between [BLT∗10b]. Pattern finding usu-
ally requires complex parametrization and it results in large
amounts of patterns that need to be explored. Visual Analyt-
ics (VA) can support this by intertwining the algorithm with
interactive visual interfaces [BLT∗10a]. Since earlier work
in pattern finding [AIS93], the temporal aspect of patterns
has been increasingly focused on in research [BLT∗10b]. A
weakness of current methods is that they mostly ignore tem-
poral relations among events. Even the most advanced ones
focus on time intervals between events only, while the time
aspects of the events themselves are taken directly from the
source data. For example, if a fastfood business in a shop-
ping street is open the whole week while the shops are closed
during the weekends, turnover might be significantly lower
on Saturday and Sunday (Table 1). If the turnover dataset
has one value for each day, then each event will also have a
length of one day. Based on events of day-length, algorithms

Table 1: A dataset of turnover classification according to
previous approaches (like MuTIny [BLT∗10b]) compared to
our novel approach (Section 3).

Day Turnover Previous Appr. Our Approach
Monday 40 ehigh

ehigh

Tuesday 43 ehigh
Wednesday 39 ehigh
Thursday 41 ehigh
Friday 45 ehigh

Saturday 18 elow elowSunday 24 elow

tend to find patterns like the business week: For five conse-
quent days, there is high turnover, and for two consequent
days there is low turnover. These sequences alternate. Such
patterns are interesting, but by talking to domain experts, we
found out that they are already well-known. As a result, such
patterns clutter the results when searching for new and un-
known patterns: They make the list of results so big that it
is hard to compute and even harder to visualize. The basic
idea for our approach is to reduce the number of events in a
way that makes patterns much simpler while retaining a rea-
sonable amount of information. Over the data value dimen-
sions, methods for simplification help to keep the complexity
low [KCPM01b, KCPM01a, LKLC03, LKWL07]. Accord-
ing to the temporal aspects, these methods can only simplify
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time by rasterization, which requires a fine raster size to pre-
vent information occlusion and does not take into account
the structure of time and temporal relations. Aggregating ac-
cording to domain knowledge is better, but if important (al-
beit known) cycles overlap, the usability of aggregation de-
clines further, so we aim for a different approach. Our main
contribution is a new definition of events (Section 3). We
also show a new definition of patterns that not only consid-
ers intervals between events, but also other relations (Section
3). The result is a new algorithm for Temporal Data Mining
that preserves and mines additional time-oriented informa-
tion which we show in the context of VA (Section 4).

2. Related Work

Dealing with data locally is a newer method than developing
a global model (overview [LS06], first publication [Yul27]).
Most work in finding patterns goes back to Agrawal et al.
[AIS93] who only consider patterns of events happening to-
gether in a set. They also consider time, but only as a method
of separating different pattern candidates. However, they
already perform planning towards further steps with more
complex patterns that can overstretch time steps [SA96].
Agrawal, Srikant, and others, also introduced the concept of
“support”. The support of a pattern is the frequency of its
appearance. and is the main method of determining which
patterns are important for many of the algorithms we present
below. Support is a good method to find important patterns,
but in conjunction with temporal patterns that result from so-
cial events, it results in finding a dominance of patterns that
are important yet well-known (compare Section 1). Man-
nila et al. [MTIV97] focus further on sequences of events
at different points in time. They also explicitly consider the
time step at which one event occurs. Magnusson [Mag00]
is among the first to consider the time intervals between
events, which is an important step to increase the consider-
ation of time. His T-patterns are tree-shaped and, therefore,
differ from the patterns in most other publications that are se-
quences. Chen et al. [CCK03] introduce the I-Apriori algo-
rithm which extends the Apriori algorithm for pattern find-
ing [LS06] by the consideration of intervals between events.
Hu et al. [HHYC09] provide a similar approach where the
focus is on patterns with events that do not need to be con-
secutive, as long as the time intervals are kept. Bertone et
al. [BLT∗10a, BLT∗10b] provide a similar approach, called
MuTIny, with user configurable time intervals that can have
variable length and consider calendar aspects. They also deal
with interactive visualizations that allow users to engage into
the process. They advance the concept of pure support by
allowing user manipulation. Still, challenging patterns, like
mentioned in Section 1, appear and have to be removed man-
ually. In this approach, events are defined by users. They
can map value ranges among all variables in the dataset to
event classes. We adopt this approach for our algorithm de-
scribed in Section 3. Furthermore, users have to define in-
tervals. These intervals can have any length, but users can

apply different calendar granularities, like months or days,
in their definition. After defining the events and intervals,
an extended I-Apriori algorithm is applied in multiple iter-
ations. In each iteration, each existing pattern (starting with
patterns of length zero that are identical to events) is com-
bined with each interval and each possible followup event
that falls into that interval. Therefore, with each iteration, the
patterns grow by one interval and one event. Between those
iterations, the less frequent patterns are filtered out. This is
done by users providing a threshold for the support.

