Compressive Nonparametric Graphical Model Selection for Time Series: A Multitask Learning Approach

Alexander Jung ${ }^{1}$, Reinhard Heckel ${ }^{2}$, Helmut Bölcskei ${ }^{2}$, and Franz Hlawatsch ${ }^{1}$
${ }^{1}$ Institute of Telecommunications, Vienna University of Technology, Austria
${ }^{2}$ Dept. IT \& EE, ETH Zurich, Switzerland

Introduction

- Consider a p-dimensional vector-valued Gaussian process

$$
\mathbf{x}[n]=\left(x_{1}[n], \ldots, x_{p}[n]\right)^{T}
$$

- We model $\mathbf{x}[n]$ as stationary with summable autocovariance function (ACF)

$$
\mathbf{R}[m]:=\mathrm{E}\left\{\mathbf{x}[m] \mathbf{x}^{T}[0]\right\}
$$

- The spectral density matrix (SDM) is

$$
\mathbf{S}(\theta):=\sum_{m=-\infty}^{\infty} \mathbf{R}[m] \exp (-j 2 \pi m \theta) \text {, for } \theta \in[0,1)
$$

- We require the SDM to be sufficiently smooth, or equivalently we require small ACF moments

$$
\begin{equation*}
\mu^{(h)}:=\sum_{m=-\infty}^{\infty} h[m]\|\mathbf{R}[m]\|_{\infty} . \tag{1}
\end{equation*}
$$

- Consider the conditional independence graph (CIG) $\mathcal{G}=$ ($[p]:=\{1, \ldots, p\}, E)$ of $\mathbf{x}[n]$.
- For a Gaussian process, $(k, l) \notin E \Longleftrightarrow\left[\mathbf{S}^{-1}(\theta)\right]_{k, l} \equiv 0$.
- Our interest is in sparse CIGs, containing few edges
- Goal: Estimate sparse CIG from a finite-length observation $\mathbf{x}[1], \ldots, \mathbf{x}[N]$, where typically $N \ll p$.
- We propose a nonparametric compressive selection scheme for the CIG of a stationary vector process.

Neighborhood Regression

- First, consider the special case of an i.i.d. sampling process, i.e., $\mathbf{R}[m]=\mathbf{C} \delta[m]$.
- This corresponds to model selection for a Gaussian Markov random field (GMRF) with covariance matrix C.
- Here, the SDM is flat, i.e., $\mathbf{S}(\theta)=\mathbf{C}$ for all $\theta \in[0,1)$.
- Determine neighborhood $\mathcal{N}(r):=\{l:(r, l) \in E\}$ by regressing $x_{r}[n]$ on the remaining components.
- For the i.i.d. case, this regression becomes

$$
x_{r}[n]=\sum_{l \in[p] \backslash\{r\}} \beta_{l} x_{l}[n]+w[n],
$$

with $\beta_{l}=-\left[\mathbf{C}^{-1}\right]_{r, l} /\left[\begin{array}{c}l \in[[] \backslash\{r\} \\ \left.\mathbf{C}^{-1}\right]_{r, r}\end{array}\right.$

- Since $\mathcal{N}(r)$ coincides with $\operatorname{supp}(\boldsymbol{\beta})$, with $\boldsymbol{\beta}:=$ vec $\left\{\beta_{1}\right\}_{1 \in[p] \backslash \backslash\{r\}}$ determining the neighborhood is reduced to sparse support recovery!
- LASSO based selection scheme proposed by [Meinshausen \& Bühlmann, 2006].

Multitask Learning Formulation

- For a general stationary process, we perform neighborhood regression in the frequency domain.
- Let $\widehat{\mathbf{S}}\left(\theta_{f}\right)$ denote an estimate of the $\operatorname{SDM} \mathbf{S}\left(\theta_{f}\right)$ for $\theta_{f}:=$ $(f-1) / F, f \in[F]$.
- For each frequency $\theta_{f}, f \in[F]$, we define

$$
\begin{equation*}
\mathbf{y}^{(f)}=\mathbf{X}^{(f)} \boldsymbol{\beta}^{(f)}+\mathbf{w}^{(f)} \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(\mathbf{y}^{(f)} \mathbf{X}^{(f)}\right):=\sqrt{\mathbf{P}_{1 \leftrightarrow r} \widehat{\mathbf{S}}\left(\theta_{f}\right) \mathbf{P}_{1 \leftrightarrow r}}, \tag{3}
\end{equation*}
$$

and parameter vectors

$$
\begin{equation*}
\boldsymbol{\beta}^{(f)}:=\left[\mathbf{S}\left(\theta_{f}\right)\right]_{[p p \backslash\{r\},[p] \backslash\{r\}}^{-1}\left[\mathbf{S}\left(\theta_{f}\right)\right]_{[p] \backslash r\}, r} . \tag{4}
\end{equation*}
$$

- Based on (4) it can be shown that

$$
\mathcal{N}(r)=\operatorname{gsupp}(\boldsymbol{\beta}):=\bigcup_{f \in[F]} \operatorname{supp}\left(\boldsymbol{\beta}^{(f)}\right),
$$

with stacked parameter vector $\boldsymbol{\beta}:=\left(\left(\boldsymbol{\beta}^{(1)}\right)^{T}, \ldots,\left(\boldsymbol{\beta}^{(F)}\right)^{T}\right)^{T}$

- If the CIG is sparse, i.e., $|\mathcal{N}(r)| \ll p$, it follows that $\boldsymbol{\beta}$ is a block-sparse vector.
- Recovering a block-sparse vector $\boldsymbol{\beta}$ from the measurements (2) is recognized as a multitask learning problem.
- A popular approach to this is multitask LASSO (mLASSO).

