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Graphene: the new frontier of nanoelectronics

Graphene is a new semiconductor material created in the first decade of
this century by Geim and Novoselov. It has remarkable electronic
properties which make it a candidate for the construction of new
electronic devices with strongly increased performances with respect to
the usual silicon semiconductors.
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Graphene: the new frontier of nanoelectronics

Physically speaking, graphene is a single layer of carbon atoms disposed
as an honeycomb lattice, that is, a single sheet of graphite.
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Graphene: the new frontier of nanoelectronics

Features of charge carriers in graphene:

Graphene is a zero-gap semiconductor, that is, the valence band of
the energy spectrum intersects the conduction band in some isolated
points, named Dirac points;
around such points the energy of electrons is approximately
proportional to the modulus of momentum: E = ±vF |p|.
→ Relativistic massless quasiparticles!
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Graphene: the new frontier of nanoelectronics

Graphene cristal lattice is split into two nonequivalent sublattices.

Charge carriers have a discrete degree of freedom, called pseudospin.

Different from electron spin!
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Graphene: the new frontier of nanoelectronics

Hamiltonian (low-energy approximation, zero potential):

H0 = Op~[vF (p1σ1 + p2σ2)] = −i~vF

(
σ1

∂

∂x1
+ σ2

∂

∂x2

)
;

vF ≈ 106 m/s is the Fermi speed;

~ denotes the reduced Planck constant;

σ1, σ2 are Pauli matrices:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
;

Op~ is the Weyl quantization: given a symbol γ = γ(x , p),

(Op~(γ)ψ)(x) = (2π~)−2

∫
R2×R2

γ

(
x + y

2
, p

)
ψ(y)e i(x−y)·p/~ dydp ,

for all ψ ∈ L2(R2,C).
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A kinetic model for graphene

Goal: Derive and study several fluid models for quantum transport of
electrons in graphene.

Fluid models derived from kinetic models ≡ Wigner equations.

w = w(x , p, t) system Wigner function.

Spinorial system ⇒ w is not a scalar function!

w(x , p, t) is, for all (x , p, t), a complex hermitian 2× 2 matrix.

Serious computational difficulties!

However, we can write it in the Pauli basis: w =
∑3

s=0 wsσs , with
ws(x , p, t) suitable real scalar functions.
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Collisionless Wigner equations for graphene

Wigner equations for quantum transport in graphene, derivated from the
Von Neumann equation with the one-particle Hamiltonian H0 + V :1

∂tw0 + vF
~∇ · ~w + Θ~(V )w0 =0 ,

∂t ~w + vF

[
~∇w0 +

2

~
~w ∧ ~p

]
+ Θ~(V )~w =0 ,

(W0)

where ~w ≡ (w1,w2,w3) and:

(Θ~(V )w)(x , p) =

i

~
(2π)−2

∫
R2×R2

[
V

(
x +

~
2
ξ

)
− V

(
x − ~

2
ξ

)]
w(x , p′)e−i(p−p′)·ξdξdp′ .

1For the derivation of (W0) see:
N. Zamponi and L. Barletti, Quantum electronic transport in graphene: A kinetic and
fluid-dynamic approach;
N. Zamponi, Some fluid-dynamic models for quantum electron transport in graphene
via entropy minimization.
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Non-statistical closure: the pure state case

A first fluid-dynamic model can be derived from the Wigner equations
under the hypothesis of pure state:

ρij (x , y) = ψi (x)ψj (y) (i , j = 1, 2) ,

where ρ is the system density matrix, while ψ is the wavefunction.
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Non-statistical closure: the pure state case

Let us consider the following moments, for k = 1, 2, s = 1, 2, 3:

n0 =

∫
w0 dp charge density,

ns =

∫
ws dp pseudospin density,

Jk =

∫
pk w0 dp pseudomomentum current,

tsk =

∫
pk ws dp pseudospin currents.

By taking moments of the Wigner equations it is easy to find the
following system of not-closed fluid equations:

∂tn0+vF∂j nj = 0 ,

∂tns+vF∂sn0 +
2vF

~
ηsij tij = 0 (s = 1, 2, 3) ,

∂tJk +vF∂stsk + n0∂k V = 0 (k = 1, 2) .
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Non-statistical closure: the pure state case

From the pure state hypothesis it follows:

n0tsk =nsJk −
~
2
ηsαβnα∂k nβ (k = 1, 2, s = 1, 2, 3) ,

n0 =|~n| =
√

n2
1 + n2

2 + n2
3 .

So we found the following pure-state fluid model (∼ Madelung equations
for a quantum particle described by the Hamiltonian H0):

∂tn0+vF
~∇ · ~n = 0 ,

∂t~n+vF
~∇n0 +

2vF

~
~n ∧ ~J

n0
+

vF

n0
(~∇ · ~n − ~n · ~∇)~n = 0 ,

∂t
~J+vF

~∇ ·

(
~J ⊗ ~n

n0

)
− vF~

2
∂s

(
1

n0
ηsij ni

~∇nj

)
+ n0

~∇V = 0 .

→ The first equation in redundant!
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Beyond the pure state assumption

Goal: Derive several models not based on the pure state hypothesis.

Statistical closure: close the fluid equations by means of an equilibrium
distribution obtained as a minimizer of a suitable quantum entropy func-
tional.

Problem: Which statistics should we choose?

Since the energy spectrum of H0 is not bounded from below, Fermi-Dirac
statistics would be more adequate to describe quantum electron transport
in this material, rather than Maxwell-Boltzmann’s one; neverthless, we
used in our work the Maxwell-Boltzmann statistics, for the sake of
simplicity and to obtain explicit models, at the price of a modification of
the hamiltonian operator H0:

H = Op~

[
vF (p1σ1 + p2σ2)+

|p|2

2m
σ0

]
= H0−σ0

~2

2m
∆ ,

with m > 0 parameter (with the dimensions of a mass).
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Collisional Wigner equations

Wigner equations for quantum transport in graphene, derivated from the
Von Neumann equation with the one-particle Hamiltonian H + V , with a
collisional term of BGK type:

∂tw0 +

[
~p

m
· ~∇
]

w0 + vF
~∇ · ~w + Θ~(V )w0 =

g0 − w0

τc
,

∂t ~w +

[
~p

m
· ~∇
]
~w + vF

[
~∇w0 +

2

~
~w ∧ ~p

]
+ Θ~(V )~w =

~g − ~w

τc
.

(W)

Here:

g is the thermal equilibrium distribution;

τc is the relaxation time.
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Different scalings of the Wigner equations

Isothermal system: thermal equilibrium with phonon bath at constant
temperature T .

