
Autonomous Flight using a Smartphone as On-Board
Processing Unit in GPS-Denied Environments

Michael Leichtfried
michael.leichtfried@tuwien.ac.at

Christoph Kaltenriner
christoph.kaltenrinner@tuwien.ac.at

Annette Mossel
mossel@ims.tuwien.ac.at

Hannes Kaufmann
kaufmann@ims.tuwien.ac.at

Interactive Media Systems Group
Vienna University of Technology

Favoritenstr. 9-11/188/2, 1040 Vienna, Austria

ABSTRACT
In this paper, we present a low-weight and low-cost Un-
manned Aerial Vehicle (UAV) for autonomous flight and
navigation in GPS-denied environments using an off-the-
shelf smartphone as its core on-board processing unit. There-
by, our approach is independent from additional ground
hardware and the UAV core unit can be easily replaced
with more powerful hardware that simplifies setup updates
as well as maintenance. The UAV is able to map, locate
and navigate in an unknown indoor environment fusing vi-
sion based tracking with inertial and attitude measurements.
We choose an algorithmic approach for mapping and local-
ization that does not require GPS coverage of the target
area, therefore autonomous indoor navigation is made pos-
sible. We demonstrate the UAVs capabilities of mapping,
localization and navigation in an unknown 2D marker envi-
ronment. Our promising results enable future research on
3D self-localization and dense mapping using mobile hard-
ware as the only on-board processing unit.

Categories and Subject Descriptors
Information systems [Information Systems Applications]:
Mobile Information Processing Systems; Computing Method-
ologies [Artificial Intelligence]: Robotics; Image Process-
ing and Computer Vision [Scene Analysis]: Tracking

General Terms
Application

Keywords
Mobile Computing, Aerial Robotics, Mobile Information Pro-
cessing Systems, Localization and Tracking, Autonomous
Flight, GPS-denied Environments

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM2013, 2-4 December, 2013, Vienna, Austria
Copyright 2013 ACM 978-1-4503-2106-8/13/12 ...$15.00.

1. MOTIVATION
A UAV (Unmanned Aerial Vehicle) is an aircraft flying

without a human pilot on board. They can be deployed e.g.
in areas that are too dangerous or unreachable for humans
in case of environmental catastrophes. Quadcopters, as a
subsytem of UAVs, are compact rotor craft air vehicles with
vertical takeoff and landing capability. They can hover like
a conventional helicopters but have significant advantages
such as mechanical simplicity with no need of a swash-plate
mechanism and ease of piloting.

In recent years, there has been extensive research in au-
tonomous flight control of UAVs by either tracking the UAV
from outside or by monitoring the environment from the
UAV itself (Section 2). Thereby, the UAV’s 3D position and
orientation are estimated to allow for simultaneous localiza-
tion and mapping (SLAM) as well as collision free naviga-
tion. With an autonomous flight approach, remote control
by humans can be omitted and no line of sight between con-
troller and UAV is required.

In outdoor environments, a UAV can easily be localized
using GPS1 data. In GPS-denied areas, such as indoor
environments, recent approaches demonstrated autonomous
flight fusing vision with inertial measurement data to esti-
mate the UAVs 3D position and orientation. Many of these
approaches require a workstation as additional ground hard-
ware for data processing and steering control computation.
To increase flexibility of the system, localization, mapping
and navigation as well as steering control generation have
to be performed on board of the UAV. Recent work demon-
strated powerful on-board SLAM approaches by using cus-
tomized embedded computing platforms. However, the ap-
plied hardware platforms are mostly designed for a single
use case and can hardly be extended or easily replaced with
emerging and more powerful modules.

To increase flexibility and cost efficiency, we demonstrate
a UAV based on open source hard- and software that uses an
off-the-shelf smartphone as its central on-board processing
unit to allow for autonomous flight in indoor environments
with no GPS coverage. We present a SLAM and navigation
approach that fuses monocular vision data with inertial as
well as altitude data. All data processing and steering com-
mand generation is performed by a smartphone running An-
droid. The phone is connected to an open hardware micro-

1Global Positioning System

controller that ensures stable attitude balancing and sends
navigation commands to the motor controllers. For testing
and safety reasons, the autonomous navigation can be re-
placed during run-time with a standard remote control to
be able to manually intervene at every moment in time. For
evaluation purposes, data analysis as well as visualization,
the smartphone sends flight data via a wireless connection
to a portable workstation. We demonstrate autonomous lo-
calization, mapping and navigation in an unknown 2D envi-
ronment. Due to the compact construction and accurate
localization, precise exploration can be performed within
an indoor area of only 1.86x 2.25m. Automatic lift-off and
landing on a user-defined area of 200x 200mm is presented.

With the demonstrated work, we provide a technological
low-cost flight platform that only requires a commercially
available mobile device as core processing unit and hence
can play an important role in areas with poor infrastruc-
ture (e.g. developing countries) to autonomously perform
tasks for search and rescue, inspection and measurements of
buildings as well as observation.

1.1 Contribution
This paper presents the following contributions. Firstly,

we demonstrate that off-the-shelf mobile hardware such as
a smartphone can be applied as central light-weight but
computationally powerful on-board processing unit to en-
able autonomous flight. Hence, our setup does not require
any computing ground hardware and control of the UAV
is independent from any steering signals sent by a ground
station via wireless data transmission. Thus, error prone
transmission or transmission failure can be avoided which
improves robustness and autonomy of the UAV steering and
overall flight control.

