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Figure 1: Multiple User Tracking in a large unconstrained indoor environment using two cameras.

ABSTRACT

In this paper, we present a robust infrared optical 3D position track-
ing system for wide area indoor environments up to 30m. The sys-
tem consists of two shutter-synchronized cameras that track multi-
ple targets, which are equipped with infrared light emitting diodes.
Our system is able to learn targets as well as to perform extrin-
sic calibration and 3D position tracking in unconstrained environ-
ments, which exhibit occlusions and static as well as locomotive
interfering infrared lights. Tracking targets can directly be used
for calibration which minimizes the amount of necessary hardware.
With the presented approach, limitations of state-of-the-art track-
ing systems in terms of volume coverage, sensitivity during train-
ing and calibration, setup complexity and hardware costs can be
minimized. Preliminary results indicate interactive tracking with
minimal jitter < 0.0675mm and 3D point accuracy of < 9.22mm
throughout the entire tracking volume up to 30m.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism —Virtual Reality; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis—Tracking;Stereo; I.4.9
[Image Processing and Computer Vision]: Applications—;

1 MOTIVATION & CONTRIBUTION

Virtual reality (VR) has applications in numerous domains, such as
training, medicine, psychological and physical rehabilitation, ed-
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ucation, edutainment and manufacturing. In each VR application
domain, estimation of the user’s position and orientation (tracking)
is a crucial part to enable interaction within a virtual environment
(VE). Various techniques and systems exist to estimate position and
orientation – yielding in six degrees of freedom, 6DOF – of objects
in space (Section 2). Recently emerged low-cost hardware such as
the head mounted display Oculus Rift, the Razer Hydra for 6DOF
interaction as well as the Microsoft Kinect for full body motion
capture massively lowered the initial costs to build a small but fully
immersive VE. However, low-cost wide area tracking with high
precision remains a challenge. To extend the tracking coverage,
existing vision-based approaches usually employ a large amount of
cameras in the volume yielding significant high costs as well as
complex setup and maintenance routines, making it impractical for
general use. Furthermore, state-of-the-art tracking systems are sen-
sitive to environmental interferences such as lights and reflexions,
especially during target training and camera calibration. Using such
systems in unconstrained indoor environments results in error prone
and hence inaccurate tracking data. To our best knowledge, no re-
search has been published about infrared optical-tracking of vol-
umes larger than a few cubic meters (e.g. [23], 4x4x3m) with a cost
efficient setup and a minimum of necessary vision hardware while
providing accurate tracking data, robust training, camera calibration
and tracking in unconstrained indoor environments.

The following three limitations, (1) tracking coverage, (2) sys-
tem sensitivity and (3) costs impede the further employment of
virtual reality scenarios for applications that are located in uncon-
strained environments such as rooms with wall illumination, en-
tertainment stages, manufacturing workshops or even construction
sites. Therefore, there is a need for a low-cost, high precision, reli-
able and robust wide area tracking system.



1.1 Contribution
In this paper, we present a novel robust infrared optical tracking
system that provides high-precision and low-latency 3D position
tracking of multiple targets at distances up to 30m. As depicted in
Figure 1, the system only requires two cameras so that necessary
hardware can be reduced to a minimum to provide cost efficacy
as well as ease of use during setup and maintenance. At each
stage of the system’s workflow – during target training, extrinsic
camera calibration and 3D position tracking – no pre-conditioning
of the tracking volume is necessary. This enables our system to
fully function in unconstrained indoor environments with static
and moving light sources. The proposed 2D geometric target
design allows for quick (re)-configuration and enhances robustness
against accidental break-offs compared to 3D rigid body targets
[24]. Targets are equipped with standard infrared light emitting
diodes and are re-used for camera calibration.

By overcoming the limitations of existing vision-based track-
ing systems, we expect our approach to advance future VEs by 1)
providing wide area tracking of multiple targets while lowering
the costs, 2) making the complete workflow of an optical tracking
systems robust against interferences to allow for quick setup and
maintenance even by non-experts, and 3) enabling tracking in large
unconstrained application scenarios such as entertainment stages,
workshops or construction sites that opens novel fields for VR
applications.

2 RELATED WORK

For object tracking in large volumes, different techniques exist from
commercially available products to on-going research prototypes.
Extensive research has been performed to develop indoor location
systems (ILS) for enabling context aware applications, user track-
ing and surveillance [12]. The most relevant wide area tracking
technologies are radio frequency (RF), ultra-sonic and vision-based
systems. Since they all have advantages and disadvantages regard-
ing accuracy, latency, reliability, scalability and cost, no de-facto
standard has been established yet.

