Compressive Nonparametric Graphical Model Selection for Time Series: A Multitask Learning Approach

Alexander Jung¹, Reinhard Heckel², Helmut Bölcskei², and Franz Hlawatsch¹

¹Institute of Telecommunications, Vienna University of Technology, Austria ²Dept. IT & EE, ETH Zurich, Switzerland

Introduction

• Consider a *p*-dimensional vector-valued Gaussian process $\mathbf{x}[n] = (x_1[n], \dots, x_p[n])^T.$

- We model $\mathbf{x}[n]$ as stationary with summable autocovariance function (ACF) $\mathbf{R}[m] := \mathrm{E}\{\mathbf{x}[m]\mathbf{x}^{T}[0]\}.$
- Based on (4) it can be shown that

$$\mathcal{N}(r) = \operatorname{gsupp}(\boldsymbol{\beta}) := \bigcup_{f \in [F]} \operatorname{supp}(\boldsymbol{\beta}^{(f)}),$$

with stacked parameter vector $oldsymbol{eta} := ig(oldsymbol{eta}^{(1)}ig)^T, \dots, ig(oldsymbol{eta}^{(F)}ig)^Tig)^T.$

- If the CIG is sparse, i.e., $|\mathcal{N}(r)| \ll p$, it follows that β is a block-sparse vector.
- Recovering a block-sparse vector β from the measurements (2) is recognized as a multitask learning problem.

-Minimum multitask compatibility constant $\phi_{\min} > 0$: For every process in \mathcal{M} , we require

$$\begin{split} s_{\max} \sum_{f \in [F]} \left(\boldsymbol{\beta}^{(f)} \right)^{H} \mathbf{S}(\theta_{f}) \boldsymbol{\beta}^{(f)} \geq \phi_{\min}^{2} \| \boldsymbol{\beta}_{\mathcal{N}(r)} \|_{2,1}^{2} \\ \text{for all } r \in [p] \text{ and all vectors } \boldsymbol{\beta} \in \mathbb{C}^{qF} \text{ such that} \\ \| \boldsymbol{\beta}_{\mathcal{S}} \|_{2,1} > 0 \text{ and } \| \boldsymbol{\beta}_{\mathcal{S}^{c}} \|_{2,1} \leq 3 \| \boldsymbol{\beta}_{\mathcal{S}} \|_{2,1}. \end{split}$$
• We choose mLASSO parameter $\lambda = \phi_{\min}^{2} \rho_{\min} / (18s_{\max}F)$

• The spectral density matrix (SDM) is

 $\mathbf{S}(\theta) := \sum_{m = -\infty}^{\infty} \mathbf{R}[m] \exp(-j2\pi m\theta), \text{ for } \theta \in [0, 1).$

• We require the SDM to be sufficiently smooth, or equivalently we require small ACF moments

 $\mu^{(h)} := \sum_{m=-\infty}^{\infty} h[m] \| \mathbf{R}[m] \|_{\infty}.$ (1)

• Consider the conditional independence graph (CIG) $\mathcal{G} = ([p] := \{1, \dots, p\}, E)$ of $\mathbf{x}[n]$.

• For a Gaussian process, $(k, l) \notin E \iff \left[\mathbf{S}^{-1}(\theta)\right]_{k,l} \equiv 0.$

• Our interest is in sparse CIGs, containing few edges.

• Goal: Estimate sparse CIG from a finite-length observation $\mathbf{x}[1], \ldots, \mathbf{x}[N]$, where typically $N \ll p$.

• We propose a nonparametric compressive selection scheme for the CIG of a stationary vector process.

Neighborhood Regression

• First, consider the special case of an i.i.d. sampling process,

• A popular approach to this is multitask LASSO (mLASSO).

Novel Selection Scheme

- \bullet Let w[m] denote a window function with non-negative discrete time Fourier transform.
- We propose the following selection scheme:
- First, for each θ_f , we compute a multivariate Blackman-Tukey SDM estimate

$$\widehat{\mathbf{S}}(\theta) := \sum_{m=-N+1}^{N-1} w[m] \widehat{\mathbf{R}}[m] \exp(-j2\pi\theta m).$$

Here, $\widehat{\mathbf{R}}[m] := (1/N) \sum_{n=1}^{N-m} \mathbf{x}[n+m] \mathbf{x}^T[n]$ for $m \in \{0, \dots, N-1\}$ and, by symmetry of the ACF, $\widehat{\mathbf{R}}[m] := \widehat{\mathbf{R}}^T[-m]$ for $m \in \{-N+1, \dots, -1\}$.

• Second, based on $\widehat{\mathbf{S}}(\theta_f)$, $f \in [F]$, we construct $\mathbf{y}^{(f)}$ and $\mathbf{X}^{(f)}$ according to (3) and compute mLASSO estimate

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \left\{ \frac{1}{F} \sum_{f \in [F]} \| \mathbf{y}^{(f)} - \mathbf{X}^{(f)} \boldsymbol{\beta}^{(f)} \|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{2,1} \right\},$$

where $\| \boldsymbol{\beta} \|_{2,1} := \sum_{r \in [q]} \| \boldsymbol{\beta}_{r} \|_{2}$ with $\boldsymbol{\beta}_{r} := \left(\left[\boldsymbol{\beta}^{(1)} \right]_{r}, \dots, \left[\boldsymbol{\beta}^{(F)} \right]_{r} \right)^{T} \in \mathbb{C}^{F}.$

and threshold $\tau = \rho_{\min}/2$.