Secondly, we show that open-source hardware projects can
be used to build a low-cost high-performance indoor quad-
copter for robotic research.

Thirdly, since most of the necessary hardware for au-
tonomous flight is already included in a state-of-the-art smart-
phone, hardware complexity as well as costs can be min-
imized. Additionally, the entire system that provides au-
tonomous flight can be quickly migrated to more powerful
mobile devices with low effort which increases ease of use
and flexibility compared to competing approaches.

2. RELATED WORK
Simultaneous localization and mapping (SLAM) in an un-

known environment and without any human interaction is
an active research area in mobile robotics [12]. In related
work, autonomous localization of the UAV can be distin-
guished into two different approaches:

Outside-In-localization and Inside-Out-localization. The
first uses fixed sensors, such as cameras, to estimate the 3D
position of an object, e.g. the UAV. Therefore, this system
needs to extract the object from the scene. For Inside-Out-
localization, the sensor(s) such as cameras, laser range finder
and inertial measurement units (IMU) are mounted onto the
UAV and estimate the UAV’s 3D position by observing the
surrounding environment. Furthermore, related work for au-
tonomous flight can be separated into off-board and on-board
approaches. Off-board solutions require additional station-
ary hardware (ground station) to enable UAV localization
and autonomous flight. All data processing for position esti-

mation and steering control generation is performed by the
ground station; this data is sent via a wireless connection to
the UAV. Since all data is processed on the ground station,
there is no limitation in size and weight of the hardware
components. Furthermore, complex SLAM approaches that
are based on dense visual data can be processed in real-time
by employing powerful state-of-the-art CPUs und GPUs for
workstations. However, the operational range is limited to
the particular transmission medium, since there has to be
a permanent connection between the UAV and the ground
station to ensure stable flight. In contrast, on-board solu-
tions process all algorithms for autonomous localization and
flight on the UAV itself, hence they are independent of any
ground station or reliable wireless transmission. However,
weight, size and power consumption of the additional hard-
ware components have to be taken into account at the design
of the UAV.

2.1 Off-Board Outside-In Localization
The approach in [2] uses active, light-emitting markers

that are mounted on the UAV. It demonstrates a low-cost,
transportable solution using a notebook and two off-the-shelf
web cameras as ground station. By tracking the UAV with
both cameras, its current 3D position is continuously esti-
mated; thereby, steering controls for an autonomous flight
are generated and are sent via wireless connection to the
UAV. A similar concept is demonstrated in [15]. Instead of
tracking active markers, the CAD model of the UAV is used
for generating visual contour features. Since the 3D position
estimation is calculated on an external ground station, both
approaches cannot be considered as truly autonomous [21].
However, they are helpful for generating ground truth data
for evaluating on-board solutions.

2.2 Inside-Out Localization
Various research projects exist for Inside-Out localization

of robots. While ground robots usually are localized through
odometry estimates by evaluating the relative movement of
the wheels, other localization methods need to be considered
for flying platforms. Such a localization for aerial robots is
not only important for autonomous flight including mapping
and navigation, but also plays a major role for correcting
lateral drifts. Related work mostly implements Inside-Out
localization based on the following approaches: (1) GPS,
(2) Vision, (3) Sensor or (4) a combination of these tech-
niques. GPS signals provide reliable position estimation in
outdoor environments. However, for indoor purposes and
GPS-denied areas, other approaches need to be examined.

2.2.1 Off-Board Solutions
In [23] the autors provide a marker-based approach for au-

tonomous hovering over a pre-defined position. Therefore, a
monocular camera is mounted on the UAV for observing the
ground. Camera and IMU data are sent to an off-board PC
where the UAV’s position and attitude (pose) are estimated.
Based on the estimated pose, a steering command is sent to
the UAV via XBee for correcting flight deviations.

2.2.2 On-Board Solutions
In [20], a UAV is demonstrated that is able to map an

entire multi-floor building in real-time without the need of
any ground station. For 3D position estimation, a laser
range finder retrofitted by mirrors is employed. To sim-

plify the position estimation algorithm, they make use of
the assumption that every target the laser aims at is a pla-
nar surface. The approach of [11] provides an open-source
system, which calculates position estimates on a linux-based
embedded platform using a laser range finder. During ex-
periments, altitude and yaw control were executed on-board,
whereas localization, SLAM and altitude estimation were
performend on an off-board portable workstation. Although
laser range finders serve very accurate information for po-
sition and yaw estimation, they are expensive, heavy and
consume a lot of power. Thus, they are not sufficient to
meet our project’s objective to provide a low-cost as well as
low-weight flight platform. [17] provides an open-source,
vision based platform, called PIXHAWK. It allows high-
speed on-board image processing with two stereo cameras.
All components, especially the UAV hardware, are self de-
signed. With four cameras the system weights 1000− 1200g
and allows a continuous flight time of approximately 15min.
In [13], the authors describe an on-board SLAM system for
unstructured environments with Microsofts’s Kinect RGB-D
camera. The main task is to generate collision-free trajecto-
ries. Within this project, the embedded system PIXHAWK
is used as base processing hardware.