2.1 Radio Frequency & Ultra Sound
RF systems based on Wi-Fi infrastructure or radio-frequency identi-
fication (RFID) [7] require a number of readers within the measure-
ment volume to enable object tracking with low latency in large vol-
umes [16]. However, WiFi signals tend to be extremely noisy and
signal strength highly depends on surrounding building structures
and materials. Thus, precise position estimation cannot be guar-
anteed even with multiple readers in the volume. In addition, the
extensive pre-conditioning of the tracking volume is cost-intensive
due to the amount of necessary hardware. Recently, a number of
commercially available ILS applications such as Google Indoor
Maps [8], SensionLab [27] as well as Indoo.Rs [14] emerged to
localize a smartphone (and thus its user) by fusing mobile cellu-
lar data, WiFi and inertial measurements to minimize position jitter
from WiFi data. Google Indoor Maps optimizes the position accu-
racy by pre-measuring and mapping the signal strength of the WiFi
spot within the volume. However, this process takes time before the
actual tracking can start. Furthermore, all systems require pre-built
indoor floor plans for position visualization and only provide – in
best case – several meter accuracy.

Ultra-sonic location systems such as [21, 11] rely on time-of-
flight measurement of ultra-sonic signals, calculated using the ve-
locity of sound. Such systems are scalable and can track multiple
moving objects. However, current systems offer in the very best
case meter-level accuracy under optimal conditions for 3D position
estimation [13]. Furthermore, precision and range are not reliable
since velocity of sound in the air is highly dependent on environ-
mental conditions, especially humidity and temperature. Especially

at long ranges, ultra-sonic systems are often extremely noisy and
for that reason not a proper solution for our system’s objectives.
Compared to ultrasound, the RF-based Ultra Wide Band (UWB)
technology enables distance measurements without line-of-sight re-
quirements. An example for such a system is Ubisense [31] that em-
ploys TDoA1 and AoA2 measurements between mobile tags and a
minimum of four fixed base stations. It offers fast signal speed and
hence high sample rates (approximately 135 Hz) and provides an
accuracy of down to 0.2m. The LPM system by Abatec [29] of-
fers a sample rate of 1 kHz with an accuracy down to 0.15m. It
measures the distance between fixed base stations and mobile tags
based on the frequency modulated continuous wave principle. Al-
though large distances can be covered, the systems are expensive
and the resulting accuracy is not sufficient for precise user tracking
in immersive VEs.

2.2 Vision-based ILS
Vision-based 3D tracking systems require the target to be within
the line-of-sight of multiple cameras to estimate its 3D coordinates
from the 2D image-projections. Optical tracking, as a sub-system
of vision-based approaches, is robust against magnetic, electric
and acoustic interference and works with light-emitting (active) or
retro-reflective (passive) targets. The near infrared (NIR) spectrum
based systems, such as Vicon [35], A.R.T [3] or iotracker [23, 25]
offer (sub)-millimeter accuracy in standard room sized environ-
ments (4x4x3m) and provide tracking of multiple targets with very
low latency. To enlarge the tracking volume, those systems increase
the number of employed cameras (up to 50 in A.R.T). However, this
causes a growth of costs and setup complexity. The PPT-E system
[37] is able to cover areas up to 20x20m with a minimum of four
cameras but sub-millimeter tracking accuracy is guaranteed only
for volumes up to 3x3x3m. No accuracies are provided for larger
volumes. The Prime41 system [20] offers multiple user tracking
by detecting passive targets up to 30m, using a perimeter setup
with multiple cameras. However, no further details on accuracy
nor the number of cameras are given to cover this volume. Further-
more, as the most cost efficient systems of the above mentioned,
one Prime41 camera still costs about e5000. A minimal 4-camera
perimeter setup results in pure camersa costs of e20.000 (without
software), which is a multiple of our complete system costs. Sum-
marizing, existing NIR optical systems for wide area user tracking
require a complex system setup and thus are cost intensive. Fur-
thermore, related work in NIR tracking is sensitive to interfering
lights, especially during camera calibration, making those systems
incapable of being deployed in unconstrained indoor environments.

To overcome these limitations, we describe a robust wide area
multi-user tracking system in Section 3 that requires only two cam-
eras to track targets up to distances of 30m.

3 METHODOLOGY

Existing infrared optical tracking systems provide highly accu-
rate 3D measurements with low latency (Section 2.2). The pre-
sented approach partly builds upon our infrared tracking system io-
tracker [23, 25] and extends it to robust wide area optical tracking.

