A general integrator for the Landau-Lifshitz-Gilbert Equation
 Marcus Page

Vienna University of Technology
Supervisors: Dirk Praetorius, L'ubomir Baňas

Landau-Lifshitz-Gilbert equation

Find $\boldsymbol{m}:(0, T) \times \Omega \rightarrow \mathbb{R}^{3}$ with $|\boldsymbol{m}|=1$ almost everywhere such that

$$
\boldsymbol{m}_{t}=-\frac{1}{1+\alpha^{2}} \boldsymbol{m} \times \boldsymbol{H}_{\mathrm{eff}}-\frac{\alpha}{1+\alpha^{2}} \boldsymbol{m} \times\left(\boldsymbol{m} \times \boldsymbol{H}_{\mathrm{eff}}\right),
$$

where effective field reads

$$
\boldsymbol{H}_{\mathrm{eff}}=\Delta \boldsymbol{m}+\boldsymbol{\pi} .
$$

The operator $\boldsymbol{\pi}$ denotes some general (nonlinear) field contribution.

Challenges for numerical analysis:

- efficient treatment of nonlinearities
\triangleright side constraint $|\boldsymbol{m}|=1$
- efficient computation of field contributions
- efficient coupling with other PDEs

General time integrator

Based on equivalent formulation of LLG

$$
\alpha \boldsymbol{m}_{t}+\boldsymbol{m} \times \boldsymbol{m}_{t}=\boldsymbol{H}_{\text {eff }}-\left(\boldsymbol{m} \cdot \boldsymbol{H}_{\text {eff }}\right) \boldsymbol{m} \quad \text { and } \quad|\boldsymbol{m}|=1 \text { a.e. }
$$

- extends integrator proposed by Alouges 2008
- $\boldsymbol{v}=\boldsymbol{m}_{t}$ belongs to tangent space, i.e., $\boldsymbol{v} \cdot \boldsymbol{m}=\frac{1}{2} \partial_{t}|\boldsymbol{m}|^{2}=0$

Time-marching scheme for general effective field $\boldsymbol{H}_{\text {eff }}$
\triangleright semi-implicit scheme to approximate $\boldsymbol{v}\left(t_{j}\right) \approx \boldsymbol{v}_{h}^{j}$ in discrete tangent space $\subset \mathcal{S}^{1}\left(\mathcal{T}_{h}\right)$

- for all time steps t_{j} :
- $\alpha\left(\boldsymbol{v}_{h}^{j}, \boldsymbol{\phi}_{h}\right)+\left(\boldsymbol{m}_{h}^{j} \times \boldsymbol{v}_{h}^{j}, \boldsymbol{\phi}_{h}\right)=-\left(\nabla\left(\boldsymbol{m}_{h}^{j}+\theta k \boldsymbol{v}_{h}^{j}\right), \nabla \boldsymbol{\phi}_{h}\right)+\left(\boldsymbol{\pi}_{h}\left(\boldsymbol{m}_{h}^{j}\right), \boldsymbol{\phi}_{h}\right)$ - $\boldsymbol{m}\left(t_{j+1}\right) \approx \boldsymbol{m}_{h}^{j+1} \in \mathcal{S}^{1}\left(\mathcal{T}_{h}\right)$ by nodewise projection of $\boldsymbol{m}_{h}^{j}+k \boldsymbol{v}_{h}^{j}$

Convergence result:

- unconditional weak subconvergence towards a weak solution provided
- angle condition on triangulation \mathcal{T}_{h}
- $\boldsymbol{\pi}_{h}(\cdot)$ uniformly bounded in $L^{2}(\Omega)$
- certain weak convergence property of $\boldsymbol{\pi}_{h}(\cdot)$

Multiscale modeling

Collaboration partners: Bruckner, Feischl, Führer, Goldenits, Suess (VUT, Vienna)

Setting:

- multiple domains of different scales
- consider LLG on microscopic domain Ω_{1}
- consider material law $\boldsymbol{m}=\boldsymbol{\chi}(|\boldsymbol{H}|) \boldsymbol{H}$ on macroscopic domain Ω_{2} (nonlinear)
- yields uniformly monotone field operator
- fulfills above assumptions for convergence
- Multiscale modeling in micromagnetics: well-posedness and numerical integration Preprint available at arXiv:1209.554

Maxwell's equations

Full Maxwell system:

$$
\begin{aligned}
\varepsilon_{0} \boldsymbol{E}_{t}-\nabla \times \boldsymbol{H}+\sigma \chi_{\Omega} \boldsymbol{E} & =-\boldsymbol{j} \\
\mu_{0} \boldsymbol{H}_{t}+\nabla \times \boldsymbol{E} & =-\mu_{0} \chi_{\Omega} \boldsymbol{m}_{t}
\end{aligned}
$$

Eddy-current formulation:

$$
\mu_{0} \boldsymbol{H}_{t}+\frac{1}{\sigma} \nabla \times(\nabla \times \boldsymbol{H})=-\mu_{0} \chi_{\Omega} \boldsymbol{m}_{t}
$$

Coupling to Maxwell's equations

Coupling to the full Maxwell system:

- algorithm decouples both equations
- only two linear systems per timestep

Decoupled MLLG algorithm:

