

Entwicklung und sensorlose Regelung von PM-Außenläufer-Traktions-Maschinen

Development and Sensorless Control of PM Outer Rotor Traction Machines

Florian Demmelmayr

04. Juli 2013

- Spezifikation
- Analytische Berechnung
- Numerische Berechnung
- > Vergleich Energieverbrauch PSM ASM

Florian Demmelmayr

- > Sensorlose Regelung
- Ausblick

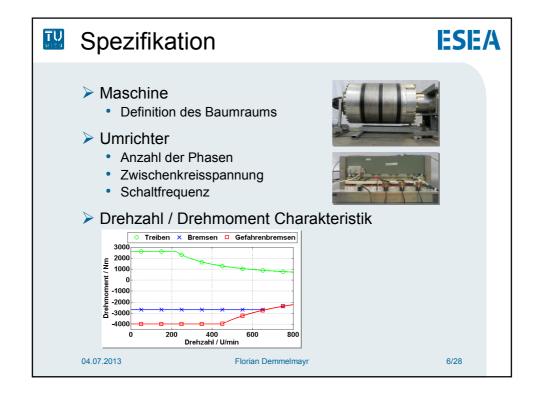
04.07.2013

Entwicklung einer Traktionsmaschine für den Schienennahverkehr

>Anforderungen:

- · Hoher Wirkungsgrad
- Direktantrieb
 - Kein Getriebe
 - Hohe Drehmomente
 - Hohe mechanische Beanspruchungen
- Seriennahe Fertigung
- · Gute sensorlose Eigenschaften

04.07.2013 Florian Demmelmayr 3/28



- Motivation
- **■** Spezifikation
 - Analytische Berechnung
 - > Numerische Berechnung
 - > Vergleich Energieverbrauch PSM ASM
 - > Sensorlose Regelung
 - Ausblick

04.07.2013

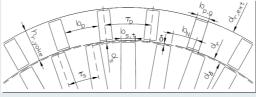
Florian Demmelmayr

Überblick

ESEA

- Motivation
- Spezifikation
- Analytische Berechnung
 - > Numerische Berechnung
 - > Vergleich Energieverbrauch PSM ASM
 - > Sensorlose Regelung
 - > Ausblick

04.07.2013


Florian Demmelmayr

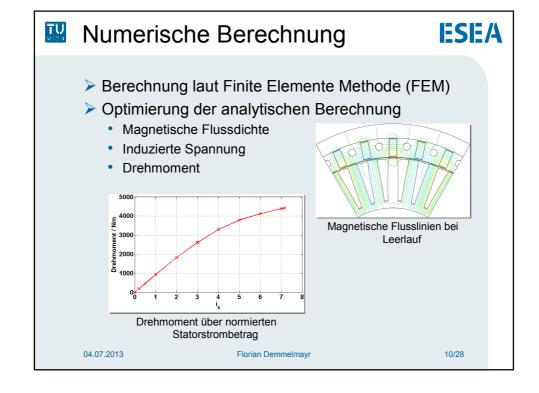
7/28

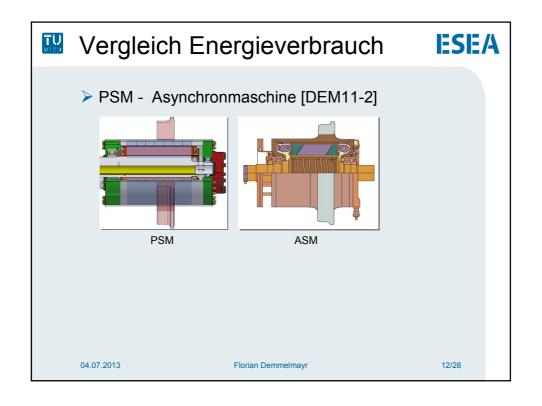
Analytische Berechnung

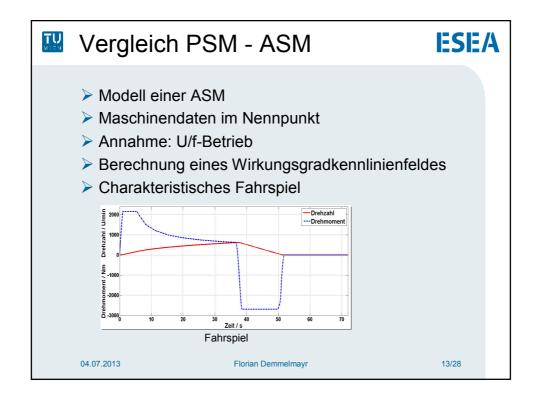
- > Definition charakteristischer Maschinenparameter
 - Nut-/Polzahl
 - Abmessungen
 - Wicklungsverschaltung
- · Berechnung wichtiger Kennwerte
 - · Magnetische Berechnung
 - Wicklungsfaktoren