3.1 Requirements
Optical tracking systems are highly sensitive to the reliability of
their inputs. According to [33], lighting conditions and camera
calibration are two major sources of errors. When tracking at larger
distances, image processing aberration must be taken in stronger
consideration compared to short distance tracking. The emitted
light from the optical target results in a circular pixel-blob (Blob) in
the camera image. These blobs must be robustly segmented to accu-
rately determine their centroid coordinates. Since an image sensor
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consists of discrete pixels, rasterization causes inaccuracies during
blob detection and subsequent centroid estimation. Furthermore,
thermal deviation influences the amount of noise on the image sen-
sor and causes jitter. Depending on pixel size and density, the sen-
sor temperature and thus jitter can increase. High sensor noise de-
creases the quality of a blob’s centroid determination. Since the
blob centroids are used for 3D position reconstruction, they heavily
influence 3D position accuracy.

To optimize image processing aberration, feature segmentation
algorithms must be highly accurate and the underlying vision hard-
ware should provide a large sensor and high resolution.

3.2 Vision System
The vision component of the proposed tracking system comprises
two cameras, lenses and filters. Following [19], we derived an op-
timal balanced optics setup (sensor size, focal lengths, aperture)
for the intended tracking volume that minimizes optical aberration
and rasterization effects while providing a sufficient field-of-view
(FOV) as well as depth-of-field to cover the intended tracking vol-
ume with objects in focus. The coverage depends on focal length f ,
the distance between the cameras (baseline) as well as the amount
of yaw-rotation β of each camera, as depicted in Figure 2.

Figure 2: Tracking area coverage with two cameras.

Our system uses high-resolution machine vision cameras in com-
bination with low-distortion lenses that feature large aperture and
minimal optical aberrations. The high quality cameras provide low
heat evolution and large image sensors yielding little sensor noise,
so jitter in the camera image can be minimized. Together with
high resolution image sensors, precise segmentation can be pro-
vided even at long distances. The cameras offer high global shutter
speed to allow for low-latency tracking and to minimize motion blur
when the target is moving fast. Both cameras form a Stereo Cam-
era Rig and are shutter-synchronized by an external trigger signal
to guarantee temporal synchronous image pairs. To enhance robust
target identification, a long-wave pass filter is inserted into the op-
tical path to ensure light transmission only in the NIR spectrum.
To provide wide area tracking in width and depth, the baselines
can span up to 30m in the intended tracking environment. Thus,
we propose to use the GigE Vision standard [1] to guarantee loss-
less image transmission while providing long cable lengths. Both
cameras are connected to one workstation for image processing and
position estimation.

3.3 Target Design
Within the whole intended tracking volume, the target must be reli-
ably visible in the cameras’ images to ensure robust feature seg-
mentation. For infrared tracking systems, two types of optical
markers exist. While passive markers reflect infrared light back

to the camera, active markers directly emit light towards a camera.
Passive markers require special retro-reflective surface coating as
well as an additional infrared light emitter to illuminate the whole
tracking volume, while in case of active markers, multiple infrared
light emitting diodes (IR-LEDs) must be individually powered. For
small room-size tracking systems, passive markers are usually suf-
ficient. To ensure precise feature segmentation in scenarios with
interferences as well as at larger distances of 20m and beyond, only
active markers can guarantee reliable target visibility [19].

The geometric constellation of our target design constitutes a 2D
line approach, as depicted in Figure 3. Our target design offers
continuously adjustable positioning of the IR-LEDs by fixing each
LED separately with nuts on a rigid bar. This ensures a rapid ar-
rangement of the required IR-LEDs in a permutation invariant ge-
ometric constellation to ensure robust target identification (Section
3.5) and occlusion recovery (Section 3.6.1).

Figure 3: Target design with continuously adjustable positioning.

Furthermore, multiple unique constellations can be easily de-
signed to simultaneously track multiple targets in the same tracking
volume. Existing 3D rigid body targets (e.g [24]) also offer permu-
tation invariant geometric constellations to track multiple targets.
However, our 2D line approach has three advantages over 3D tar-
gets that are crucial for our intended research goals. (1) We can
re-purpose the tracking target as calibration target by detecting the
two outermost IR-LEDs during extrinsic camera calibration (Sec-
tion 3.4). Thereby, the amount of necessary hardware for setup and
maintenance can be reduced. (2) Even during training and calibra-
tion, the target can robustly be tracked despite interfering lights,
since the 2D characteristics of the target allows for Model Fitting
(Section 3.5) already in the image domain instead of in 3D space,
as it is common in competing approaches [23, 35, 3]. (3) Fixing the
IR-LEDs in a 2D manner increases the physical robustness of the
target against accidental breaking off when touching the target dur-
ing usage; this is especially an issue for tracking at larger distances
since the target requires enlarged dimensions as well. Accidental
breaking off is a common problem with the sensitive 3D rigid tar-
gets that need frequent replacement or repair by experts.