Two different scalings of the collisional Wigner equations (W):

a diffusive scaling;

an hydrodynamic scaling.
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Diffusive scaling of the Wigner equations

Diffusive scaling:

x 7→ x̂x , t 7→ t̂t , p 7→ p̂p , V 7→ V̂ V ,

with x̂ , t̂, p̂, V̂ satisfying:

2vF p̂

~
=

V̂

x̂ p̂
,

2p̂vF τc

~
=

~
2p̂vF t̂

, p̂ =
√

mkB T ;

we define the semiclassical parameter ε, the diffusive parameter τ and the
scaled Fermi speed c as:

ε =
~

x̂ p̂
, τ =

2p̂vF τc

~
, c =

√
mv 2

F

kB T
.

Finally let γ = c/ε.
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Different scalings of the Wigner equations

Collisional Wigner equations under diffusive scaling:

τ∂tw0 +
~p · ~∇

2γ
w0 +

ε

2
~∇ · ~w + Θε[V ]w0 =

g0 − w0

τ
,

τ∂t ~w +
~p · ~∇

2γ
~w +

ε

2
~∇w0 + Θε[V ]~w + ~w ∧ ~p =

~g − ~w

τ
,

(WD)

where:

(Θε(V )w)(x , p) =
i

ε
(2π)−2

∫
R2×R2

δṼ (x , ξ)w(x , p′)e−i(p−p′)·ξdξdp′ ,

δṼ (x , ξ) =V

(
x +

ε

2
ξ

)
− V

(
x − ε

2
ξ

)
.
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Hydrodynamic scaling of the Wigner equations

Hydrodynamic scaling:

x 7→ x̂x , t 7→ t̂t , p 7→ p̂p , V 7→ V̂ V ,

with x̂ , t̂, p̂, V̂ satisfying:

1

t̂
=

2vF p̂

~
=

V̂

x̂ p̂
, p̂ =

√
mkB T ;

we define the semiclassical parameter ε, the hydrodynamic parameter τ
and the scaled Fermi speed as:

ε =
~

x̂ p̂
, τ =

τc

t̂
, c =

√
mv 2

F

kB T
.

Again let γ = c/ε.
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Hydrodynamic scaling of the Wigner equations

Collisional Wigner equations under hydrodynamic scaling:

∂tw0 +
~p · ~∇

2γ
w0 +

ε

2
~∇ · ~w + Θε[V ]w0 =

g0 − w0

τ
,

∂t ~w +
~p · ~∇

2γ
~w +

ε

2
~∇w0 + ~w ∧ ~p + Θε[V ]~w =

~g − ~w

τ
.

(WH)

where (again):

(Θε(V )w)(x , p) =
i

ε
(2π)−2

∫
R2×R2

δṼ (x , ξ)w(x , p′)e−i(p−p′)·ξdξdp′ ,

δṼ (x , ξ) =V

(
x +

ε

2
ξ

)
− V

(
x − ε

2
ξ

)
.
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Different scalings of the Wigner equations

Two main assumptions:

1 The semiclassical hypothesis:

ε� 1 ;

2 The Low Scaled Fermi Speed (LSFS):

c ∼ ε .

As a consequence: γ = c/ε ∼ 1.
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Equilibrium distribution through MEP

Minimum Entropy Principle (MEP):

Given a quantum system, we define the equilibrium distribution associated
to the system as the minimizer of a suitable quantum entropy functional
under the constraints of given fluid-dynamic moments.

Quantum Entropy Functional (actually the free energy):

A (S) = Tr[S log S − S + H/kB T ] ,

defined for S ∈ D(A ) suitable subset of the set of the density operators
associated to the system.
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Equilibrium distribution through MEP

Let now:{
µ

(k)
0 (p)

}
k=1...N

,
{
µ

(k)
s (p)

}
s=1,2,3, k=1...N

real functions of p ∈ R2;{
M(k)(x)

}
k=1...N

real functions of x ∈ R2;

µ(k) ≡ µ(k)
0 (p)σ0 + µ

(k)
s σs , for k = 1 . . .N.

We define the equilibrium distribution at thermal equilibrium g
associated to the moments

{
M(k)

}
k=1...N

as the Wigner transform
g ≡ WG of the solution of the constrained minimization problem:

A (G ) = min

{
A (S) : S = Op(w) ∈ D(A ) ,

tr

∫
µ(k)(p)w(x , p) dp = M(k)(x) , k = 1 . . .N , x ∈ R2

}
.
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Equilibrium distribution through MEP

This problem can be solved formally by means of Lagrange multipliers.

Solution as a density operator:

G = exp(−H + Op(µ(k)(p)ξ̂(k)(x))) .

Solution as a Wigner function:

g = Exp(−ĥ[ξ̂]) , ĥ[ξ̂] = Op−1H − µ(k)(p)ξ̂(k)(x) .

Here Exp is the so-called quantum exponential, defined by:

Exp(w) ≡ Op−1(exp(Op(w))) , ∀w Wigner function.
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Semiclassical expansion of the quantum exponential

Goal: find an explicit approximation of the quantum exponential of an
arbitrary classical symbol with linear ε-dependence:

gε(β) = Expε(β(a + εb)) , β ∈ R ,

with a = a0σ0 +~a · ~σ, b = b0σ0 + ~b · ~σ arbitrary classical symbols.

Moyal product between arbitrary classical symbols f1, f2:

f1#εf2 = Op−1
ε (Opε(f1)Opε(f2)) .
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Semiclassical expansion of the quantum exponential

Semiclassical expansion of the Moyal product:

#ε =
∞∑

n=0

εn#(n) ,

f1#(0)f2 = f1f2 ,

f1#(1)f2 =
i

2
(∂xs f1∂ps f2 − ∂ps f1∂xs f2) ,

f1#(2)f2 = −1

8

(
∂2

xj xs
f1∂

2
pj ps

f2 − 2∂2
xj ps

f1∂
2
pj xs

f2 + ∂2
pj ps

f1∂
2
xj xs

f2

)
,

. . .
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Semiclassical expansion of the quantum exponential

Let us differentiate with respect to β the function gε(β):

∂βgε(β) =
1

2
((a + εb)#εgε(β) + gε(β)#ε(a + εb)) ,

gε(0) =σ0 .

Expansion in powers of ε:

∂βg (0)(β) =
1

2
(g (0)(β)a + ag (0)(β)) ,

g (0)(0) =σ0 ,

∂βg (1)(β) =
1

2
(g (1)(β)a + ag (1)(β)) +

1

2
(g (0)(β)b + bg (0)(β))

+
1

2
(g (0)(β)#(1)a + a#(1)g (0)(β)) ,

g (1)(0) =0 .