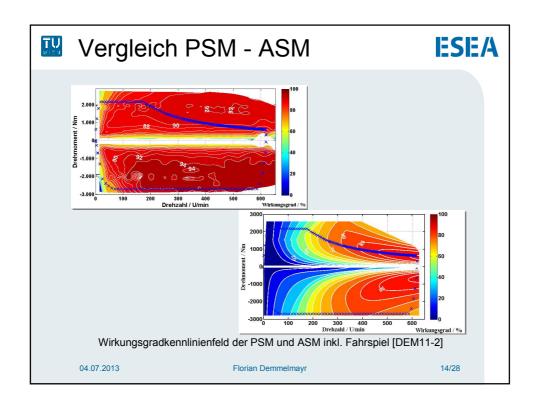
Abmessungen des Blechschnitts

04.07.2013


Florian Demmelmayr


- Motivation
- Spezifikation
- > Analytische Berechnung
- Numerische Berechnung
 - > Vergleich Energieverbrauch PSM ASM
 - Sensorlose Regelung
 - Ausblick


04.07.2013


Florian Demmelmayr

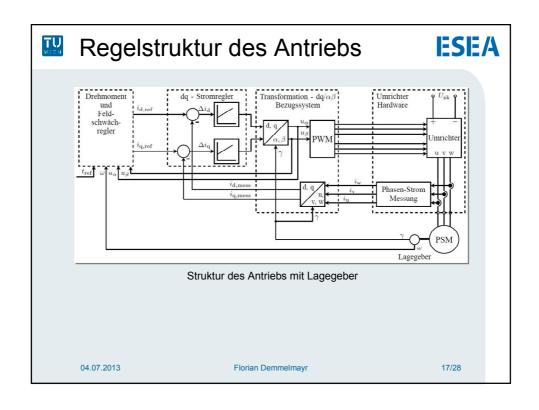
- Diskrete Arbeitspunkten
- Berechnung
 - Zugeführte Energie
 - Abgegebene Energie
- > Energieverbrauch
 - PSM: 49%
 - ASM: 100%

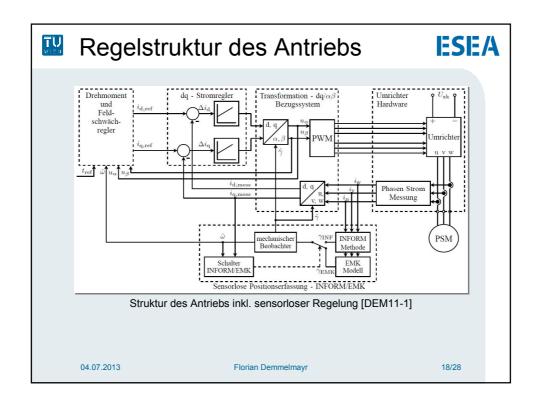
	PSM	ASM
$W_{\rm el,tr}$	1544 kWs	1922 kWs
$W_{\rm el,br}$	$-1024\mathrm{kWs}$	-863 kWs
W_{verlust}	520kWs	1059 kWs

04.07.2013

Florian Demmelmayr

15/28

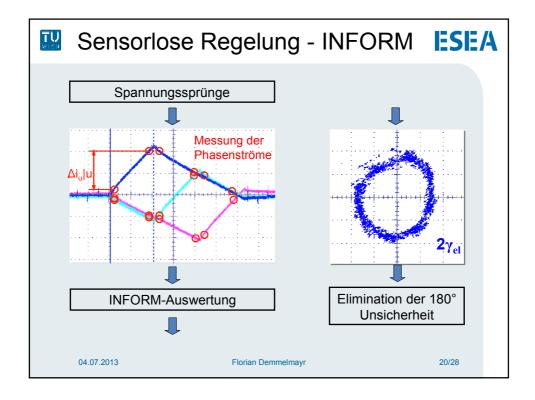

Überblick


ESEA

- Motivation
- Spezifikation
- > Analytische Berechnung
- > Numerische Berechnung
- > Vergleich mit alternativen Maschinen
- **⇒** Sensorlose Regelung
 - > Ausblick

04.07.2013

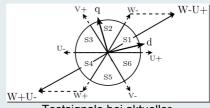
Florian Demmelmayr



Sensorlose Regelung

- ➤ 5 verschiedene Verfahren für 3 unterschiedliche Drehzahlbereiche
- > Winkelinitialisierung im Stillstand
 - Großsignal INFORM
 - · Geberlose Start-Sektor Detektion
- Stillstand und niedrige Drehzahlen
 - · Klassisches Kleinsignal INFORM Verfahren
- > Hohe Drehzahlen
 - · Klassisches EMK-Modell
 - · Kurzschluss-EMK-Modell