3.3.1 Tracking in a VR-Scenario
Applying the proposed target design to a semi-immersive VR sce-
nario in which the user is tracked in front of a projector wall, a
single line target is sufficient to determine the user’s (head) 3D po-
sition.

Figure 4: Target design for head tracking.



However, in a fully immersive VR environment the user freely
moves in space and wears a head mounted display for visualiza-
tion. In such a scenario, using a single 2D line target for tracking
in combination with two cameras results in occlusions as soon as
the user turns around. Since we want to minimize the amount of
(costly) vision hardware, the occlusion problem can be compen-
sated by applying a redundant target setup for user head tracking,
as depicted in Figure 4.

3.4 Camera Calibration
Calibration [6, 10] for a multi-camera system consists of two steps
(intrinsic, extrinsic) and is, as described in Section 3.1, one of the
most crucial factors in vision-based tracking systems. A precise in-
trinsic calibration is required for robust feature segmentation while
intrinsic and extrinsic calibrations heavily influence the accuracy of
projective triangulation (Section 3.6), especially at large tracking
distances. Our approach treats the two calibration routines sepa-
rately, since the camera’s intrinsic parameters have only to be de-
termined if the optical configuration has changed.

3.4.1 Intrinsic Calibration

To enhance the estimation of the intrinsic camera parameters, repre-
sented by the Camera Calibration Matrix K, all optical components
(camera, lens, and filter) of the final tracking setup should be in-
cluded in the calibration procedure yielding more accurate internal
parameters. We included toolboxes [4] and [15] in our calibration
software pipeline as they have been proved to be highly accurate
and reliable. However, they require a standard chessboard plane as
calibration target that is not visible in the NIR spectrum.

(a) IR light (b) Reflective pat-
tern

(c) Camera image

Figure 5: Intrinsic camera calibration with a retro-reflective pattern.

Therefore, we extended the intrinsic calibration routine by de-
veloping a chessboard plane using a retro-reflective foil that is illu-
minated with an infrared light source to provide chessboard images
in the NIR spectrum. The complete intrinsic setup is illustrated in
Figure 5.

3.4.2 Extrinsic Calibration

After the stereo rig is physically set up, the geometric relation be-
tween the cameras is estimated by the extrinsic calibration process,
yielding the definition of the epipolar geometry that is encapsulated
in the Fundamental Matrix F . Standard techniques, such as [4, 22]
estimate F by using a chessboard plane. For our calibration sce-
nario, such a pattern would have to be extremely large to be visible
at distances of 10m and more as well as highly planar to provide
precise corner extraction. Such a target would neither be trans-
portable nor suitable, so we propose to use the target’s IR-LEDs
to estimate F .

The two-camera calibration approach [5] estimates F by evalu-
ating the screen-space coordinates of two blobs – that correspond-
ing physical markers have a known distance – over a sequence of
camera images. The affine transformation to obtain real-world dis-
tance units [mm] is not only computed once as it is common in
existing approaches (e.g. [23]) and which can result in inaccurate

position estimation at larger distances, but is optimized with ev-
ery processed camera frame pair. However, this powerful approach
is sensitive to false input data such as interfering lights, which re-
sults in highly inaccurate external calibration parameters. To avoid
pre-conditioning before calibration by masking out infrared inter-
ferences of the tracking environment, we extended [5] to make it
robust against static or locomotive light sources. Therefore, we pre-
pared our proposed tracking target (Section 3.3) to act as an extrin-
sic calibration target by measuring the physical distance between
the two outermost IR-LEDs to sub-millimeter accuracy in a special
laboratory setup with a total station (Leica TPS700). This yields
the exact distance between the two necessary input blobs. Further-
more, we developed a pipeline (Section 3.5) that filters interfering
lights during tracking as well as calibration. It returns a set of or-
dered target points p for both cameras L and R of a frame at time t,
denoted as:

St
L = {pt

L,1, pt
L,2, pt

L,3, pt
L,4}, St

R = {pt
R,1, pt

R,2, pt
R,3, pt

R,4} (1)

pt
L,i , pt

R,i ∈ R2, i = 1...4 .