→ Hierarchy of ODE: first solve eq. for g (0)(β), then eq. for g (1)(β).
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Semiclassical expansion of the quantum exponential

g
(0)
0 (β) = eβa0 cosh(β|~a|) , ~g (0)(β) = eβa0 sinh(β|~a|)

~a

|~a|
,

g
(1)
0 (β) = βeβa0

(
cosh(β|~a|)b0 + sinh (β|~a|)

~a · ~b
|~a|

)

+ βeβa0
sinh(β|~a|)− β|~a| cosh(β|~a|)

4β|~a|3
ηjks{aj , ak}as ,

~g (1)(β) = βeβa0

[
sinh(β|~a|)

(
b0 −

ηjks{aj , ak}as

4|~a|2

)
+ cosh (β|~a|)

~a · ~b
|~a|

]
~a

|~a|

+ βeβa0
sinh(β|~a|)
β|~a|

(
~a ∧ ~b
|~a|

)
∧
~a

|~a|
+

+ βeβa0
sinh(β|~a|)

2|~a|2
aj{aj ,~a} ∧

~a

|~a|

+ βeβa0
β|~a| cosh(β|~a|)− sinh(β|~a|)

2β|~a|2
{a0,~a} ∧

~a

|~a|
.
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Fluid models

Fluid models for quantum electron transport in graphene:

two-band models:

first order two-band hydrodynamic model;
first order two-band diffusive model;
second order two-band diffusive model;

spinorial models:

first order spinorial hydrodynamic model;
second order spinorial hydrodynamic model;
first order spinorial diffusive model;
first order spinorial diffusive model with pseudo-magnetic field.

N. Zamponi Quantum Fluid Models for Electron Transport in Graphene



Two-band models

We will consider moments of this type:

mk =

∫
µk (p)

(
w0(r , p)±

~p

|~p|
· ~w(r , p)

)
dp k = 1 . . . n ,

with {µk : R2 → R | k = 1 . . . n} suitable functions of p, and n ∈ N
given.

The functions:

w±(r , p) ≡ w0(r , p)±
~p

|~p|
· ~w(r , p)

are the distribution functions of the two bands (w+ is related to the
conduction band, w− is related to the valence band).
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Two-band hydrodynamic model

Now we present a hydrodynamic model for quantum transport of
electrons in graphene with two-band structure. This model will be
obtained by computing moments of the Wigner equations (WH) and
making a semiclassical expansion of the equilibrium distribution g
appearing in Eqs. (WD).

Moments:

n±(x) =

∫
w±(x , p) dp , Jk

±(x) =

∫
pk w±(x , p) dp (k = 1, 2) .

The moments n± are the so-called band densities, and measure the
contribution of each band to the charge density n0 = (n+ + n−)/2.

The moments J1
±, J2

± are the cartesian components of the band
currents: they measure the contribution of each band to the current
J = (J1

+ + J1
−, J

2
+ + J2

−).
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Two-band hydrodynamic model

The (scaled) equilibrium distribution has the following form:

g [n+, n−, J+, J−] =Exp(−hξ) ,

hξ =

(
|p|2

2
+ A0 + A1p1 + A2p2

)
σ0

+ (c |p|+ B0 + B1p1 + B2p2)
~p

|p|
· ~σ ,

where Aj = Aj (x), Bj = Bj (x) (j = 0, 1, 2) have to be determined in such
a way that:∫

g±[n+, n−, J+, J−](x , p) dp =n±(x) x ∈ R2 ,∫
pk g±[n+, n−, J+, J−](x , p) dp =Jk

±(x) x ∈ R2 , k = 1, 2 .
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Fully quantum two-band hydrodynamic model.

The following proposition holds:

Proposition

Let nτ±, ~Jτ± the moments of a solution wτ of Eqs. (WH), and let

g = g [nτ+, n
τ
−, J

τ
+, J

τ
−]. If nτ± → n±, ~Jτ± → ~J± as τ → 0 for suitable

functions n±, ~J±, then the limit moments n±, ~J± satisfy:

∂tn±+∂k

{
1

2γ
Jk
± +

ε

2

∫
gk ±

pk

|~p|
g0 dp

}
±
∫

pk

|~p|
Θεgk dp = 0 ,

∂tJ i
±+∂k

{
1

2γ

∫
pi pk g± dp +

ε

2

∫
pi

(
gk ±

pk

|~p|
g0

)
dp

}
+n0∂i V ±

∫
pi pk

|~p|
Θεgk dp = 0 , (i = 1, 2) .
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Semiclassical expansion of the equilibrium

In order to obtain an explicit model, we make first-order approximation of
the previous fluid equations with respect to the semiclassical parameter ε.
So we perform a semiclassical expansion of the equilibrium distribution g
through this strategy:

1 we compute a first order expansion of the quantum exponential in
the spinorial case: g = g (0) + εg (1);

2 we impose that the approximation we found satisfies the contraints:∫
(g

(0)
± +εg

(1)
± ) dp = n±+O(ε2) ,

∫
pi (g

(0)
± +εg

(1)
± ) dp = J i

±+O(ε2) .
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Semiclassical expansion of the equilibrium

g± =
n±
2π

[
1± ε

(
F (u±)− |p|+ (pk − uk

±)
∂F

∂uk
(u±)

)]
e−|p−u±|2/2 + O(ε2) ,

F (u) ≡
∫
|p|e−|p−u|2/2 dp

2π
∀u ∈ R2 , uk

± ≡ Jk
±/n± (k = 1, 2) ;

~g⊥ ≡~g − |p|−2(~g · ~p)~p = ε|~p |−2 ~Λ ∧ ~p + O(ε2) ,

~Λ(x , p) ≡
√

n+n−

2π
exp

[
−1

2

(∣∣∣∣~u+ − ~u−
2

∣∣∣∣2 +

∣∣∣∣p − u+ + u−
2

∣∣∣∣2
)]

~Ψ(x , p) ,

~Ψ(x , p) ≡
[

sinh Φ +
1− cosh Φ

Φ

]
~∇x Φ +

[
sinh Φ

Φ
− cosh Φ

]
~∇x Ξ ,

Ξ(x , p) ≡|
~u+|2 + |~u−|2

4
− 1

2
log
(n+n−

4π2

)
−
~u+ + ~u−

2
· ~p ,

Φ(x , p) ≡|
~u+|2 − |~u−|2

4
− 1

2
log

(
n+

n−

)
−
~u+ − ~u−

2
· ~p .
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First-order two-band hydrodynamic model

First-order two-band hydrodynamic model:

∂tn±+
1

2γ
∂k Jk
± ±

ε

2
∂k

(
n±

∂F

∂uk
(u±)

)
±ε~∇x V ·

∫
[~Λ(x , p)− ~Λ(x ,−p)] ∧ ~p

2|p|3
dp = 0 ,

∂tJ i
±+

1

2γ
∂k

{
n±(1± εF (u±))(δik + ui

±uk
±)

±εn±
[

(δik − ui
±uk
±)F (u±) + ui

±
∂F

∂uk
±

(u±)

− ∂2F

∂ui
±∂uk

±
(u±)− δik us

±
∂F

∂us
±

(u±)

]}
± ε

2
∂k

[
n±

(
∂2F

∂ui∂uk
(u±)− uk

±
∂F

∂ui
(u±)

)]
+n±∂i V ± ε~∇x V ·

∫
pi
~Λ(x , p) ∧ ~p
|~p|3

dp = 0 (i = 1, 2) .

