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Landau-Lifshitz-Gilbert equation Coupling to Maxwell's equations
J J
1 Qv
m; = m X H, m X (m X H), algorithm decouples both equations
t 1+ a? Tt ( ) © P X
where effective field reads only two linear systems per timestep
H. = Am + .
The operator 7 denotes some general (nonlinear) field contribution. Decoupled MLLG algorithm: | |
for all time steps ¢;: Find v, E%+1’ H{fl, such that
a(vy, @p) + ((my, X vy), ¢y) = —(V(my, + 0kvy), V) + (Hy, ¢p)
Chall f ical analvsi 1 + (mp(my), ¢1h)
: - | | y
allenges for numerical analysis: 5O(th°;L:i¢h) B (Hﬁ ’v.+i< b))+ U(XQE%;L b)) = — (57,4,
efficient treatment of nonlinearities | po(di Hy >Ch> +(V x By, ¢) = —po(vy, C) | |
o m(t;.) ~m’ " € SYT;) by nodewise projection of m’, + kv’
side constraint |m| =1 b (Ei+1) " (Tn) by i " "
efficient computation of field contributions | A
1 Remarks:
efficient coupling with other PDEs same assumptions as before = unconditional weak subconvergence
analysis yields existence of weak solutions
» A convergent linear finite element scheme for the Maxwell-Landau-Lifshitz-Gilbert equation
Preprint available at arXiv:1303.4009
General time integrator 1 -
J e A |

Based on equivalent formulation of LLG
ami+mxmy=Hyg— (m-Hyg)m and |m| =1 ae.
extends integrator proposed by ALOUGES 2008

v = m,; belongs to tangent space, i.e.,, v- M = %@L\mP =0

Time-marching scheme for general effective field H

semi-implicit scheme to approximate v(t;) ~ UZL in discrete tangent space C S*(75)

for all time steps ?;:

o (’U‘Zp ép) + (mi X v{L, Pp) = —(V(m‘,i T Hkv]i), quh)f (ﬂh_(mi), bp)
m(t;) ~m)," € SY(T,) by nodewise projection of m), + kv,

Convergence result:
unconditional weak subconvergence towards a weak solution provided

angle condition on triangulation 7},
7,(+) uniformly bounded in L*(Q)
certain weak convergence property of 7(-)

Multiscale modeling

J

Collaboration partners: Bruckner, Feischl, Fiihrer, Goldenits, Suess (VUT, Vienna)

Setting:
multiple domains of different scales

consider LLG on microscopic domain {2,

consider material law m = x(|H|) H
on macroscopic domain {2, (nonlinear)

yields uniformly monotone field operator
fulfills above assumptions for convergence

» Multiscale modeling in micromagnetics: well-posedness and numerical integration
Preprint available at arXiv:1209.554

Maxwell’'s equations

Full Maxwell system:

EQEt—VXH+UXQE:—j
poH; +V X E = — o)X Ty

Eddy-current formulation:

/L()Ht—F%VX(VXH) — — o)X M
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Coupling to eddy-current equation:
Collaboration partners: Tran, Kim-Ngan Le (UNSW, Sydney)
fully decoupled algorithm (extends recent work of Tran, Kim-Ngan Le)
same assumptions as before = unconditional weak subconvergence (+ existence)

» On a decoupled linear FEM integrator for eddy-current-LLG (in progress)

Including Magnetostriction

Collaboration partners: Rochat (EPFL, Lausanne)

coupling to the conservation of momentum equation
ouy — V-0 =>0

field contribution h = h(u, m) depends on Vu and nonlinearly on m

algorithm decouples both equations

Decoupled algorithm:
for all time steps t;: Find v}, w] " (S}(75)), such that

a(v), @) + (my, x v)), &) = —(V(my, + 0kvy), V) + ((h(uy, m)), d,)
| T (ﬂ-h(m%)a ¢h> | |
m(t;) = m)," € SY(T,) by nodewise projection of m), 4 kv,

ol ) + (Ne(w, ). e(v,) = (Ne™(m) ™), e(v,)).

Remarks:

only two linear systems despite nonlinear coupling of nonlinear PDEs
convergence analysis more involved
same assumptions as before = unconditional weak subconvergence (+ existence)

» On the Landau-Lifshitz-Gilbert equation with magnetostriction
Preprint available at arXiv:1303.4060