3. Our Novel Temporal Pattern Finding Approach

Our work is primarily related to the MuTIny algorithm
[BLT∗10b]. However, we introduce a different definition of
events and also extend the intervals to event relations.

Defining Events Our event definition allows events of any
length and is applicable for rastered data (equal time steps
with one data element for each one) as well as unrastered
data, which can have any temporal aspect in each data ele-
ment. We also allow temporal conditions for event definition.
There are many different ways to define events. We have ab-
stracted a definition from the related work above which can
also be seen as a simplified variant of the philosophical ap-
proach by Kim [Kim76]:

Definition 1 An event e is an interval [tbegin, tend ] during
which given conditions {χ0, . . . ,χn} are fulfilled.

The conditions that are fulfilled can also be temporal, e.g., an
interval is during another interval, e.g., a certain day of week,
or an interval has a certain length. Our goal is a computabil-
ity, so we have to further define these conditions. Good defi-
nitions for comparing and finding certain values are given in
the task framework by Andrienko and Andrienko [AA06].
For elementary tasks that consider a finite number of data
elements, they define lookup tasks, comparison tasks, and
relation-seeking tasks. Without loss of generality for those
definitions, in our algorithm we always use time as reference
domain and everything else as data values. We also assume
that time is being discretized in collecting the data and that
the data elements are sorted by the infimum (the first dis-
crete instant) of each reference. Based on these definitions
and assumptions, we can define a condition:

Definition 2 A condition χi is fulfilled for a data element d
if it is a possible result for an elementary task.

As elementary tasks may look for the reference (time), it is
possible to define conditions based on time as well as on data
values. According to the definition above we can modify our
event definition and define event classes:

Definition 3 An event e is a set of contiguous data elements
{d0, . . . ,dm} sorted by the time references td that all fulfill
the same conditions {χ0, . . . ,χn}.
Definition 4 An event class E is a collection of events
{e0, . . . ,eh} that fulfill the same conditions {χ0, . . . ,χn}.
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Event Relations and Patterns To combine events to pat-
terns, the I-Apriori algorithm searches for possible followup
events for existing patterns that fall into given time intervals.
We extend this by replacing the intervals with temporal re-
lations, based on the ones presented by Allen et al. [All83]:
before, equal, meets, overlaps, during, starts, finishes. Inter-
vals between events are an indeterminate variant of before.

Definition 5 A pattern pk of length k is a tuple {pk−1,r,e},
where pk−1 is a pattern of length k− 1, r is a time relation,
and e is an event.

Definition 6 A pattern p0 of length 0 is an event e.

Definition 7 A pattern class Pk of length k is a collection of
patterns {pk

0, . . . , pk
j} that consist of events of the same class

in the same order and the same relations in the same order.

The Algorithm The algorithm consists of two steps. First,
the events have to be found. Conditions that, e.g., limit the
minimum length of an event can lead to the situation that a
number of data elements does not fulfill the conditions, but
with another data element, they do. Therefore, we need to
make two subsidiary definitions:

Definition 8 Loose conditions are a set of conditions where
one or more conditions have been removed.

Definition 9 An event candidate is a set of data elements
sorted by the time reference that fulfill loose conditions. It
has to be saved together with those loose conditions as well
as that loose conditions’ source conditions.

The event finding is explained in Algorithm 1. The resulting
events are also patterns of length 0. For longer patterns, the
pattern finding in Algorithm 2 can be performed iteratively
k times to find patterns of length k. We have already im-
plemented them based on a time-oriented Prefuse [HCL05]
extension, only the visual interface is still in development.

4. Applicability in Visual Analytics

Our approach, like MuTIny [BLT∗10b] and other pattern
finding methods, relies on a number of parametrization is-
sues: (1) Choosing and parametrizing a method for clas-
sifying data elements, which might be multi-variate, into
event classes, i.e. categoric data. (2) Parametrizing the con-
ditions for events forming a pattern. (3) Choosing the most
important patterns between iterations in order to perform
the next iteration with a filtered set. These choices require
domain experts and have to be made for each analysis in-
dividually. To gain insight from the results, sensible visu-
alizations for exploring the results are needed. This can
improve the parametrization choices of domain experts in
an iterative analysis process. Bertone et al. propose VA
as a solution [BLT∗10a]. For parametrizing event classes,
we already have designed an interactive visual interface
[LAB∗13]. It needs to be combined with interface elements

Algorithm 1: Event Finding: A number of conditions
has to be provided for each event class the user wants to
define. Those are subsets of a collective set of conditions.

