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INTRODUCTION

MOTIVATION

quark gluon plasma

» produced in heavy ion collisions at RHIC and LHC
> behaves as a strongly coupled liquid
> hydrodynamic simulations work surprisingly well

> apparent puzzle: fast thermalization : 7 < 1fm/c

goal

> gain insight into thermalization process

» which modes thermalize first ?

» production rates of weakly interacting particles
strategy

> use photons/dileptons as probes of the QGP
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INTRODUCTION

THERMALIZATION SCENERIOS

bottom up scenario
> at weak coupling
> scattering processes:

> in the early stages many soft gluons are emitted which then
thermalize the system (Baier et al)

» driven by instabilities
> instabilities isotropize the momentum distribution more rapidly
than scattering processes (Kurkela, Moore)
top down scenario
> at strong coupling
> UV modes thermalize first

» In AdS calculations at infinte coupling, follows naturally from
causality
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INTRODUCTION

PHOTON EMISSION IN HEAVY ION COLLISIONS
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photons emitted at all stages of a heavy ion collision

» direct photons from initial hard scattering and thermalizing
plasma

» additional (uninteresting) emissions from charged hadron decays

» virtual photons — Dilepton pairs
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INTRODUCTION

PROBING THE PLASMA

probing the plasma

» once produced photons and dileptons stream through the plasma
almost unaltered

» provide observational window in thermalization process of the
plasma
quantity of interest
» number of photons emitted with given momentum
» differential production rate per unit volume
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problem

» very hard to study out of equilibrium in strongly coupled regime
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INTRODUCTION

OUR APPROACH

use SYM theory where strongly coupled regime is accessible
gauge gravity duality

» strongly coupled large N., N =4 SYM at finite T < classical
gravity in AdSs black hole background

» temperature of the black hole can be identified with field theory
temperature

similarities to QCD at finite T

» deconfinement

» Debye screening

v

SUSY and conformal symmetry broken
> finite spatial screening length

advantage: can calculate observables at week and strong coupling
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INTRODUCTION

PHOTON EMISSION IN EQUILIBRIUM SYM PLASMA
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Caron-Huot et al. (2006) & Hassanain et al. (2011):

» Effect of increasing coupling in perturbative result: Slope at
k = 0 decreases, hydro peak broadens and moves right

» Effect of decreasing coupling from A = oco: Peak sharpens and
moves left
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INTRODUCTION

OUT OF EQUILIBRIUM

» equilibrium picture in SYM fairly complete

» how does photon/dilepton emission rate get modified out of
thermal equilibrium ?

> can one access thermalization at finite coupling ?
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HOLOGRAPHIC THERMALIZATION

ADS/CFT DUALITY: THERMALIZING SYSTEM

» Simplest way to take system out of equilibrium: Begin with a thin
massive shell at » = rs; > r, and let it collapse towards rs = rp
(Danielsson, Keski-Vakkuri, Kruczenski (1999))

center horizon shell boundary

r=0 =" r="Ts r =00

> 2-point functions ‘see’ the location of the shell through modified
boundary conditions = Out-of-equilibrium effects

» quasistatic approximation: static shell; w > 1/7; energy
scale of interest > characteristic time scale of shells motion
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ResurTs

PHOTON AND DILEPTON SPECTRAL DENSITY
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left: photon sepctral densityx~ (w = k = 2aTw, rs/rp) for
rs/rp = 1.001, 1.01, 1.1. right: dilepton spectral density for ¢ =0, 1, 2.

» out of equilibrium effect: oscillations around thermal value

» as the shell approaches the horizon, equilibrium is reached
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ResurTs

THERMALIZATION AT INFINITE COUPLING: PHOTONS
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Relative deviation Ry for rs/rp = 1.01,1.1 and A = co.

» top down thermalization: highly energetic modes are closer to
their equilibrium value
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THERMALIZATION DEPENDING ON THE VIRTUALITY
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» virtuality
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Relative deviation Ry for rs/rp = 1.1 and ¢ = 1,0.7,0.
» thermalization depends on the virtuality
» photons are last to thermalize

» same conclusion was reached in other models of holographic

thermalization
Arnold et al., Chesler and Teaney
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ResurTs

PHOTON PRODUCTION RATE
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left:Photon production rate for rg/r;, = 1.001, 1.01, 1.1. right: Photon production
rate in equilibrium for A = oo, 75, 50.

» enhancement of production rate
» hydro peak broadens and moves right

» Can one combine the two calculations to study thermalization at
finite coupling?
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ResurTs

PHOTON EMISSION SPECTRUM WITH ¥ CORRECTIONS
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photon emission rate for rs/rp, = 1.01 and A = oo, 150, 75, 50.

» behavior very similar to thermal limit.
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ResurTs

THERMALIZATION AT FINITE COUPLING

» relative deviation from thermal equilibrium
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wfT

Relative deviation Ry for rs/rp = 1.01 and XA = oo, 500, 300, .

» behavior of relative deviation changes at large frequencies
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ResurTs

THERMALIZATION AT FINITE COUPLING

» relative deviation from thermal equilibrium
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Relative deviation Ry for rs/r, = 1.01 and A = 150, 100, 75.
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» might indicate a change of the thermalization pattern from
top-down towards bottom up.
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CONCLUSION

CONCLUSIONS

thermalization at infinite coupling

» enhancement of production rate

» observe top down thermalization
thermalization at finite coupling

» thermalization scenario depends on the coupling

> bottom up thermalization also possible at strong coupling ?
future directions

> go beyond the quasistatic approximation

> look at plasma constituents itself (components of the stress
energy tensor)
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