N. Zamponi Quantum Fluid Models for Electron Transport in Graphene



Two-band diffusive models

Now we present two diffusive models for quantum transport of electrons
in graphene with two-band structure. These two models will be based on
a Chapman-Enskog expansion of the Wigner distribution w and a
semiclassical expansion of the equilibrium distribution g that appear in
Eqs. (WD).

The moments we choose are the band densities:

n± =

∫
w± dp , w± = w0 ±

~p

|p|
· ~w .
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Two-band diffusive models

The (scaled) equilibrium distribution has the following form:

g [n+, n−] = Expε(−hξ) , hξ =

(
|p|2

2
+ A

)
σ0 + (c |p|+ B)

~p

|p|
· ~σ ,

where A = A(x), B = B(x) have to be determined in such a way that:∫
g±[n+, n−](x , p) dp = n±(x) , x ∈ R2 .
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Two-band diffusive models

The following (formal) result holds:

Theorem

Let nτ+, nτ− the moments of a solution w = wτ of (WD), and let
g = g [nτ+, n

τ
−]. Let us suppose that: nτ± → n± as τ → 0 for suitable

functions n+, n−; then the limit moments n+, n− satisfy:

∂tn± =

∫
(TTg [n+, n−])± dp ,

where:
Tw =σ0T0w + ~σ · ~T w ,

T0w =
~p · ~∇

2γ
w0 +

ε

2
~∇ · ~w + Θε[V ]w0 ,

~T w =
~p · ~∇

2γ
~w +

ε

2
~∇w0 + Θε[V ]~w + ~w ∧ ~p .
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First order semiclassical expansion of equilibrium

First order semiclassical expansion of the equilibrium distribution g :

g0[n+, n−] =
e−|~p|

2/2

2π

{
n0 + εγ

(√
π

2
− |~p|

)
nσ

}
+ O(ε2) ,

~g [n+, n−] =
e−|~p|

2/2

2π

{[
nσ + εγ

(√
π

2
− |~p|

)
n0

]
~p

|~p|
+ ε~F ∧

~p

|~p|2

}
+ O(ε2) ,

with:

n0 ≡
1

2
(n+ + n−) charge density,

nσ ≡
1

2
(n+ − n−) pseudo-spin polarization,

~F ≡1

2
~∇x n0 −

nσ ~∇x n0 +
[√

n2
0 − n2

σ − n0

]
~∇x nσ

[log(n0 + nσ)− log(n0 − nσ)]
√

n2
0 − n2

σ

.
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First order two-band diffusive model

First order two-band diffusive model:

∂tn0 =
1

4γ2
∆

(
n0 +

εγ

2

√
π

2
nσ

)
+

1

2γ
~∇ ·
(

n0
~∇V
)

+ O(ε2) ,

∂tnσ =
1

4γ2
∆

(
nσ +

εγ

2

√
π

2
n0

)
+

1

2γ
~∇ ·
[(

nσ +
εγ

2

√
π

2
n0

)
~∇V

]
− ε

2γ

√
π

2
~∇V ·

[
~∇∧ ~F + γ~F

]
+
ε

4

√
π

2
~∇n0 · ~∇V

+
|~∇V |2

2

[(
nσ + εγ

√
π

2
n0

)
Γ + εγ

√
π

2
n0

]
+ O(ε2) ,

Γ ≡
∫ ∞

0

e−ρ
2/2ρ log ρ dρ > 0 .
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Second order two-band diffusive model: assumptions

We are going to derive another diffusive model for quantum transport in
graphene.

Exploit the Wigner equations in diffusive scaling (WD).

Same fluid-dynamic moments n± of the Wigner distribution w .

Same equilibrium distribution.

I Stronger assumptions than (LSFS): consider also O(ε2)−terms in
the fluid equations.
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Second order two-band diffusive model: assumptions

Assumptions:

semiclassical hypothesis ε� 1;

I Strongly Mixed State hypothesis (SMS):

c ∼ ε , B = O(ε) .

Remember that:

g [n+, n−] = Exp(−hξ) , hξ =

(
|p|2

2
+ A

)
σ0 + (c |p|+ B)

~p

|p|
· ~σ ,∫

g±[n+, n−](x , p) dp = n±(x) x ∈ R2 .

These further assumptions are necessary to overcome the computational
difficulties arising from the spinorial nature of the problem: without these
hypothesis, it would be hard to compute the second order expansion of
the equilibrium distribution.
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Second order two-band diffusive model: assumptions

Consequence on the choice of moments:∣∣∣∣n+ − n−
n+ + n−

∣∣∣∣ =

∣∣∣∣nσn0

∣∣∣∣ = O(ε) .

Decoupling of hξ in a scalar part of order 1 and a spinorial
perturbation of order ε; this fact will be very useful in computations.
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Second order two-band diffusive model: semiclassical
expansion of equilibrium

Now let us define, for an arbitrary positive scalar function n(x):

Mε[n] ≡ n

2π
e−|p|

2/2

[
1 +

ε2

24
~∇ ·
(

(σ0 − ~p ⊗ ~p)~∇ log n
)]

;

then the equilibrium distribution has this semiclassical expansion:

gε[n+, n−] =Mε

[
n0 −

n0

2

((
2− π

2

)
ε2γ2 +

n2
σ

n2
0

)]
σ0

+
n0

2π
e−|p|

2/2

[
εγ

(√
π

2
− |p|

)
+

nσ
n0

]
~p

|p|
· ~σ

+
n0

4π
e−|p|

2/2

[
εγ

(√
π

2
− |p|

)
+

nσ
n0

]2

σ0 + O(ε3) .