- for all time steps t_{j} : Find $\boldsymbol{v}_{h}^{j}, \boldsymbol{E}_{h}^{j+1}, \boldsymbol{H}_{h}^{j+1}$, such that

$$
\begin{aligned}
& \bullet \alpha\left(\boldsymbol{v}_{h}^{j}, \boldsymbol{\phi}_{h}\right)+\left(\left(\boldsymbol{m}_{h}^{j} \times \boldsymbol{v}_{h}^{j}\right), \boldsymbol{\phi}_{h}\right)=-\left(\nabla\left(\boldsymbol{m}_{h}^{j}+\theta k \boldsymbol{v}_{h}^{j}\right), \nabla \boldsymbol{\phi}_{h}\right)+\left(\boldsymbol{H}_{h}^{j}, \boldsymbol{\phi}_{h}\right) \\
&+\left(\boldsymbol{\pi}_{h}\left(\boldsymbol{m}_{h}^{j}\right), \boldsymbol{\phi}_{h}\right) \\
& \bullet \varepsilon_{0}\left(d_{t} \boldsymbol{E}_{h}^{j+1}, \boldsymbol{\psi}_{h}\right)-\left(\boldsymbol{H}_{h}^{j+1}, \nabla \times \boldsymbol{\psi}_{h}\right)+\sigma\left(\chi_{\Omega} \boldsymbol{E}_{h}^{j+1}, \boldsymbol{\psi}_{h}\right)=-\left(\boldsymbol{j}^{j}, \boldsymbol{\psi}_{h}\right) \\
& \mu_{0}\left(d_{t} \boldsymbol{H}_{h}^{j+1}, \boldsymbol{\zeta}_{h}\right)+\left(\nabla \times \boldsymbol{E}_{h}^{j+1}, \boldsymbol{\zeta}_{h}\right)=-\mu_{0}\left(\boldsymbol{v}_{h}^{j}, \boldsymbol{\zeta}_{h}\right) \\
& \bullet \boldsymbol{m}\left(t_{j+1}\right) \approx \boldsymbol{m}_{h}^{j+1} \in \mathcal{S}^{1}\left(\mathcal{T}_{h}\right) \text { by nodewise projection of } \boldsymbol{m}_{h}^{j}+k \boldsymbol{v}_{h}^{j}
\end{aligned}
$$

Remarks:

- same assumptions as before \Rightarrow unconditional weak subconvergence
- analysis yields existence of weak solutions
- A convergent linear finite element scheme for the Maxwell-Landau-Lifshitz-Gilbert equation Preprint available at arXiv:1303.4009

Coupling to eddy-current equation:

- Collaboration partners: Tran, Kim-Ngan Le (UNSW, Sydney)
- fully decoupled algorithm (extends recent work of Tran, Kim-Ngan Le)
- same assumptions as before \Rightarrow unconditional weak subconvergence (+ existence)
- On a decoupled linear FEM integrator for eddy-current-LLG (in progress)

Including Magnetostriction

Collaboration partners: Rochat (EPFL, Lausanne)

- coupling to the conservation of momentum equation

$$
\varrho \boldsymbol{u}_{t t}-\nabla \cdot \boldsymbol{\sigma}=0
$$

\downarrow field contribution $\boldsymbol{h}=\boldsymbol{h}(\boldsymbol{u}, \boldsymbol{m})$ depends on $\nabla \boldsymbol{u}$ and nonlinearly on \boldsymbol{m}

- algorithm decouples both equations

Decoupled algorithm:

- for all time steps t_{j} : Find $\boldsymbol{v}_{h}^{j}, \boldsymbol{u}_{h}^{j+1}\left(\mathcal{S}_{0}^{1}\left(\mathcal{T}_{h}\right)\right)$, such that

$$
\begin{aligned}
\bullet \alpha\left(\boldsymbol{v}_{h}^{j}, \boldsymbol{\phi}_{h}\right)+\left(\left(\boldsymbol{m}_{h}^{j} \times \boldsymbol{v}_{h}^{j}\right), \boldsymbol{\phi}_{h}\right)= & -\left(\nabla\left(\boldsymbol{m}_{h}^{j}+\theta k \boldsymbol{v}_{h}^{j}\right), \nabla \boldsymbol{\phi}_{h}\right)+\left(\left(\boldsymbol{h}\left(\boldsymbol{u}_{h}^{j}, \boldsymbol{m}_{h}^{j}\right), \boldsymbol{\phi}_{h}\right)\right. \\
& +\left(\boldsymbol{\pi}_{h}\left(\boldsymbol{m}_{h}^{j}\right), \boldsymbol{\phi}_{h}\right)
\end{aligned} \quad \begin{aligned}
\\
\text { - } \boldsymbol{m}\left(t_{j+1}\right) \approx \boldsymbol{m}_{h}^{j+1} \in \mathcal{S}^{1}\left(\mathcal{T}_{h}\right) \text { by nodewise projection of } \boldsymbol{m}_{h}^{j}+k \boldsymbol{v}_{h}^{j} \\
\bullet \varrho\left(d_{t}^{2} \boldsymbol{u}_{h}^{j+1}, \boldsymbol{\psi}_{h}\right)+\left(\boldsymbol{\lambda}^{e} \boldsymbol{\varepsilon}\left(\boldsymbol{u}_{h}^{j+1}\right), \boldsymbol{\varepsilon}\left(\boldsymbol{\psi}_{h}\right)\right)=\left(\boldsymbol{\lambda}^{e} \boldsymbol{\varepsilon}^{m}\left(\boldsymbol{m}_{h}^{j+1}\right), \boldsymbol{\varepsilon}\left(\boldsymbol{\psi}_{h}\right)\right) .
\end{aligned}
$$

Remarks:

- only two linear systems despite nonlinear coupling of nonlinear PDEs
- convergence analysis more involved
- same assumptions as before \Rightarrow unconditional weak subconvergence (+ existence)
- On the Landau-Lifshitz-Gilbert equation with magnetostriction Preprint available at arXiv:1303.4060