For each frame at time t, we calculate distances dt−1
R =

‖pt−1
L,4 , pt−1

L,1 ‖ and dt−1
L = ‖pt−1

R,4 , pt−1
R,1 ‖, where ‖ .‖ denotes the Eu-

clidean norm. If the condition |(dt
L − dt

R) − (dt−1
L − dt−1

R )| ≤ λ

is fulfilled for a given threshold λ , the blob sets St
L, St

R are used
for calibration, otherwise neglected. This ensures correct rotation-
invariant blob input into the calibration algorithm. With this ex-
tended calibration approach, we achieve a lightweight calibration
target and avoid additional bulky equipment. No pre-conditioning
is necessary that enhances the system’s ease of use during setup and
maintenance.

3.5 Interference Filtering
To provide robust target identification at each stage of a vision-
based tracking system workflow (target training, calibration, 3D
tracking) static and locomotive interfering lights must be robustly
filtered out. Since these light sources frequently emit in the NIR
spectrum, they are visible in the camera images and result in bright
blobs even if a long-wave pass filter is inserted into the optical path.
To overcome this problem, we developed a software-based identifi-
cation pipeline, as depicted in Figure 6.

Figure 6: Pipeline for unique target identification.

After a new image (frame) is captured from the camera with
the attached long-wave pass filter, all blobs are segmented (Fea-
ture Segmentation) by performing luminance filtering, as proposed
in [23]. This adaptive algorithm combines three segmentation tech-
niques (threshold, luminance-weighted centroid computation, and
circular Hough transform) to efficiently locate the centers of all
circular shapes in a monochrome image with sub-pixel accuracy.



In the next step, each resulting blob is classified by performing
shape- and size-based classification (Feature Classification). The
minimum and maximum values for the size-filter can be manu-
ally defined to provide quick configuration for different tracking
ranges. The classification results in circular-shaped blobs (Blob
Candidates) that diameters lie within the specified range. In prac-
tice however further filtering must be performed since interfering
lights can have a similar size as the target’s IR-LED blobs.

By combining the approaches [32, 28, 26, 18], we perform a two-
dimensional Model Fitting within the set of remaining blob candi-
dates. Thereby, we exploit the permutation and perspective invari-
ant properties of our target. When projecting 3D points onto the 2D
camera plane, neither distances nor ratios of distances are preserved
[10]. However, the cross-ratio as a ratio of distances as well as the
collinearity of points sets [34] is preserved. Based on [32], we com-
pute the p2-Invariants, which represent properties of point sets that
are insensitive to projective transformations and to permutations in
the labeling of the set. The collinear properties of the target, respec-
tively its corresponding blobs, allows a computationally lightweight
and thereby fast way to reject false blobs candidates. By calculating
the cross-ratio and comparing it with a certain range to account for
noise in the feature segmentation, the recognition of a known geo-
metric target’s IR-LED constellation can be performed, resulting in
an ordered set of blobs St = {pt

i}, i = 1...N, p ∈ R2 for each image
at time t.

To obtain the unique properties of a target, it is trained once in
an off-line process to determine its Model. First, the distances be-
tween the target’s LEDs are precisely measured using a total sta-
tion. Based on the physical distances, an initial distance heuristic
as well as a collinearity model is estimated. Applying this initial es-
timate, the target’s blobs are segmented from a sequence of camera
images in various distances to refine the model’s parameter profile
that includes the target’s geometric constellation, a collinearity er-
ror model as well as the cross-ratio and its range. Based on this
profile, the system is capable of uniquely identifying the target’s
model during calibration and tracking even in the presence of dis-
turbing light sources.

3.6 3D Position Tracking
The online image-processing pipeline for continuous tracking is de-
picted in Figure 7.

Figure 7: Pipeline for 3D position tracking.

Given an intrinsically and extrinsically calibrated, shutter-
synchronized stereo camera rig, the tracking is performed as fol-
lows. After a new frame is received from each camera, blob candi-
dates are segmented and classified in both frames, as described in
Section 3.5. To minimize computational load, unique target iden-
tification is only performed in Image 1 by applying model fitting
within the set of all blob candidates. After the target blobs have
been determined in Image 1, their correspondences have to be iden-
tified in Image 2 amongst all blob candidates that result from the
feature classification. To apply a time- and cost-efficient search rou-
tine, we exploit the properties of the epipolar geometry that is en-
capsulated in F . For each target blob in Image 1, a search for its cor-
responding blob can be performed along its epipolar line (Epipolar
Matching) in Image 2 [6, 10]. Thereby, corresponding features over
multiple camera views can be robustly identified (Multiple-View-
Correlation). Using epipolar matching, computational complexity
can be heavily optimized because the original 2D search problem is
reduced to a 1D problem. Since our target model features a unique
geometric permutation invariant property in the 2D domain, we can
already apply model fitting within the 2D projections of the target’s
IR-LED. Thereby, we obtain a drastically reduced set of correspon-
dence candidates and can considerably decrease the combinatorial
complexity of the multiple-view correlation problem.