Exploiting this expansion and the fully quantum two-band diffusive
equations, we obtain:
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Second order two-band diffusive model

Second order two-band diffusive model:

∂tn0 =
∆

4γ2

[(
1 + ε2γ2π

4

)
n0 +

εγ

2

√
π

2
nσ

]
+

~∇
2γ
·
(

n0
~∇(V + VB )

)
+ O(ε3) ,

∂tnσ =
∆

4γ2

[
εγ

2

√
π

2
n0 + nσ

]
+

~∇
2γ
·
[(

nσ +
εγ

2

√
π

2
n0

)
~∇V

]
+
ε

4

√
π

2
~∇n0 · ~∇V +

|∇V |2

2

{
εγ

√
π

2
(1 + Γ)n0 + Γnσ

}
+ O(ε3) .

where VB is (up to a constant) the so-called Bohm potential:

VB = − 1

2γ

ε2

6

∆
√

n0√
n0

.
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Spinorial models

Now we will derive two spinorial hydrodynamic models and two spinorial
diffusive models for quantum electron transport in graphene following a
strategy similar to that one employed in the derivation of the previous
diffusive models.

Spinorial models: the Pauli components of the Wigner matrix are
considered separately from each other, not through a linear combination.
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Spinorial hydrodynamic models

Moments:

ns =

∫
ws dp (s = 0, 1, 2, 3) , Jk =

∫
pk w0 dp (k = 1, 2) .

n0 is the charge density;

~n = (n1, n2, n3) is the spin vector;

~J = (J1, J2, 0) is the current vector.

Note that the current vector has only two components because
graphene’s cristal lattice is a two-dimensional object.

N. Zamponi Quantum Fluid Models for Electron Transport in Graphene



Spinorial hydrodynamic models

The equilibrium distribution has the following form:

g [n0,~n,~J] =Exp(−hξ) ,

hξ =

(
|p|2

2
+ pk Ξk + ξ0

)
σ0 + (ξs + cps)σs ,

with ξ0(x), (ξs(x))s=1,2,3, (Ξk (x))k=1,2 Lagrange multipliers to be
determined in such a way that:

〈g0[n0,~n,~J]〉(x) = n0(x) , 〈~g [n0,~n,~J]〉(x) = ~n(x) , 〈~pg0[n0,~n,~J]〉(x) = ~J(x) ,

for x ∈ R2.
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Spinorial hydrodynamic models, fully quantum system

The following theorem holds:

Theorem

Let nτ0 , ~nτ , ~Jτ the moments of a solution wτ of Eqs. (WH), and let

g = g [nτ0 ,~n
τ ,~Jτ ]. If nτ0 → n0, ~nτ → ~n, ~Jτ → ~J as τ → 0, then the limit

moments n0, ~n, ~J satisfy:

∂tn0 +
~∇
2γ
· ~J +

ε

2
~∇ · ~n =0

∂t~n +
~∇
2γ
·
∫
~g ⊗ ~p dp +

ε

2
~∇n0 +

∫
~g ∧ ~p dp =0

∂t
~J +

~∇
2γ
·

(
~J ⊗ ~J

n0
+ P

)
+
ε

2
~∇ ·
∫
~p ⊗ ~g dp + n0

~∇V =0

where P is the so-called quantum stress tensor:

P =

∫
(~p − ~J/n0)⊗ (~p − ~J/n0)g0 dp
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First-order semiclassical expansion of the equilibrium
distribution

First-order semiclassical expansion of the equilibrium distribution:

g0[n0,~n,~J] =
n0

2π
e−|~p−~u|

2/2 + O(ε2) ,

~g [n0,~n,~J] =
n0

2π
e−|~p−~u|

2/2

(
~n

n0
− εγZ(~p − ~u)

)
+ O(ε2) ,

Zij ≡
ni nj

|~n|2
+ ω

(
δij −

ni nj

|~n|2

)
+

1− ω
2γ

ηiks
nk

|~n|
∂j

(
ns

|~n|

)
(i , j = 1, 2, 3) ,

ω ≡ |~n|/n0

log
√

n0+|~n|
n0−|~n|

.

Exploiting this expansion and the fully quantum hydrodynamic spinorial
equations, we obtain:
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First-order spinorial hydrodynamic model

First-order spinorial hydrodynamic model:

∂tn0+
~∇
2γ
·
(
~J + εγ~n

)
= 0 ,

∂t~n+
~∇
2γ
· (~n ⊗ ~u − εγn0Z + εγn0 I ) + ~n ∧ ~u

+
ε

2
n0(1− ω)[~∇ ·~s −~s · ~∇ ]~s = 0 ,

∂t
~J+

~∇
2γ
·
[
n0(I + ~u ⊗ ~u) + εγ

(
~u ⊗ ~n − εγn0ZT

)]
+ n0

~∇V = 0 ,

where:

~s ≡
~n

|~n|
.
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Second order spinorial hydrodynamic model: assumption

We are going to derive another hydrodynamic model for quantum
transport in graphene.

Exploit the Wigner equations in hydrodynamic scaling (WH).

Same fluid-dynamic moments n0, ~n, ~J of the Wigner distribution w .

Same equilibrium distribution.

I Stronger assumptions than (LSFS): consider also O(ε2)−terms in
the fluid equations.
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Second order spinorial hydrodynamic model: assumptions

Assumptions:

semiclassical hypothesis ε� 1;

I Strongly Mixed State hypothesis (SMS):

c ∼ ε ,

[
3∑

s=1

(ξs)2

]1/2

= O(ε) .

Remember that:

g [n0,~n,~J] = Exp(−hξ) , hξ =

(
|p|2

2
+ pk Ξk + ξ0

)
σ0 + (ξs + cps)σs ,∫

gs [n0,~n,~J](x , p) dp = ns(x) (s = 0, 1, 2, 3) , x ∈ R2 ,∫
pk g0[n0,~n,~J](x , p) dp = Jk (x) (k = 1, 2) , x ∈ R2 .

These further assumptions are necessary to overcome the computational
difficulties arising from the spinorial nature of the problem: without these
hypothesis, it would be hard to compute the second order expansion of
the equilibrium distribution.
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Second order spinorial hydrodynamic model: assumptions

Consequence on the choice of moments:∣∣∣∣ ~nn0

∣∣∣∣ = O(ε) .