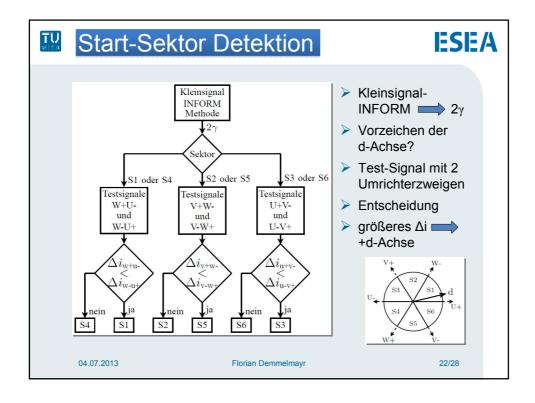
04.07.2013 Florian Demmelmayr 19/28

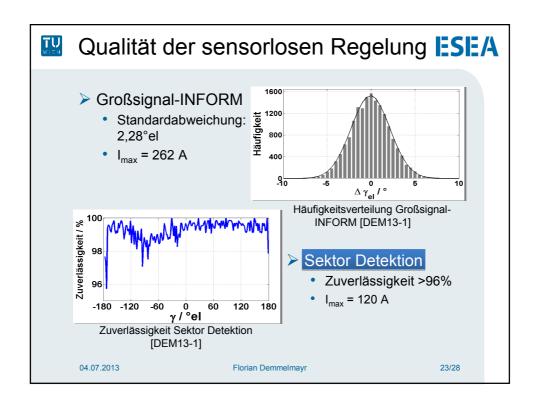

Elimination der 180°-Unsicherheit ESEA

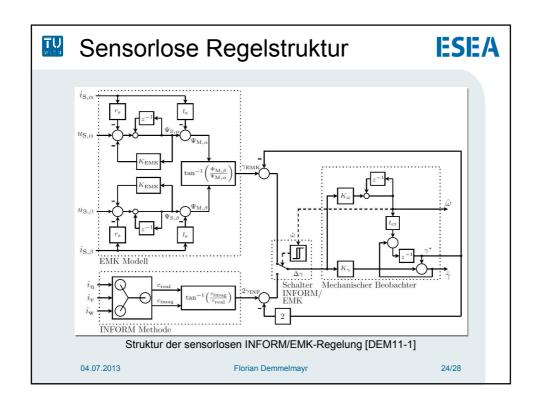
Großsignal-INFORM

- Hohe Ströme (<u>i</u>_s ≥ 1)
- · Verschiebung des magnetischen Arbeitspunkt
- Bestimmung der absoluten Lage: Elimination der 180° Unsicherheit
- Hohe Ströme auch in (–d)- Richtung → Gefahr der irreversiblen Entmagnetisierung

Sektor Detektion


- Bestimmung des Vorzeichens der d-Achse
- Testsignale mit geringeren Strömen



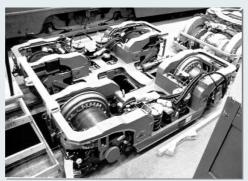

Testsignale bei aktueller Rotorposition [DEM13-1]

21/28

04.07.2013 Florian Demmelmayr

- Motivation
- Spezifikation
- > Analytische Berechnung
- > Numerische Berechnung
- > Vergleich mit alternativen Maschinen
- > Sensorlose Regelung
- **■** Ausblick

04.07.2013


Florian Demmelmayr

25/28

Ausblick

- > Bau eines weiteren Prototypen
- > Einbau in ein Fahrgestell
- > Test im Fahrbetrieb

Beispiel: Fahrgestell [HAC03]

04.07.2013

Florian Demmelmayr

Quellenangaben

ESEA

F. Demmelmayr, A. Eilenberger, M. Schrödl, Sensorless electric traction drive with 500 Nm outer rotor permanent magnet synchronous machine, International Conference on Electrical Machines (ICEM), Rome, Italy, 2010

[DEM11-1]
F. Demmelmayr, M. Susic, M. Schrödl, Sensorless Control at High Starting Torque of a 4000 Nm Traction Drive With Permanent Magnet Synchronous Machine, European Conference on Power Electronics and Applications (EPE), Birmingham, UK, 2011

F. Demmelmayr, M. Troyer, M. Schrödl, Advantages of PM-machines compared to induction machines in terms of efficiency and sensorless control in traction applications, International Conference on IEEE Industrial Electronics Society (IECON), Melbourne, Australia, pp. 2762-2768, 2011

[DEM13-1]

F. Demmelmayr, B. Weiss, M. Troyer, M. Schrödl, Comparison of PM-machines With Ferrite and NdFeB Magnets in Terms of Machine Performance and Sensorless Start-up Control, ICIT 2013, Cape Town, South Africa, pp. 272-277, 2013

W. Hackmann, Systemvergleich unterschiedlicher Radnabenantriebe für den Schienennahverkehr: Asynchronmaschine, permanenterregte Synchronmaschine, Transversalflussmaschine, Dissertation TU Darmstadt, 2003

04.07.2013 Florian Demmelmayr 27/28

Danke für Ihre Aufmerksamkeit!