By performing a projective triangulation between each corre-
lated 2D blob-tuple (Projective Reconstruction), the 3D-coordinate
of each target IR-LED can be reconstructed. As described in [9, 10],
multiple solutions exist. Following [23], we apply the standard
linear singular value decomposition (SVD) method to obtain the
initial 3D estimate for each blob-tuple, followed by bundle adjust-
ment [30] with a Levenberg-Marquardt non-linear least squares al-
gorithm. This results in a 3D point cloud of all target’s IR-LEDs
T = {P1,P2,P3,P4},P ∈ R3. Based on T and λ as the actual dis-
tance between the outermost IR-LED and the epicenter of the target,
the target’s epicenter C ∈ R3 can be calculated (Position Estima-
tion) as follows:

C = P4− (λ ∗ m̂) . (2)

Therefore, we normalize the vectors ~a = P2P1, ~b = P3P2, ~c =
P4P3, resulting in â, b̂, ĉ. Calculating the arithmetic mean of â, b̂, ĉ,
we determine the mean direction m̂ which is applied according to
Equation 2.

3.6.1 Occlusion Recovery
If a target’s IR-LED and an interfering light source lie on the same
line of sight of the camera, their corresponding blobs can overlap
in the images. Furthermore, parts of the target can be occluded,
i.e. when the target gets partly hidden behind an object in the
scene. Our model fitting approach requires four optical markers.
Currently, the proposed target identification pipeline can compen-
sate one occluded marker while retaining the capability of robustly
detecting the target within the set of blob candidates. After pro-
jective reconstruction, the 3D positions of occluded markers can be
reconstructed based on the target’s geometric model and the result-
ing 3D point cloud. The recovery of occluded IR-LEDs optimizes
the accuracy of the 3D position estimate of the target’s epicenter.
With this recovery functionality, loss of tracking can be reduced in
cases of occlusions or over-blooming by (stronger) interfering light
sources.

4 IMPLEMENTATION

Based on the methodological approach, we developed a hardware-
as well as software prototype to test our tracking system in large
unconstrained indoor environments.

4.1 Hardware Prototype
Our hardware protoytpe comprises vision system, target and a note-
book as main processing unit. The vision system consists of two



GigE Vision [1] Dalsa Genie HM1400/XDR cameras3. Both cam-
eras are equipped with a high-resolution and high-speed lens (F1.4-
F16) and a focal length of f = 25mm, resulting in a diagonal FOV
of 35.49◦ to adequately cover the intended tracking range. A long-
wave pass filter is inserted into the optical path to block wave-
lengths smaller than 780nm.

The target prototype has a total length of 687mm and is equipped
with four IR-LEDs in a permutation invariant constellation. Each
IR-LED emits a at peak wavelength of 850nm with a radiant in-
tensity of 20 mW/sr4 and features a viewing half angle of ±23◦.
Thereby, robust feature segmentation up to a distance of 50m can
be performed. A minimum distance of 130mm between two neigh-
boring LEDs is advisable with a shutter speed of 1ms to avoid blob
overlaps in the camera image during rotations and at larger dis-
tances. With this prototype, tracking in the intended volume can be
provided while minimizing the total length of the target. To pro-
tect the LEDs and to prevent optical aberrations (flare artifacts on
the blob edges), each IR-LED is covered with a translucent diffuse
plastic sphere.

The processing core unit is a portable workstation with two Gi-
gabyte Ethernet host adapters to interface via Category 6 cable with
the cameras. Both cameras are shutter-synchronized from a square-
wave current loop signal that is generated by the trigger unit with
a built-in programmable oscillator. The trigger unit comprises two
BNC connectors5 and the trigger signal, generated by an Arduino
Uno board [2].

4.2 Software Framework
Our software framework follows a three-tier-architecture compris-
ing hardware abstraction, a processing layer as well as data visual-
ization on a graphical user interface. The processing core consists
of loosely-coupled modules for calibration, tracking and unique tar-
get identification. The modules and their functionalities are cen-
trally accessed by the controller component that delivers data from
the processing layer to the GUI. Our software framework prototype
is implemented in C/C++ and MATLAB. For the intrinsic camera
calibration, the third-party software MATRAX [15] as well as the
open-source MATLAB Camera Calibration Toolbox [4] were inte-
grated. With the open-source Arduino IDE [2], we developed the
embedded component for camera synchronization.