Decoupling of hξ in a scalar part of order 1 and a spinorial
perturbation of order ε; this fact will be very useful in computations.
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Second order spinorial hydrodynamic model: semiclassical
expansion of equilibrium

Let us define, for an arbitrary positive function N (x) and an arbitrary

vector function ~J (x) = (J1(x),J2(x), 0):

Mε[N , ~J ] =
N
2π

e−|~p−
~U|2/2

[
1− ε2

24

(
2∆ logN +

|∇N |2

N 2
−Q(N , ~J )

)]
,

where:

Q(N , ~J ) =3(∆A+ pk ∆Uk + ∂iUj ∂jUi )− 2∂iUj (pi − Ui )(∂jA+ pk∂jUk )

− (∂2
ijA+ pk∂

2
ijUk )(pi − Ui )(pj − Uj ) + |∇(A+ pkUk )|2 ,

~U = ~J /N , A = log

(
N
2π

)
− |

~U|2

2
.
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Second order spinorial hydrodynamic model: semiclassical
expansion of equilibrium

Second-order semiclassical expansion of the equilibrium distribution:

g0[n0,~n,~J] =Mε

[
n0 − n0

(
|~n|2

2n2
0

+ ε2γ2

)
, ~J + εγ~n −

(
|~n|2

2n2
0

+ ε2γ2

)
~J

]

+
n0

4π
e−|~p−

~J/n0|2/2

∣∣∣∣∣ ~nn0
− εγ

(
~p −

~J

n0

)∣∣∣∣∣
2

+ O(ε3) ,

~g [n0,~n,~J] =
n0

2π
e−|~p−

~J/n0|2/2

(
~n

n0
− εγ

(
~p −

~J

n0

))
+ O(ε3) .

Exploiting this expansion and the fully quantum hydrodynamic spinorial
equations, we obtain:
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Second order spinorial hydrodynamic model

Second order spinorial hydrodynamic model:

∂tn0 +
~∇
2γ
· (~J + εγ~n) =O(ε3) ,

∂t~n +
~∇
2γ
·

(
~n ⊗ ~J

n0

)
+
~n ∧ ~J

n0
=O(ε3) ,

∂t
~J +

~∇
2γ
·

(
~J ⊗ (~J + εγ~n)

n0

)
+
~∇n0

2γ
+ n0

~∇(V + VB ) =O(ε3) ,

where VB is again (up to a constant) the so-called Bohm potential:

VB = − 1

2γ

ε2

6

∆
√

n0√
n0

.
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Spinorial diffusive models

Now we will present two spinorial drift-diffusion model for quantum
transport of electrons in graphene.

Both first-order model: second order too much computationally
demanding!

Difference: a theoretical ”Pseudo-Magnetic“ external field which is
supposed to interact with the charge carriers pseudo-spin and which
will provide a strong coupling between the second model equations.
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Spinorial diffusive models

Moments:

n0(x , t) =

∫
w0(x , p, t) dp charge density,

~n(x , t) =

∫
~w(x , p, t) dp spin vector.

The (scaled) equilibrium distribution can be written as:

g [n0,~n] = Exp(−hA,~B ) , hA,~B =

(
|p|2

2
+ A

)
σ0 + (c~p + ~B) · ~σ ,

where A(x , t), ~B(x , t) = (B1(x , t),B2(x , t),B3(x , t)) are Lagrange
multipliers to be determined in such a way that:∫

g0[n0,~n](x , p, t) dp = n0(x , t) ,

∫
~g [n0,~n](x , p, t) dp = ~n(x , t) ,

for (x , t) ∈ R2 × R.
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Spinorial diffusive models: assumptions

We assume that the semiclassical parameter ε and the diffusive parameter
τ are of the same order and small, so we will perform a limit τ → 0 in
the Wigner equations:

c ∼ ε ∼ τ .

Moreover we define:
λ ≡ c

τ
∼ 1 .
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Spinorial diffusive models: semiclassical expansion of
equilibrium

First order semiclassical expansion of equilibrium distribution:

g [n0,~n] =g (0)[n0,~n] + εg (1)[n0,~n] + O(ε2) ,

g
(0)
0 [n0,~n] =

e−|p|
2/2

2π
n0 , ~g (0)[n0,~n] =

e−|p|
2/2

2π
~n ,

g
(1)
0 [n0,~n] =− γ e−|p|

2/2

2π
~n · ~p ,

~g (1)[n0,~n] =− γ e−|p|
2/2

2π
n0

[(
(1− ω)

~n ⊗ ~n
|~n|2

+ ω I

)
~p

− (1− ω)
[(~p · ~∇x )~n] ∧ ~n

2γ|~n|2

]
,

with:

ω ≡ |
~n|
n0

{
log

√
n0 + |~n|
n0 − |~n|

}−1

.
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First order spinorial drift-diffusion model: derivation

From eqs. (WD) make a Chapman-Enskog expansion of the Wigner
function w .

Take moments of eqs. (WD).

Exploit the semiclassical expansion of the equilibrium.

We obtain:
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First order spinorial drift-diffusion model.

First order spinorial drift-diffusion model ≡
Quantum Spin Diffusion Equations 1 (QSDE1):

∂tn0 = ∆n0 + div(n0∇V ) ,

∂tnj =∂sAjs + Fj , (j = 1, 2, 3)

Ajs =

(
δjl + bk

[
~n

n0

]
ηjkl

)
∂snl + nj∂sV

− 2ηjsl nl + bk

[
~n

n0

]
(δjk ns − δjsnk ) , (j , s = 1, 2, 3)

Fj =ηjkl nk∂l V − 2nj + bs

[
~n

n0

]
∂snj − bj

[
~n

n0

]
∂sns , (j = 1, 2, 3)

where we defined, for all ~v ∈ R3, 0 < |v | < 1:

~b[~v ] = λ
~v

|~v |2

[
1− 2|~v |

log(1 + |~v |)− log(1− |~v |)

]
.
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First order spinorial drift-diffusion model with
pseudo-magnetic field

In the model QSDE1 the charge density n0 evolves independently from
the spin vector ~n: we are going to modify the QSDE1 model in order to
obtain a fully coupled system by adding a ”pseudo-magnetic” field able
to interact with the charge carriers pseudospin.

Negulescu and Possanner, in their article2, consider a semiconductor
subject to a magnetic field interacting with the electron spin, and derive
a purely semiclassical (without quantum corrections) diffusive model for
the charge density n0 and the spin vector ~n throught a Chapman-Enskog
espansion of the Boltzmann distribution. We will follow a similar
procedure to obtain our new model.