Stereo vision loses its effectiveness when extracting fea-
tures at large distances and with small baselines [1, 21].
Since only smaller baselines are possible on a UAV while
requiring to extract features from the camera images also
in larger distances, localization based on monocular vision
might be a better choice. Furthermore, weight reduction
can be achieved as well. [1] demonstrates 3D position esti-
mation by fusing IMU data with a monocular camera and
a barometer. The system does not require additional pre-
conditioning of the environment, e.g. attaching visual mark-
ers into the scene. Absolute position estimates are obtained
by the visual SLAM framework of Klein and Murray [14]. All
implementations are based on ROS (Robot Operation Sys-
tem) [22], making the work reusable for the community. [7]
presents a position stabilization framework by using ultra-
sonic sensor nodes, whereas [16] demonstrates a stabilization
approach by using an optical flow sensor conventionally used
for desktop mice. The approach of [14] is also employed on
the work of [21]. This approach presents a SLAM and sta-
bilization solution for quadcopters using monocular vision
without the need of pre-conditioning the environment.

All above projects except [17] use the commercial hard-
ware platform from Acsending Technologies [5] as base UAV.
This increases costs and reduces flexibility. Furthermore, all
of the mentioned approaches [1, 20, 11, 13, 17, 21] use differ-
ent kinds of embedded on-board systems for data processing.
However, these are mostly designed for a single use case and
the underlying hardware can hardly be extended nor eas-
ily replaced with emerging and more powerful modules. [8]
provides an alternative solution. They use a customary mo-
bile device (Nokia N95) as on-board processing hardware for
executing vision-based localization algorithms. This is the
most comparable approach to our work, however, the local-
ization and mapping does not occur simultaneously but is
split into two phases - exploration and localization. Further-
more, a valid GPS-signal is required for localization during
the exploration phase.

In this paper, we demonstrate the potential mobile com-
puting on an off-the-shelf smartphone that acts as core on-
board device for executing simultaneous localization and

mapping tasks in GPS-denied environments. Furthermore,
we aim on flexibility, cost efficiency and re-usability of all
required components by applying open source hard- and
software. Since the required components – camera, sen-
sors, communication technologies, and the processing unit
– for autonomous localization, mapping and navigation are
integrated in a smartphone, weight and monetary costs are
minimized and migration to more powerful hardware with
little effort is ensured.

3. METHODOLOGY
The overall setup is depicted in Figure 1. The hardware

design consists of three components: (1) the smartphone as
on-board core processing unit to enable autonomous flight,
(2) the on-board flight attitude control comprising a mi-
crocontroller that interfaces the UAV’s hardware with the
smartphone and (3) an optional portable workstation for
monitoring all flight data during run-time.

WLAN

Flight-Attitude-Control

Monitoring

 (optional)

Camera

Localization, Mapping

and Navigation

Figure 1: Setup overview.

The smartphone is attached to the bottom of the UAV
with the camera pointing down to the ground. By tracking
natural features on the ground, the UAV is able to perform
simultaneous localization and mapping. Based on the run-
time generated map of the environment, the UAV generates
navigation commands to explore the unknown area. The
monitoring station, as illustrated in Figure 1, is not required
for autonomous flight but allows for analyzing all parameters
during flight. Therefore, the smartphone communicates via
WiFi with the monitoring station. For safety reasons, the
UAV is equipped with a receiver for remote control by a
human.

3.1 Hardware System
To guarantee a reliable autonomous flight, the UAV hard-

ware has to be able to stabilize itself during every phase of
flight. To measure the UAV’s attitude and hence be able to
generate balancing controls for stabilization, a 9-degree-of-
freedom IMU is used. The IMU comprises Accelerometer,
Gyroscope and Magnetometer. To get reliable orientation
data, all sensor measurements are fused to compensate mea-
suring errors. According to the difference between the cur-
rent attitude and the attitude needed to balance the UAV,
motor-commands are generated for correction.

For sensor fusion and the UAV attitude correction, we
use the open source project Arduino Mega ADK Board [4].
This board acts as the main interface between power supply,
motors, sensors and smartphone. To connect all hardware
components – battery, motors and sensors – to the Arduino,
a shield by the open source project AeroQuad [3] is used.
Via USB cable, the smartphone is connected to the Arduino
Mega ADK board. In addition to the IMU data, we at-
tached a sonar range finder to the UAV to determine the
current flight level (height) to allow for autonomous and
secure lift-off, landing and pre-defined flight level. All hard-
ware components of the UAV are depicted in Figure 2.

Figure 2: All hardware components of the UAV.

3.1.1 Frame Design
The size of a UAV frame construction is specified by the

number of motors and the size of the propellers. If more
powerful motors and larger propellers are used, more pay-
load can be carried. If too much payload is applied, the
UAV’s flight stability is negatively affected. To deploy the
UAV in an indoor environment, its size must be sufficient to
be able to navigate through narrow areas such as doors, hall-
ways and windows. Hence, our frame design is a low-weight
solution suitable for indoor flight. Therefore, we designed
a UAV with four motors (quadcopter), each equipped with
8” propellers. All four motors were tightly mounted on the
same horizontal level. To navigate the quadcopter, the rota-
tion speed of every single motor can be changed individually.
To avoid spinning of the UAV around its pitch axis, two op-
posing motors have to spin in clockwise, the other two in
counter-clockwise direction.