4.3 System Costs
As stated in Section 1.1, cost efficiency is one of the objectives of
the presented work. Therefore, we minimized the amount of nec-
essary hardware and focused on off-the-shelf components as well
as open source hardware and software. The current hardware pro-
totype costs in total ∼ e7300. This includes both cameras (each
e2000 with filter), lenses (eache600), notebook (e2000) and tech-
nical parts (e100 for Arduino, battery, wires, IR-LEDs and target
material).

5 EVALUATION

Based on the developed hard- and software prototype, we evaluate
the robustness of target identification and the accuracy of 3D posi-
tion estimation.

5.1 Test Platform & Environment
We tested our system on a Lenovo W520 notebook, featuring an In-
tel Quadcore i7 2820QM at 2,3GHz, 8 GB memory and Windows7
(64bit). Since we were lacking access to an indoor environment that
features the intended tracking ranges, we deployed the prototype in
an outdoor environment during twilight and night.

3Sensor: 1” mono with 1400x1024px, @ 60fps
4mW/sr: milli watts per steradian
5BNC: Bayonet Neill Concelman connector

Figure 8: Light situation during extrinsic calibration and tracking.

We added light sources (neon lights, halogen spots up to 1500W)
to simulate wall illuminations, reflections and locomotive interfer-
ing lights, as depicted in Figure 8. Thereby, we established a con-
trollable realistic simulation of the intended tracking scenario.

5.2 Test Cases

We assessed our wide area tracking system according to the fol-
lowing parameters: (1) Accuracy and robustness of the extrinsic
calibration. (2) Accuracy of 3D position estimation, as well as (3)
Tracking performance by examining continuous volume coverage
and the system’s update rates. We performed all three tests in an en-
vironment with static as well as locomotive interfering lights, with
a baseline dbase = 10.0m and distances between the vision system
and target dtrack of 5.0 to 30.0m

5.3 Calibration

Both cameras were set up with a baseline dbase = 10.0m and a yaw-
rotation βcam1 = 30◦, βcam1 = −30◦ to cover a tracking volume up
to 30.0m. Using the tracking target from Section 4.1, we performed
the calibration at a distance of 15.0m from the cameras.

To evaluate the extrinsic calibration accuracy, we used a high
quality total station (Leica TPS700) to accurately measure the real
baseline dbase. Although dbase is the only available measurement to
evaluate the calibration accuracy, it can only be used as approxima-
tion because the camera coordinate system’s origin coincides with
the center of projection of one camera. Since this is a virtual point
in the physical camera, the geodesic prisms cannot be positioned
with absolute accuracy at both projection centers.

(a) Left camera (b) Right camera

Figure 9: Corresponding blob traces used for extrinsic calibration.

We ran three different calibration tests with ~1100 frames each to
evaluate the robustness of the calibration procedure. As depicted in
Figure 9, our system robustly identifies the target despite static and
locomotive interfering lights, resulting in continuous blob traces
of the two outermost IR-LEDs. As illustrated, the blob trace was



interrupted at some points due to complete occlusion of the target
because of obstacles in the environment.

An example of a successfully detected target in the camera frame
is shown in Figure 8, marked with a green box. Despite this un-
constrained calibration environment, our system robustly estimated
the fundamental matrix F at each run, yielding consistent 3D point
estimates for all tracking distances, as illustrated in Table 1. This
demonstrates the robustness of our calibration procedure. F was es-
timated with an average duration of ~110s. By deriving the transla-
tion between both cameras from F , we could compare it with dbase.
Our calibration approach achieves centimeter accuracy for each run
with a mean deviation εbase = 0.1763m.

5.4 Accuracy & Stability

To evaluate the accuracy of 3D position estimation, we performed
measurements at six different distances between camera and target,
denoted as dtrack for each calibration procedure. At each accuracy
run, the 3D coordinate of each target’s IR-LED L1..4 ∈R3 as well as
of the target’s epicenter C =Cx,y,z ∈R3 was estimated based on 300
consecutive frames. Thereby, we were able to evaluate the follow-
ing two parameters, accuracy and stability, for the entire tracking
volume.

5.4.1 3D Position Accuracy

To determine the accuracy of the 3D position estimate, we first mea-
sured the geometric distance between the two outermost IR-LEDs
to millimeter precision using the Leica TPS700 to obtain ground
truth dbar. During run-time, we estimated d̂ = ‖L4,L1‖, ‖ denoting
the Euclidean norm, to determine the root mean square deviation
xRMS(d̂)= d̂−dbar. The deviation of a point xRMS(P) is determined

by xRMS(P) =
xRMS(d̂)

2 . This allows us to evaluate the 3D position
accuracy of a single target point throughout the tracking volume. In
Figure 10, the arithmetic mean of xRMS(P) over all three calibration
runs with respect to the tracking distance is depicted.