2S. Possanner and C. Negulescu. Diffusion limit of a generalized matrix Boltzmann
equation for spin-polarized transport. Kinetic and Related Models (2011).
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First order spinorial drift-diffusion model with
pseudo-magnetic field: derivation

We define two quantities:

ζ =ζ(x , t) pseudo-spin polarization of scattering rate;

~ω =~ω(x , t) direction of local pseudo-magnetization.

s↑ =
1 + |ζ(x , t)|
1− |ζ(x , t)|

s↓ ,

where s↑↓ are the scattering rates of electrons in the upper band and in
the lower band; it is bounded between 0 and 1. The vector ~ω, being a
direction, has modulus equal to 1.
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First order spinorial drift-diffusion model with
pseudo-magnetic field: derivation

New Wigner equations in diffusive scaling:

τ∂tw0 +
~p · ~∇

2γ
w0 +

ε

2
~∇ · ~w + Θε[V ]w0 =

Q0(w)

τ
,

τ∂t ~w +
~p · ~∇

2γ
~w +

ε

2
~∇w0 + ~w ∧ ~p + Θε[V ]~w + τ~ω ∧ ~w =

~Q(w)

τ
,

(WD2)

with the collision operator Q(w) defined by:

Q(w) = P1/2(g − w)P1/2 , P = σ0 + ζ~ω · ~σ .

P is the so-called polarization matrix.

N. Zamponi Quantum Fluid Models for Electron Transport in Graphene



First order spinorial drift-diffusion model with
pseudo-magnetic field: derivation

From eqs. (WD2) make a Chapman-Enskog expansion of the
Wigner function w .

Take moments of eqs. (WD2).

Exploit the semiclassical expansion of the equilibrium.

We obtain:
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First order spinorial drift-diffusion model with
pseudo-magnetic field

First-order spinorial drift-diffusion model with pseudo-magnetic field ≡
Quantum Spin Diffusion Equation 2 (QSDE2):

∂tn0 =∂sM0s ,

∂tnj =∂sMjs + ηjks(Mks + nkωs)

+ ∂s

{
bk

[
~n

n0

]
(ηjkl∂snl + δjk ns − δjsnk )

}
+ bs

[
~n

n0

]
∂snj − bj

[
~n

n0

]
∂sns (j = 1, 2, 3) ,

M0s =φ−2{(n0 + n0∂sV )− ζωk (∂snk + nk∂sV + ηklsnl )} ,
Mjs =φ−2{−ζωj (n0 + n0∂sV )

+ [ωjωk + φ(δjk − ωjωk )](∂snk + nk∂sV + ηklsnl )} ,

φ =
√

1− ζ2 , ~b[~v ] = λ
~v

|~v |2

[
1− 2|~v |

log(1 + |~v |)− log(1− |~v |)

]
.
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Analytical results

Now we present some analytical results concerning the model QSDE1.

Existence and uniqueness of (weak) solutions satisfying suitable L∞

bounds.

Entropy inequality.

Long-time behaviour of the solutions.
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Analytical results

We considered model QSDE1 for (x , t) ∈ ΩT ≡ Ω× [0,T ] with Ω ⊂ R2

bounded domain:

∂tn0 =div (∇n0 + n0∇V ) x ∈ Ω , t ∈ [0,T ] ,

∂t~n =div J + ~F x ∈ Ω , t ∈ [0,T ] ,

−λ2
D∆V =n0 − C (x) x ∈ Ω , t ∈ [0,T ] ,

n0(x , t) =nΓ(x , t) x ∈ ∂Ω , t ∈ [0,T ] ,

~n(x , t) =0 x ∈ ∂Ω , t ∈ [0,T ] ,

V (x , t) =U(x , t) x ∈ ∂Ω , t ∈ [0,T ] ,

n0(x , 0) =n0I (x) x ∈ Ω ,

~n(x , 0) =~nI (x) x ∈ Ω ,

(Pb)

Fj =ηjk`nk∂`V − 2nj + bk [~n/n0]∂k nj − bj [~n/n0]~∇ · ~n,
Jjs =

(
δj` + bk [~n/n0]ηjk`

)
∂sn` + nj∂sV

− 2ηjs`n` + bk [~n/n0](δjk ns − δjsnk ) , (j , s = 1, 2, 3) ,

~b[~v ] =λ
~v

|~v |2

[
1− 2|~v |

{
log

(
1 + |~v |
1− |~v |

)}−1
]

~v ∈ R3, 0 < |~v | < 1 .
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Analytical results

We split problem (Pb) into the following two problems:

∂tn0 =div (∇n0 + n0∇V ) x ∈ Ω , t ∈ [0,T ] ,

−λ2
D∆V =n0 − C (x) x ∈ Ω , t ∈ [0,T ] ,

n0(x , t) =nΓ(x , t) x ∈ ∂Ω , t ∈ [0,T ] ,

V (x , t) =U(x , t) x ∈ ∂Ω , t ∈ [0,T ] ,

n0(x , 0) =n0I (x) x ∈ Ω ,

(Pb-n0V)


∂t~n =div J + ~F x ∈ Ω , t ∈ [0,T ] ,

~n(x , t) =0 x ∈ ∂Ω , t ∈ [0,T ] ,

~n(x , 0) =~nI (x) x ∈ Ω ,

(Pb-ns)

Fj =ηjk`nk∂`V − 2nj + bk [~n/n0]∂k nj − bj [~n/n0]~∇ · ~n,
Jjs =

(
δj` + bk [~n/n0]ηjk`

)
∂sn` + nj∂sV

− 2ηjs`n` + bk [~n/n0](δjk ns − δjsnk ) , (j , s = 1, 2, 3) ,

~b[~v ] =λ
~v

|~v |2

[
1− 2|~v |

{
log

(
1 + |~v |
1− |~v |

)}−1
]

~v ∈ R3, 0 < |~v | < 1 .
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Analytical results: existence and regularity for first problem

We studied first the existence and regularity of solutions (n0,V ) of pb.
(Pb-n0V).

Conditions on the data:

nΓ ∈ H1(0,T ; H2(Ω)) ∩ H2(0,T ; L2(Ω)) ∩ L∞(0,T ; L∞(Ω)),

n0I ∈ H1(Ω), inf
Ω

n0I > 0, n0I = nΓ(0) on ∂Ω, inf
∂Ω×(0,T )

nΓ > 0,

U ∈ L∞(0,T ; W 2,p(Ω)) ∩ H1(0,T ; H1(Ω)), C ∈ L∞(Ω), C ≥ 0 in Ω,

for some p > 2.
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Analytical results: existence, uniqueness and regularity for
first problem

Theorem

Let T > 0. Under the previous assumptions there exists a unique solution
(n0,V ) to pb. (Pb-n0V) satisfying:

n0 ∈ L∞([0,T ],H2(Ω)) ∩ H1([0,T ],H1(Ω)) ∩ H2([0,T ], (H1(Ω))′),

V ∈ L∞([0,T ],W 1,∞(Ω)) ∩ H1([0,T ],H2(Ω)),

0 < me−µt ≤ n0 ≤ M in Ω, t > 0,

where µ = λ−2
D and

M = max

{
sup

∂Ω×(0,T )

nΓ, sup
Ω

n0I , sup
Ω

C

}
,

m = min

{
inf

∂Ω×(0,T )
nΓ, inf

Ω
n0I

}
> 0.
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Analytical results: existence and uniqueness for second
problem