3.2 Software Framework
The software system consists of three modules that are

executed on the three hardware devices:

• Flight Attitude Control (Arduino Microcontroller [4])

• Autopilot (Android smartphone)

• Optional: Monitoring (PC/Notebook)

Figure 3 shows the communication structure of the modu-
les. The Flight Attitude Control (FAC) is responsible for
two very basic UAV abilities, to fly and to balance the UAV
during flight. Furthermore, it acts as an interface between
UAV hardware (motor, sensors) and the smartphone. The
FAC receives data from the IMU and, in case of user inter-
vention as well from the remote control. By evaluating the
received data, it generates adequate engine speeds for the
motors. We extended the employed AeroQuad shield soft-
ware with a communication protocol to receive steer com-
mands from the Autopilot (AP) and for sending flight data
status updates to the monitoring station.

Figure 3: Software modules of the proposed setup.

The monitoring station observes the flight and can be used
for UAV parameter configuration before lift-off. Further-
more, it provides visualization of the mapping process that
is performed on run-time. Optionally, the autonomous flight
can be intervened with manual keyboard commands.

The AP serves as communication center between FAC and
monitoring. Furthermore, it is responsible for all three core
operations to enable autonomous flight - localization, map-
ping and navigation that are described in detail in the fol-
lowing sections.

3.2.1 Localization
Our approach performs SLAM in a 2D environment. Cur-

rently, we use a set of known 2D markers that are attached
in random order to the ground. These markers are con-
tinuously tracked with the smartphone’s camera by using
Vuforia [19]. Using the calculated view-port coordinates,
we perform localization and mapping of the unknown envi-
ronment by storing the detected markers and their adjacen-
cies. To guarantee correct attitude localization of the UAV
as well as linkage between adjacent markers, the current
UAV’s yaw rotation has to be taken into account. Thus, the
yaw rotation ϕ is extracted from the tracking information
and the view-port coordinates Cquad(x, y, z) are rotated by
ϕ, resulting in the transformed coordinates C′

quad(x
′, y′, z′)

as described in Equation 1.

x′ = x cosϕ + y sinϕ (1)

y′ = −x sinϕ + y cosϕ

z′ = z

3.2.2 Mapping
During flight, a 2-dimensional map of detected markers

within the unknown environment is incrementally built. If
a minimum of two markers are tracked at the same time,
adjacencies can be established between them. According to
C′
quad, adjacent markers can be connected in the north, east,

south or west, as depicted in Figure 4.

Thereby, an internal graph of the explored 2D area is
incrementally created. However, falsely detected markers
must be carefully handled to avoid errors in the map. With
increasing tracking distance between camera and markers,
false marker detection increases as well. Thus, we introduce
a quality value for the distance which is encapsulated in the
z-coordinate of the currently tracked marker. The higher
the distance, the lower the quality of a detected adjacency.
With this quality level for new adjacencies, a robust linkage
between neighboring markers can be ensured, since detected
adjacencies with higher quality overwrite existing ones with
lower quality.

Figure 4: Storing and Linking of Identified Markers.

To build the 2D graph, we employ a combination of a
linked list and a key/value hash map data structure. As key
we set the marker ID and store the object containing the
adjacency information as value. For localization, mapping
and navigation, the created graph is translated into a 2-di-
mensional grid structure to obtain a global view of the 2D
marker environment. Therefore, a recursive algorithm ana-
lyzes all objects and determines the corresponding 2D grid
position based on the stored direction (north, east, south,
west).

3.2.3 Exploration
The exploration algorithm provides an efficient mapping

process by searching for non-mapped areas within a defined
time interval. Therefore, it starts a navigation task (Section
3.2.4) at an already detected and mapped marker. Thus,
the unknown area between the UAV’s original position and
the navigation target are mapped with the described map-
ping algorithm and all new markers and their adjacencies
are added to the global map.

3.2.4 Navigation
As soon as the UAV receives a navigation command - ei-

ther by the exploration algorithm or by the user via moni-
toring - it creates a steering command. Based on the global
map, this command is calculated by evaluating the distance
between the current position Pcurr and the target position

Ptarg. Next, appropriate steer commands are generated to
navigate the quadrocopter into the target direction. Such a
push is generated repeatedly in a defined time interval. The
strength of the push depends on the distance to the target
marker.

3.2.5 Drift Correction
Although the IMU is able to measure deviations from the

horizontal UAV position, lateral movement (drift) cannot be
detected. Drift occurs since inertial measurements aberra-
tion accumulate over time. Furthermore, the current flight
level influences the amount of drift since the propellers create
air swashes. At low flight level, they can interfere with the
UAV. Since our approach requires to robustly detect visual
features at smaller distances, low flight level is necessary and
thus drift is influenced by air swashes. To robustly detect
and compensate drifts, an external static reference point is
required [7]. Therefore, we implemented a drift correction
algorithm based on visual feature tracking that runs in paral-
lel to the mapping and exploration/navigation task. It eval-
uates identical markers in two consecutive camera frames to
calculate the difference of their viewport coordinates. This
information is then sent to the FAC that adjusts the UAV’s
trims2.