Figure 10: Accuracy (RMS) of a point throughout the tracking volume.

The obtained xRMS(P) values for each calibration run and each
tracking distance dtrack are listed in detail in Table 1.

5.4.2 3D Position Stability

To evaluate static jitter of the system and thus the stability of
the 3D point estimation, we determined the standard deviation σ

of Cx,Cy,Cz as well as C over the sequence of 300 consecutive
frames. Throughout the entire tracking volume and over all three

Calibration 1 Calibration 2 Calibration 3
dtrack xRMS(P) xRMS(P) xRMS(P)
05m 3.39 [mm] 2.99 [mm] 1.78 [mm]
10m 4.12 [mm] 3.91 [mm] 2.63 [mm]
15m 4.76 [mm] 4.54 [mm] 4.58 [mm]
20m 6.08 [mm] 6.23 [mm] 7.47 [mm]
25m 6.64 [mm] 6.97 [mm] 8.92 [mm]
30m 7.44 [mm] 7.96 [mm] 9.22 [mm]

Table 1: Accuracy of a single point xRMS(P) throughout the volume
with three different extrinsic calibrations.

calibration runs, we measured sub-millimeter precision for 3D po-
sition estimation with Cx : σ = 0.0545mm, Cy : σ = 0.0304mm,
Cz : σ = 0.1175mm and C : σ = 0,0675mm.

5.5 Tracking Performance
To determine the system’s capability to continuously track a target
throughout the entire tracking space, we moved it through the whole
volume. The resulting 3D position reconstruction of each target’s
IR-LED is illustrated in Figure 11.

Figure 11: 3D position tracking from 5 − 30m.

Depending on the number of interfering lights, our system iden-
tifies and tracks a target with a latency of ~69ms within the uncon-
strained test environment, allowing for wide area position tracking
with interactive frame rates.

5.6 Discussion
Our results demonstrate 3D point accuracy xRMS(P) < 9.22mm
with sub-millimeter static position jitter σ = 0.0675mm throughout
the entire tracking volume, ranging from 5 − 30m. We tested our
system with several different target constellations, which can be de-
tected within both camera views with rotations yaw and pitch from
0 to 45◦ as well as roll from 0 to 360◦. To our best knowledge, no
competing approach and system (Section 2.2) provides comparable
accuracy for this range, especially not with the minimal amount of
only two cameras.

Our system offers tracking at interactive frame rates, however
further run-time optimization will be done to reduce latency. The
interference pipeline reliably detects the target during extrinsic cal-
ibration and tracking, making the whole system robust to be de-
ployed in an unconstrained indoor environment.

Currently, our system tracks only 3D position because the im-
plicit 2D characteristic of the target (Section 3.3) does not provide



orientation. This can be compensated by combining multiple 2D
line targets, resulting in 5DOF, or employing an additional inertial
measurement unit for full 6DOF-pose tracking.

6 CONCLUSION & FUTURE WORK

In this paper, we present a novel robust optical tracking system
that provides high-precision 3D position tracking with interactive
frame rates at distances up to 30m. Our proposed 2D geometric
target design allows for quick (re)-configuration and enhances ro-
bustness against accidental break-offs compared to 3D rigid body
targets [24]. Targets are equipped with standard infrared light emit-
ting diodes and are re-used for camera calibration. As depicted in
Figure 1, the system only requires two cameras so necessary hard-
ware can be reduced to a minimum to provide cost efficacy and
ease-of-use during setup and maintenance. At each stage of the
system’s workflow, no pre-conditioning of the tracking volume is
necessary. This enables our system to robustly and accurately track
users in large unconstrained indoor environments with static and
locomotive light sources.

For future work, we will first evaluate the accuracy with different
hardware setups using higher resolution cameras and lenses with
smaller focal length for extended horizontal tracking area coverage.
Additionally, infrared LEDs with less radiant intensity will be ex-
amined to reduce the overall target size. Second, we will evaluate
state-of-the-art prediction approaches such as [36, 17] to enhance
tracking robustness and latency for real-time multi-target tracking.
Third, we plan to test the system in harsh indoor environments with
interfering lights and poor visibility (dust, fog, smoke) such as en-
tertainment stages, workshops as well as an underground construc-
tion site to further evaluate the system’s robustness in real-world
application scenarios.
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