input : dataSet, conditionsSet
output: events
eventCandidates, closedEventCandidates, looseConditionsSet,

events← empty key/value-tables;
foreach conditions in conditionsSet do

looseConditions← conditions \ conditions that would
need events to end later or be longer than they actually are;
looseConditionsSet: add (looseConditions/conditions);

end
foreach dataElement in dataSet do

foreach (eventCandidate/ looseConditions) in
eventCandidates do

combined← eventCandidate
⋂

dataElement;
if combined fulfills looseConditions then

eventCandidate← combined;
else

closedEventCandidates: add
(eventCandidate/looseConditions);

eventCandidates: remove
(eventCandidate/looseConditions);

end
end
foreach (looseConditions/conditions) in
looseConditionsSet do

if dataElement fulfills looseConditions then
eventCandidates: add

(dataElement/looseConditions);
end

end
end

foreach (eventCandidate/ looseConditions) in
closedEventCandidates do

if eventCandidate fulfills conditions of looseConditions
from looseConditionsSet then

events: add (eventCandidate/conditions);
end

end

Algorithm 2: Pattern Finding: Source patterns of length
k− 1 are transformed to patterns of length k (each con-
sisting of k+1 events and k relations).

input : sourcePatterns, events, relations, threshold
output: patterns
filteredPatterns← sourcePatterns \ patterns from classes that
are less frequent than threshold;
foreach filteredPattern in filteredPatterns do

foreach relation in relations do
foreach event in events do

if relation (filteredPattern,event) is fulfilled then
patterns: add (filteredPattern,relation,event);

end
end

end
end
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Figure 1: An ArcDiagram [Wat02] example implementation showing resulting patterns from our algorithm. The patterns visu-
alized here are based on non-overlapping events that fall into one of three classes (red, green, and blue). The opaque bars in
the middle show the temporal sequence of events. Patterns are of length 2 and represented by transparent arcs that are colored
according to their first event. Upper arcs represent the first two events and their temporal relation (in this case, the first event
must be one or two days before the second one), lower arcs represent the last two events and their temporal relation. If the
mouse hovers an arc, all arcs belonging to related patterns become opaque with a white border (like seen for the red ones).

for parametrizing relations. We have also started develop-
ing interactive visual interfaces for exploring results of the
pattern finding algorithm. Figure 1 shows an ArcDiagram
[Wat02] implementation using the free Dodgers Loop Sen-
sor dataset [Hut06]. By directly interacting with events and
patterns, we also intend to help users to change the original
parameters later in the process, recalculating the results.

5. Preliminary Results

We used two datasets to compare our algorithm to MuTIny
[BLT∗10b]: (1) A synthetic dataset with 91 random ele-
ments; (2) Six months of the Dodgers dataset [Hut06] ag-
gregated into 175 data elements of daily mean values. For
both datasets and both approaches, we defined three event
classes on traffic value ranges and intervals of one or two
days as two different relations. The first observations are:
Our approach results in 30% less patterns of length 2 for
dataset 1 and 75% less patterns of length 2 for dataset 2.
We found out that in our approach, several data elements are
part of single events (and therefore patterns). It seems that a
comparable amount of data elements is involved in both ap-
proaches. The stronger decrease in pattern occurrences for
the real-world dataset could be caused by actual information
in the day granularity that might be interesting: Certain con-
ditions (i.e., traffic value ranges) exist over certain intervals
and form single events. For MuTIny, several pattern variants
stemming from those, altogether, describe the same informa-
tion. The results from our approach have several advantages:
Less patterns have to be stored and computed in further anal-
ysis steps, improving memory consumption and speed while
simplifying visualization and understanding by users. The
potential information in the day granularity are expressed
on the event level by our approach. This happens at a com-
plexity no worse than linear, while MuTIny (run on a day
granularity) requires patterns of the length of the number of
involved days, leading to a higher complexity that has to be

reduced by heavy threshold filtering. Since our implementa-
tion also saves patterns as a forest, it saves further memory
compared to the original MuTIny implementation. While we
cannot give an absolute statement about the scalability yet,
it scales much better than its closest related work.

6. Conclusion and Future Work

First, we presented a novel pattern finding approach for
time-oriented data that follows and improves the I-Apriori
[CCK03] and MuTIny [BLT∗10b] approaches. Second, we
described and implemented an algorithm that finds patterns
according to our approach. Third, we discussed interactive,
visual, iterative parametrization and exploration of the re-
sults using VA. Forth, we presented a visualization and pre-
liminary results. Our definition of events results in rather dif-
ferent constructs from other definitions that base events on
rastered datasets and do not allow for variable event lengths.
Considering our goal to simplify temporal structures, this is
intended. In Table 1, for example, our approach does model
business weeks and weekends (which is no new informa-
tion), but instead of using four classes of two-event-patterns
it needs only two which contain the same information. Cur-
rently, we argue that our approach depicts the same infor-
mation in less patterns by real-world examples and several
control samples from our tests. To provide more solid evi-
dence, the first step of our future work will be to compare
the mapping of data elements to events and patterns between
state-of-the-art approaches and our approach with many dif-
ferent datasets and tasks. For this, we intend to develop au-
tomated as well as visual methods. We also intend to de-
velop interactive visual interfaces for all parametrization is-
sues mentioned in Section 4 as well as exploration of results
and intermediate results. All those interfaces are to be com-
bined in a tool allowing for iterative and interactive analysis
by domain experts which will then be tested in user studies.
This work was supported by the Austrian Science Fund (#P22883).
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