3.2.6 Edge Detection
To autonomously detect edges of the 2D environment and

generate appropriate counter steering commands, we devel-
oped the following quality weight based algorithm. If track-
ing fails for a defined time interval, the UAV’s current flight
level is evaluated. If the UAV is within an adequate level
range that guarantees robust feature detection, it is assumed
that the UAV has flown beyond the border of the marker en-
vironment. Then, a sufficient counter steering direction is
estimated based on the following three informations:

• Polar coordinate p of the last tracked marker

• Global position m of the last tracked marker

• Current calculated drift direction d

Each of the above data is weighted with a quality value
Qi, i ∈ {p,m, d} to describe the estimation quality. To esti-
mate ϕ ∈ {p}, we assume a unit circle as polar coordinate
system the origin of which lies at the center point of the
most recently tracked marker while Posexit ∈ R2 denotes
the position of the camera’s viewport upon map exit. Then,
ϕ is determined by evaluating the angle of Posexit in the
unit circle. With ϕ, we can determine the current steering
direction dsteer of the UAV, based on Equation 2.

dsteer =


West if 3π

4
< ϕ < 5π

4

South if 5π
4

< ϕ < 7π
4

East if 7π
4

< ϕ < π
4

North if π
4
< ϕ < 3π

4

(2)

Next, the quality of dsteer is calculated based on Equation
3 whereas the highest quality is described with q(dsteer) = 1.
Therefore, the lower and upper bound values of ϕ, denoted
as L and U , are employed.

q(dsteer) =
L + U

2
× 1

dsteer
(3)

2Trims are used in model flight for initial adjustment of the
model aircraft to compensate unequal weight shifts.

To determine the quality of m, we evaluate the distance
between the center point of the last tracked marker and the
global map. Since this distance depends on the size of the
autonomously mapped area, its current size must be taken
into account as well to provide robust quality estimates. At
the beginning of an autonomous flight, the size of the map
will be rather small and hence the resulting quality of m will
be low.

For d the quality is described by the strength of the cur-
rent calculated drift direction. Next, all three parameters
are weighted with a value Wi, i ∈ {p,m, d} describing the
overall reliability of the data (p, m, d). m is weighted
stronger, whereas d and p have less influence. Based on the
result with the highest value, a counter steering direction on
the x-axis ~Ex as well as on the y-axis ~Ey is calculated. The
approach is formally described in Equation 4.

~Exi =

(
DecisionEast
DecisionWest

)
, i ∈ {p,m, d} (4)

~Eyi =

(
DecisionNorth
DecisionSouth

)
, i ∈ {p,m, d}

Steering direction X =
∥∥∑3

i=0
~Exi ∗Qi ∗Wi

∥∥
max

Steering direction Y =
∥∥∑3

i=0
~Eyi ∗Qi ∗Wi

∥∥
max

3.2.7 State Cycle of Auto Pilot
The described autonomous flight algorithms are performed

by the AP unit depending on the current flight state of the
UAV. The overall state diagram is illustrated in Figure 5
while the AP can be in one of the following states:

• Lift-Off

• Exploration

• Navigation

• Edge detection and counter steering

• Land

Figure 5: States of the AP unit.

To provide an autonomous flight from lift-off until landing
in an unknown environment, the UAV performs the follow-
ing operations in each state. After Lift-off, the quadcopter
automatically holds a predefined flight level in which ro-
bust target tracking can be ensured. Then, its state changes
to Exploration and global mapping is performed. If no un-
known markers are detected within a defined period of time,
the AP unit determines unmapped areas in the global map
and defines it as navigation target. The state changes to
Navigation. Once the navigation target is reached, the sta-
tus changes back to Exploration. If the UAV leaves the 2D
environment, the state changes to Edge Detection and an ap-
propriate counter steering command is generated. If the AP
is pre-configurated to land onto a defined marker, a naviga-
tion command is performed. As soon as the target marker
is detected, the UAV changes to the final state Land and
performs an autonomous operation to stop the flight.

4. IMPLEMENTATION

4.1 Hardware
The underlying hardware design of the UAV is inspired by

the constructions of [3, 6]. Figure 6 illustrates the current
design of the UAV.

Figure 6: Hardware prototype, smartphone pulled
out from mount for visualization.

The entire frame is made of Aluminum. The 580mm
long, u-profiled riggers are mounted between two 125mm×
125mm× 1mm sized plates, as illustrated in Figure 2. The
Arduino Mega ADK Board with attached AeroQuad Shield
and IMU is mounted on the top of the upper plate. The
brushless motors can spin with 1088rpm/V3 and are mounted
160mm from to the UAV’s center of gravity. The motors are
connected via ESCs4 to the Arduino Board. An ESC is nec-
essary to transform the DC-control signal to a phase shifted
AC-signal to drive the brushless motors. At the end of each
rigger, a skid is mounted to minimize the bounce during the
landing processes. For safety reason, we attached a safety
ring around the UAV to protect the complete UAV’s hard-
ware in case of collisions. As power supply a 2100mAh LiPo5

battery is mounted on the bottom of the UAV. It supplies

3Revolutions Per Minute/Volt
4Electronic Speed Controllers
5Lithium Polymer

all hardware components with 11.1V . While the four mo-
tors are directly connected via the ESCs to the power source
(with 11.1V), all other components are indirectly supplied
with 5V over the Arduiono board.

The developed UAV prototype generates thrust to carry
1410g, while having a net weight of 840g. With this weight
and size, the prototype is able to operate 10− 15min in the
air.

4.2 Software
The autonomous flight processing pipeline of the AP unit

was fully implemented with the Android SDK [10] in Java.
Run-time critical operations for localization, mapping and
navigation were developed in C/C++ using the Android
NDK [9] and are interfaced via via JNI6 with the Java com-
ponents of the pipeline. For planar marker tracking, we
integrated Vuforia [19].