Theorem

Let (n0,V ) be the solution to pb. (Pb-n0V) according to the previous
theorem and ~n0 ∈ H1

0 (Ω) such that:

sup
x∈Ω

|~n0(x)|
n0I (x)

< 1 ;

then pb. (Pb-ns) has a solution ~n such that:

~n ∈ L2([0,T ],H1
0 (Ω)) ∩ H1([0,T ],H−1(Ω)) , sup

ΩT

|~n|
n0

< 1 ;

furthermore, there exists at most one weak solution with the property
stated above and satisfying ~n ∈ L∞([0,T ],W 1,4(Ω)).
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Entropicity of the system

Let (n0,~n,V ) be a solution to pb. (Pb) according to previously stated
existence theorems. We assume that the boundary data is in global
equilibrium, i.e.

nΓ = e−U , V = U , ~n = 0 on ∂Ω,

where U = U(x) is time-independent. Then the macroscopic entropy:

S(t) =

∫
Ω

{
1

2
(n0 + |~n|)

(
log(n0 + |~n|)− 1

)
+

1

2
(n0 − |~n|)

(
log(n0 − |~n|)− 1

)
+ (n0 − C (x))V − λ2

D

2
|∇V |2

}
dx

is nonincreasing in time.
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Entropicity of the system

Proposition

The entropy dissipation dS/dt can be written as:

dS

dt
=− 1

2

∫
(n0 + |~n|) |∇(log(n0 + |~n|) + V )|2

− 1

2

∫
(n0 − |~n|) |∇(log(n0 − |~n|) + V )|2

− 1

2

∫
|~n| log

(
n0 + |~n|
n0 − |~n|

)
G

[
~n

|~n|

]
≤ 0 ,

where G is defined by:

G [~v ] ≡
∑
j,k

(∂j vk )2 + 2~v · curl ~v + 2|~v |2 ≥ 0 ∀~v ∈ H1(Ω)3 .
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Long-time decay of the solutions

Let (n0,~n,V ) be a solution to pb. (Pb) according to the existence
theorems. It is possible to prove that, under suitable assumptions on the
electric potential, the spin vector converges to zero as t →∞.

To prove the stated result we exploited the following:

Lemma

Let G as in the previous proposition:

G [~v ] =
∑
j,k

(∂j vk )2 + 2~v · curl ~v + 2|~v |2 ∀~v ∈ H1(Ω)3 .

A constant KΩ > 0 exists, depending only on Ω, such that:∫
G [~u] ≥ KΩ

∫
|~u|2 , ∀~u ∈ H1(Ω)3 .
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Long-time decay of the solutions

Theorem

Let KΩ as in the previous Lemma, and let 2 < p <∞ arbitrary.

1 A positive constant c = c(p,Ω) exists such that: if supΩT
|∇V | < c

then:
‖~n‖Lp(Ω)(t) ≤ ‖~nI‖Lp(Ω)e

−kt ∀t > 0 ,

for a suitable number k = k(p,Ω, supΩT
|∇V |) > 0.

2 If supΩT
∆V < KΩ then:

‖~n‖L2(Ω)(t) ≤ ‖~nI‖L2(Ω)e
−k′t ∀t > 0 ,

with k ′ = 2KΩ − supΩT
∆V > 0.

3 If supΩT
∆V < 0 then:

‖~n‖L∞(Ω)(t) ≤ ‖~nI‖L∞(Ω)e
−k′′t ∀t > 0 ,

with k ′′ = − supΩT
∆V > 0.
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Numerical simulations

We solved model (QSDE2) and, as a particular case, model (QSDE1), in
one space dimension, by means of Crank-Nicholson finite difference
scheme. We simulated a ballistic diode to which a certain bias is applied:
we chose global equilibrium initial conditions and we observed the
evolution of the system towards a new equilibrium due to the applied
potential.
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Numerical simulations

Boundary conditions:

n0 = C , ~n = 0, V = U on ∂Ω = {0, 1}, t > 0,

where U(x) = VA x/L, VA = 1 v is the applied voltage, and L = 10−7 m
is the device lenght.

Initial conditions:

n0(x , 0) = q exp(−Veq(x)), ~n(x , 0) = 0,

where q = 1.6× 10−2 C m−2, Veq is the (scaled) equilibrium potential:

−λ2
D∂

2
xx Veq = exp(−Veq)− C/q in Ω, Veq(0) = Veq(1) = 0,

and λ2
D = 10−3L2.

The pseudo-spin polarization and the direction of the local magnetization
are defined by:

ζ = 0.5, ~ω = (0, 0, 1) .
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Numerical simulations

The doping profile corresponding to a ballistic diode:
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Figure: Doping profile corresponding to a ballistic diode.
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Numerical simulations
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Figure: Model QSDE2: Particle density and components of the spin vector
versus position at times t = 0 s, t = 3.5× 10−17 s, and t = 0.5× 10−13 s.
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Numerical simulations
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Figure: Charge density for models QSDE1 and QSDE2 versus position at time
t = 2.5× 10−15 s (maximized difference).

N. Zamponi Quantum Fluid Models for Electron Transport in Graphene



Numerical simulations
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Figure: Model QSDE2: Ratio |~n|/n0 versus position at several times.
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Numerical simulations
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Figure: Relative difference ‖n0(t)− n0(∞)‖/‖n0(t)‖ versus time
(semilogarithmic plot) for the models QSDE1 (solid line) and QSDE2 (dashed
line).

N. Zamponi Quantum Fluid Models for Electron Transport in Graphene



Numerical simulations
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Figure: Static current-voltage characteristics for the models QSDE1 and
QSDE2.
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Conclusions

The purpose of our work was the description of quantum transport of
electrons in graphene by means of fluid models:

we presented a kinetic model, that is, the Wigner equation, as the
starting point of the derivation of fluid models;

we defined the quantum equilibrium distribution by means of the
quantum minimum entropy principle, computing a semiclassical
expansion of the quantum exponential in the spinorial case;

we derived one hydrodynamic and two diffusive two-band models,
which means, models for conduction and valence band densities;

we derived two hydrodynamic and two diffusive spinorial models,
including all the components of the spin vector;

we performed an analysis of the first diffusive spinorial model,
proving existence of solutions, uniqueness of the solution under a
regularity condition on the moments, entropicity for the model and
long-time decay of the spin vector;

we obtained some numerical simulations for the spinorial diffusive
models, showing the temporal evolution of the moments.
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