 Combining a deterministic analysis of mLASSO with a largedeviation characterization of the SDM estimator, we derived the following result:

Theorem 1 Consider a p-dimensional stationary Gaussian time series $\mathbf{x}[n]$ belonging to $\mathcal{M}(A, B, s_{\max}, \rho_{\min}, \mu^{(h_1)}, \phi_{\min})$. Then, if for some $\delta > 0$, the rescaled sample size $\eta := N/(\log(p)s_{\max}^3)$ and the correlation moment $\mu^{(h_1)}$ satisfy

$$\eta > 10^{3} \log \left(\frac{4F}{\delta}\right) \|w\|_{1}^{2} B^{2} / \kappa^{2} \text{ and } \mu^{(h_{1})} \leq \frac{\kappa}{2s_{\max}^{3/2}}$$

with $\kappa := (\phi_{\min}^2/174)\rho_{\min}\sqrt{\frac{AF}{B}}$, the probability of correctly selecting the edge set E is at least $1 - \delta$, i.e.,

$$\mathsf{P}\left\{\bigcap_{r\in[p]} \{\widehat{\mathcal{N}}(r) = \mathcal{N}(r)\}\right\} \ge 1 - \delta.$$

Numerical Results

• We applied our method to a synthetic process obtained by filtering a *p*-dimensional white Gaussian process with a FIR filter of length 2.

- i.e., $\mathbf{R}[m] = \mathbf{C}\delta[m]$.
- This corresponds to model selection for a Gaussian Markov random field (GMRF) with covariance matrix C.
- Here, the SDM is flat, i.e., $\mathbf{S}(\theta) = \mathbf{C}$ for all $\theta \in [0, 1)$.
- Determine neighborhood $\mathcal{N}(r) := \{l : (r, l) \in E\}$ by regressing $x_r[n]$ on the remaining components.
- For the i.i.d. case, this regression becomes

$$\label{eq:constraint} \begin{split} x_r[n] = \sum_{l \in [p] \setminus \{r\}} \beta_l x_l[n] + w[n], \\ \text{with } \beta_l = -\left[\mathbf{C}^{-1}\right]_{r,l} / \left[\mathbf{C}^{-1}\right]_{r,r}. \end{split}$$

- Since $\mathcal{N}(r)$ coincides with $\operatorname{supp}(\boldsymbol{\beta})$, with $\boldsymbol{\beta} := \operatorname{vec}\{\beta_l\}_{l\in[p]\setminus\{r\}}$ determining the neighborhood is reduced to sparse support recovery!
- LASSO based selection scheme proposed by [Meinshausen & Bühlmann, 2006].

Multitask Learning Formulation

• For a general stationary process, we perform neighborhood

- The neighborhood $\mathcal{N}(r)$ is finally estimated by $\widehat{\mathcal{N}}(r) := \{l : \|\hat{\boldsymbol{\beta}}_l\|_2 > \tau\}.$
- Scheme is modular: Different combinations of SDM estimators and sparse support recovery schemes possible.

Performance Guarantees

 \bullet Denote by $\mathcal{M}(A,B,s_{\max},\rho_{\min},\mu^{(h_1)},\phi_{\min})$ the class of stationary Gaussian processes that satisfy the following conditions

-Uniform boundedness of SDM eigenvalues:

 $0 < A \le \lambda_{\min}(\mathbf{S}(\theta)) \le \lambda_{\max}(\mathbf{S}(\theta)) \le B < \infty.$

- This technical assumption ensures certain Markov properties of the CIG.
- -Maximum node degree s_{max} : We consider sparse CIGs, whose maximum node degree is bounded as

$$\mathcal{N}(r) \leq s_{\max} \ll p.$$

- The filtered process has a sparse CIG with $s_{max} = 3$.
- We computed empirical false alarm (P_{fa}) and detection ratios (P_d) based on 10 simulation runs.

regression in the frequency domain.

• Let $\widehat{\mathbf{S}}(\theta_f)$ denote an estimate of the SDM $\mathbf{S}(\theta_f)$ for $\theta_f := (f-1)/F$, $f \in [F]$.

• For each frequency θ_f , $f \in [F]$, we define $\mathbf{y}^{(f)} = \mathbf{X}^{(f)} \boldsymbol{\beta}^{(f)} + \mathbf{w}^{(f)}, \qquad (2)$ with $\left(\mathbf{y}^{(f)} \mathbf{X}^{(f)}\right) := \sqrt{\mathbf{P}_{1\leftrightarrow r}} \widehat{\mathbf{S}}(\theta_f) \mathbf{P}_{1\leftrightarrow r}, \qquad (3)$ and parameter vectors

$$\boldsymbol{\beta}^{(f)} := \left[\mathbf{S}(\theta_f) \right]_{[p] \setminus \{r\}, [p] \setminus \{r\}}^{-1} \left[\mathbf{S}(\theta_f) \right]_{[p] \setminus \{r\}, r}.$$
(4)

-Minimum partial coherence $\rho_{\min} > 0$: This parameter quantifies the minimum partial correlation between the spectral components of the process. In particular, we require

$$\sum_{f \in [F]} \left| \left[\mathbf{S}^{-1}(\theta_f) \right]_{r,r'} / \left[\mathbf{S}^{-1}(\theta_f) \right]_{r,r} \right|^2 \ge \rho_{\min}^2$$

for all $r \in [p]$, $r' \in \mathcal{N}(r)$.

-ACF moment $\mu^{(h_1)}$: We quantify the smoothness of the processes in \mathcal{M} using the ACF moment (1) with weight function $h_1[m] := |1 - w[m](1 - |m|/N)|$.

- Our method yields reasonable performance even if N = 32 only for a 64-dimensional process.
- \bullet The rescaled sample size η seems to be a good performance indicator.