All modules of the FAC are developed with the Arduino
IDE. To provide communication between FAC and AP, the
Android Open Accessory protocol (AOA) was implemented.
Since Android devices have low power output, the Arduino
microcontroller acts as USB-Host and powers the bus, where-
as the Android smartphone acts as USB-Accessory.

5. EVALUATION

5.1 Test Platform & Environment
We tested our system with a Samsung Galaxy S2 as on-

board processing unit, equipped with a Cortex A9 Dual Core
processor and an 8 mega pixel camera. As operating system
for the tests, Android Version 4.0.4 Ice Cream Sandwich
(API level 15) was used. For flight monitoring and param-
eter analyzing during run-time, the monitoring station was
connected over WiFi with the AP unit. In Figure 7, the
indoor test environment is depicted.

Figure 7: The indoor test environment.

The test area consists of 99 unique identifiable markers
where each has a size of 98mm × 98mm and is placed in
a distance of 98mm to each other. This results in a to-
tal size of 1.86m × 2.25m from the test area that was in-
stalled in a 4m × 4m room. For the given marker size,
the empirically evaluated optimal tracking distances ranged
from 100 − 800mm. With the given test environment, we
were able to test flight abilities in very small areas to accu-
rately evaluate localization, navigation drift compensation
and landing precision.

6Java Native Interface

5.2 Test Cases
To examine all functionalities of the setup, we performed

the following tests to evaluate:

1. Flight stability by testing drift correction and holding
of flight level.

2. Localization and navigation by examining the explo-
ration of the unknown test environment, the mapping
of detected visual markers as well as the quality of
edge detection by evaluating the steer command gen-
eration and execution to hold the UAV within the test
environment.

3. Performance measurements to determine the capabili-
ties of the smartphone as on-board processing unit.

The results of each test case are described in the following
section.

5.3 Results

5.3.1 Flight Stability
Stable flight behavior is the most important requirement

to provide robust (autonomous) flight. Flight stability is
negatively influenced by following factors:

1. Declining battery-voltage can cause lower rotational
spin of the motors, resulting in inaccurate attitude and
flight level.

2. Drifts, as described in Section 3.2.5, must be compen-
sated to prevent uncontrolled lateral movements of the
UAV.

3. Increasing heat of the hardware components can result
in larger sensor aberrations and hence in inaccurate
attitude and flight level.

As described in Section 3.2.5, drifts can be compensated
by observing a static point in the scene, e.g. a visual marker
and analyzing its position over consecutive camera frames.
If the marker translation differs from the current steering
direction, a drift correction is initiated. Loss of flight level is
detected with the sonar range finder and can be corrected by
increasing or decreasing the rotational speed of the motors.

Figure 8: Flight levels of the UAV.

To evaluate the algorithmic drift correction from Section
3.2.5, we placed the UAV at the center of the test environ-
ment and performed a lift-off to a flight level of 500mm,
four times with enabled and four times with disabled drift
correction. In theory, the UAV is holding its position and
hover over the middle of the map if no steering commands

are performed and no drifts occur. Without drift correction,
the drift influenced the UAV’s position after an average time
of 7s by 100cm, resulting in leaving the test environment.
With drift-correction, drifts were reliably detected and com-
pensated and the UAV’s position could be correctly stabi-
lized up to an average time of 38s.

Flying at a defined level is important to ensure reliable
tracking and thus localization and mapping. With the em-
ployed visual markers, robust tracking can be performed be-
tween a height of 200− 700mm. To constantly hold the UAV
within the optimal tracking range, a permanent adaptation
of the rotational motor speed related to the measurements
of the sonar range finder is necessary.

Figure 8 illustrates the flight level during three test flights
with enabled autonomous exploration and navigation. The
data indicates that a few times the UAV was below or above
the required level but was always able to correct its level to
fly in the intended optimal tracking range.

5.3.2 Exploration & Navigation
To evaluate the exploration method that comprises local-

ization, mapping and navigation (Section 3.2.3), we mea-
sured the time for exploration in correlation to the number
of detected and mapped visual markers. Figure 9 illustrates
the exploration and mapping process of the unknown test
environment during several flights. As depicted, on average
80% of the test environment was successfully explored and
mapped within 2min. These results show the robustness
of the applied mapping and exploration algorithm and fur-
thermore reveal the influence of air time on flight stability.

Figure 9: Exploration process.

To test the quality of generated and executed steering
commands for autonomous navigation, we measured the time
period until the UAV navigates and detects an already mapp-
ed position in the test environment. Therefore, the UAV
had to perform a navigation task from one corner of the
test environment to the diagonal opposite one. Thereby,
we ensured a complex navigation task including the largest
possible distance in the map as well as steering compris-
ing forward and lateral movements. On average, the target
position was reached in 7.8s.

Furthermore, we determined the accuracy of the landing
position if a target marker has been defined. As described
in Section 5.3.1, overall flight stability suffers from several
factors. Nevertheless, during tests the UAV was able to nav-

igate to a defined target area with a size of 98× 98mm. An
average deviation in landing position accuracy of 200mm
was measured. Deviation was mostly influenced by the cur-
rent drift of the UAV.

For both test cases, accurate and reliable self-localization
as well as edge detection (Section 3.2.6) is crucial. In case of
edge detection, a steer-back command needs to be generated
for an autonomous flight back into the test environment.
The edge detection was tested in 50 runs. Therefore, the
UAV was artificially navigated out of the test environment
via autonomously or manually generated steer commands
or due to drifts. If no visual marker tracking occurred for
more than 750ms, the edge detection algorithm generated a
steer command to navigate back into the test environment.
The tests revealed that the edge detection works very ro-
bustly, in every test case the algorithm detected the correct
steer direction to navigate the UAV back to the environment
and the corresponding steer command was generated. How-
ever, we could identify problems with the generated steer
command in 6% of tested flights when a drift diagonal to
the current steering direction caused the map exit at one of
its corners. Since this drift could not be reliably compen-
sated due to the missing static reference point, the generated
counter steering command was leading to an lateral move-
ment only along the edge of the map and did not result in
navigating back over the test environment. In cases of drifts
opposite to the current steering direction during map exit,
the counter steering command outperformed the drift and
resulted in successful back-navigation.

5.3.3 Performance
We analyzed the performance of the smartphone by eval-

uating the latency of tracking, mapping, edge detection and
navigation command generation. These performance mea-
sures are relevant since latency influences the update rate
during tracking and hence accuracy of mapping.

All visual markers in a camera frame are identified in
< 1ms. The integration of a new marker in the global map
requires < 5ms while a delay occurs if an edge is detected
or a new navigation command for exploration is required.
In case of edge detection, tests with 30 samples indicate an
average duration of 4ms and a maximum duration of 10ms
to calculate a new steer command. To create a navigation
command in exploration mode, the global map is analyzed
to identify unknown areas. The more markers are already
mapped, the more time the graph analysis requires. An
average of 7.5ms and a maximum duration of 20ms are re-
quired to identify unknown target areas and to generate the
corresponding steer command.

Summarizing, to process all tasks for autonomous flight –
localization, mapping and navigation command generation
– a maximum of 25ms is required. To compensate for un-
expected delays, we added 20% of the real processing time
to obtain the expected framerate of the system. Thereby,
the final prototype is appointed to repeat the flight pipeline
every 30ms, resulting in an interactive flight framerate of
33fps7.

5.4 Discussion
The results of flight stability, exploration and navigation

as well as overall system performance show the capabili-
ties of the demonstrated approach to provide autonomous

7Frames per Second

flight of a UAV in GPS-denied environments. The employed
off-the-shelf smartphone is able to perform all calculations
for autonomous flight with a sufficient framerate of 33fps.
Thereby, all necessary adoptions to the current flight situa-
tion can be performed with interactive frame rates to guar-
antee accurate localization and mapping as well as collision
free flight within a defined environment.

The developed prototype is able to start autonomously
from any point within the test environment and hold a de-
fined flight level during exploration and navigation. Borders
of the test environment are robustly detected to ensure an
autonomous flight within the mappable area. During air
time, an internal map is incrementally generated and un-
known areas are reliably detected to guarantee the explo-
ration of the entire environment. Furthermore, steer com-
mands and parameters for flight optimization can be man-
ually sent from the monitoring station at any time during
flight. In case of a user-defined target, the UAV is able to
land autonomously at the specified marker.

With the size of 580mm in diameter, our system is able
to accurately operate within an area of only 1.86m× 2.25m
and navigate to target areas of 200mm×200mm. Therefore,
very smooth steering commands and drift corrections are
required that the proposed processing pipeline is capable of
generating.

Compared to competing approaches, our work does not
require embedded hardware platforms. These are expensive
and a straightforward hardware extension or replacement
with newer models is a tedious task. In contrast, a mo-
bile device such as a smartphone running Android can be
easily replaced with emerging, more powerful hardware due
to downward compatibility. Hence, the on-board processing
unit can be quickly replaced without affecting the overall
UAV hardware setup. Furthermore, necessary components
for autonomous flight such as camera, processor and com-
munication unit are combined into one single device. Thus,
weight can be minimized which was a requirement to design
a UAV that is small enough to operate in narrow indoor en-
vironments. Furthermore, with this approach, costs could
be decreased as well. Commercial UAVs are available from
e300 - e10.000. The presented prototype only costs e380
not including the mobile device. However, commercial low-
cost UAVs are not able to perform autonomous flight, in
most cases the embedded hardware is not modular and ex-
tra payload can not be carried or mounted.

5.5 Limitations
Currently, our presented approach is limited to planar vi-

sual pattern environments and is not yet capable of per-
forming SLAM based on unconstrained natural visual fea-
tures extracted from the observed environment. However,
emerging mobile devices provide more processing power for
real-time feature computation, localization and scene map-
ping, using monocular SLAM or additional sensing devices.
The integration of these external imaging sensors, such as
Time-Of-Flight or RGB-D cameras is straightforward with
our proposed hardware setup since they can be connected
over USB to the mobile device.

6. CONCLUSIONS & FUTURE WORK
In this paper, we demonstrated a low-cost and low-weight

UAV that is entirely based on open source hard- and soft-
ware and uses an off-the-shelf smartphone as its core on-

board processing unit to allow for autonomous flight in in-
door environments with no GPS coverage. All data pro-
cessing and steering command generation is performed by a
smartphone running Android. Thus, no additional ground
hardware is necessary for localization, mapping, navigation
as well as lift-off and landing. We demonstrated the au-
tonomous flight capabilities in an unknown 2D environment;
no prior knowledge about the planar area is required. The
entire setup excluding the smartphone costs e380,- and thus
can be compared to commercial low-budget products like
the parrot AR drone [18]. The autonomous flight pipeline –
localization, mapping, exploring, navigation and edge detec-
tion – is executed by the smartphone with 33fps, providing
interactive frame rates for real-time flight operations.

In future work, we will optimize the system’s latency by
exploiting the GPU processing power for heavy paralleliza-
tion of emerging mobile device generations. Furthermore,
we will integrate depth sensing image devices to allow for
dense 3D mapping and localization in unconstrained indoor
environments. Thereby, we aim on providing a low-cost plat-
form to fulfill real world tasks like search, rescue and mea-
surements. Especially in areas with poor infrastructure but
a high number of mobile devices (i.e. in some developing
countries) this is a very promising approach with high po-
tential.

7. REFERENCES
[1] M. Achtelik, S. Weiss, and R. Siegwart. Onboard IMU

and Monocular Vision based Control for MAVs in
Unknown In- and Outdoor Environments. In IEEE
International Conference on Robotics and Automation,
pages 3056–3063, Shanghai, China, 2011.

[2] M. Achtelik, T. Zhang, K. Kuhnlenz, and M. Buss.
Visual Tracking and Control of a Quadcopter using a
Stereo Camera System and Inertial Sensors. In
International Conference on Mechatronics and
Automation, pages 2863–2869, 2009.

[3] AeroQuad. The Open Source Multicopter. [Online]
http://www.aeroquad.com/, Apr. 2013.

[4] Arduino. [Online] http://www.arduino.cc/, Apr. 2013.

[5] Ascending Technologies GmbH. [Online]
http://www.asctec.de/, Feb. 2013.

[6] R. Büchi and P. Dauner. Fascination Quadrocopter:
Basics - Electronics - Flight Experience.
Vth-Fachbuch. Verlag f.Technik/Handwerk, 2010.

[7] J. Eckert, R. German, and F. Dressler. An Indoor
Localization Framework for Four-Rotor Flying Robots
Using Low-Power Sensor Nodes. IEEE Transactions
on Instrumentation and Measurement, 60(2):336–344,
Feb. 2011.

[8] S. Erhard, K. E. Wenzel, and A. Zell. Flyphone:
Visual Self-Localisation Using a Mobile Phone as
Onboard Image Processor on a Quadrocopter. Journal
of Intelligent and Robotic Systems, 57(1-4):451–465,
Sept. 2009.

[9] Google Inc. Android NDK. [Software] Revision 8e
http://developer.android.com/tools/sdk/ndk/, Jan.
2013.

[10] Google Inc. Android SDK. [Software] Version 4.0.3
http://developer.android.com/sdk/, Jan. 2013.

[11] S. Grzonka, G. Grisetti, and W. Burgard. Towards a
Navigation System for Autonomous Indoor Flying. In

IEEE International Conference on Robotics and
Automation, ICRA ’09, pages 2878–2883, 2009.

[12] J. Hertzberg, K. Lingemann, and A. Nüchter. Mobile
Roboter: Eine Einführung aus Sicht der Informatik.
Springer, 2012.

[13] A. S. Huang, A. Bachrach, P. Henry, M. Krainin,
D. Maturana, D. Fox, and N. Roy. Visual Odometry
and Mapping for Autonomous Flight Using an RGB-D
Camera. In International Symposium on Robotics
Research (ISRR), Flagstaff, Arizona, USA, Aug. 2011.

[14] G. Klein and D. Murray. Parallel Tracking and
Mapping for Small AR Workspaces. In International
Symposium on Mixed and Augmented Reality, pages
225–234, 2007.

[15] S. Klose, M. Achtelik, G. Panin, F. Holzapfel, and
A. Knoll. Markerless, Vision-assisted Flight Control of
a Quadrocopter. 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
5712–5717, Oct. 2010.

[16] H. Lim, H. Lee, and H. J. Kim. Onboard Flight
Control of a Micro Quadrotor using Single Strapdown
Optical Flow Sensor. In International Conference on
Intelligent Robots and Systems, pages 495–500, 2012.

[17] L. Meier, P. Tanskanen, F. Fraundorfer, and
M. Pollefeys. PIXHAWK: A System for Autonomous
Flight using Onboard Computer Vision. In IEEE
International Conference on Robotics and Automation,
pages 2992–2997, Shanghai, China, May 2011.

[18] Parrot SA. Parrot ARDrone. [Online]
http://ardrone2.parrot.com/, Apr. 2013.

[19] Qualcomm Inc. Vuforia SDK. [Software] Version 1.5.9
https://developer.vuforia.com/resources/sdk/android/,
Jan. 2013.

[20] S. Shen, N. Michael, and V. Kumar. Autonomous
Multi-Floor Indoor Navigation with a
Computationally Constrained MAV. In IEEE
International Conference on Robotics and Automation,
pages 20–25, Shanghai, China, May 2011.

[21] S. Weiss, D. Scaramuzza, and R. Siegwart.
Monocular-SLAM-based Navigation for Autonomous
Micro Helicopters in GPS-denied Environments.
Journal of Field Robotics, 28(6):854–874, 2011.

[22] Willow Garage Inc. Robot Operating System. [Online]
http://www.willowgarage.com/pages/software/ros-
platform/, Feb.
2013.

[23] T. Zhang, Y. Kang, M. Achtelik, K. Kuhnlenz, and
M. Buss. Autonomous Hovering of a Vision/IMU
guided Quadrotor. In International Conference on
Mechatronics and Automation, pages 2870–2875, 2009.