Novel Selection Scheme

- Let $w[m]$ denote a window function with non-negative discrete time Fourier transform.
- We propose the following selection scheme:
- First, for each θ_{f}, we compute a multivariate BlackmanTukey SDM estimate

$$
\widehat{\mathbf{S}}(\theta):=\sum_{m=-N+1}^{N-1} w[m] \widehat{\mathbf{R}}[m] \exp (-j 2 \pi \theta m) .
$$

Here, $\widehat{\mathbf{R}}[m]:=(1 / N) \sum_{n=1}^{N-m} \mathbf{x}[n+m] \mathbf{x}^{T}[n]$ for $m \in$ $\{0, \ldots, N-1\}$ and, by symmetry of the ACF, $\widehat{\mathbf{R}}[m]:=$ $\widehat{\mathbf{R}}^{T}[-m]$ for $m \in\{-N+1, \ldots,-1\}$.

- Second, based on $\widehat{\mathbf{S}}\left(\theta_{f}\right), f \in[F]$, we construct $\mathbf{y}^{(f)}$ and $\mathbf{X}^{(f)}$ according to (3) and compute mLASSO estimate
$\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\left\{\frac{1}{F} \sum_{f \in[F]}\left\|\mathbf{y}^{(f)}-\mathbf{X}^{(f)} \boldsymbol{\beta}^{(f)}\right\|_{2}^{2}+\lambda\|\boldsymbol{\beta}\|_{2,1}\right\}$, where $\|\boldsymbol{\beta}\|_{2,1} \quad:=\sum_{r \in[q]}\left\|\boldsymbol{\beta}_{r}\right\|_{2} \quad$ with $\quad \boldsymbol{\beta}_{r} \quad:=$ $\left(\left[\boldsymbol{\beta}^{(1)}\right]_{r}, \ldots,\left[\boldsymbol{\beta}^{(F)}\right]_{r}\right)^{T} \in \mathbb{C}^{F}$.
- The neighborhood $\mathcal{N}(r)$ is finally estimated by

$$
\widehat{\mathcal{N}}(r):=\left\{l:\left\|\hat{\boldsymbol{\beta}}_{l}\right\|_{2}>\tau\right\}
$$

- Scheme is modular: Different combinations of SDM estimators and sparse support recovery schemes possible.

Performance Guarantees

- Denote by $\mathcal{M}\left(A, B, s_{\max }, \rho_{\text {min }}, \mu^{\left(h_{1}\right)}, \phi_{\text {min }}\right)$ the class of stationary Gaussian processes that satisfy the following conditions
- Uniform boundedness of SDM eigenvalues:

$$
0<A \leq \lambda_{\min }(\mathbf{S}(\theta)) \leq \lambda_{\max }(\mathbf{S}(\theta)) \leq B<\infty
$$

This technical assumption ensures certain Markov properties of the CIG.

- Maximum node degree $s_{\text {max }}$: We consider sparse CIGs, whose maximum node degree is bounded as

$$
|\mathcal{N}(r)| \leq s_{\max } \ll p
$$

- Minimum partial coherence $\rho_{\text {min }}>0$: This parameter quantifies the minimum partial correlation between the spectral components of the process. In particular, we require

$$
\sum_{f \in[F]}\left|\left[\mathbf{S}^{-1}\left(\theta_{f}\right)\right]_{r, r^{\prime}} /\left[\mathbf{S}^{-1}\left(\theta_{f}\right)\right]_{r, r}\right|^{2} \geq \rho_{\text {min }}^{2}
$$

for all $r \in[p], r^{\prime} \in \mathcal{N}(r)$.
-ACF moment $\mu^{\left(h_{1}\right)}$: We quantify the smoothness of the processes in \mathcal{M} using the ACF moment (1) with weight function $h_{1}[m]:=|1-w[m](1-|m| / N)|$.

- Minimum multitask compatibility constant $\phi_{\min }>0$: For every process in \mathcal{M}, we require

$$
s_{\max } \sum_{f \in[F]}\left(\boldsymbol{\beta}^{(f)}\right)^{H} \mathbf{S}\left(\theta_{f}\right) \boldsymbol{\beta}^{(f)} \geq \phi_{\min }^{2}\left\|\boldsymbol{\beta}_{\mathcal{N}(r)}\right\|_{2,1}^{2}
$$

for all $r \in[p]$ and all vectors $\boldsymbol{\beta} \in \mathbb{C}^{q F}$ such that

$$
\left\|\boldsymbol{\beta}_{\mathcal{S}}\right\|_{2,1}>0 \text { and }\left\|\boldsymbol{\beta}_{\mathcal{S}^{d}}\right\|_{2,1} \leq 3\left\|\boldsymbol{\beta}_{\mathcal{S}}\right\|_{2,1} .
$$

- We choose mLASSO parameter $\lambda=\phi_{\text {min }}^{2} \rho_{\text {min }} /\left(18 s_{\text {max }} F\right)$ and threshold $\tau=\rho_{\text {min }} / 2$.
- Combining a deterministic analysis of mLASSO with a largedeviation characterization of the SDM estimator, we derived the following result:
Theorem 1 Consider a p-dimensional stationary Gaussian time series $\mathbf{x}[n]$ belonging to $\mathcal{M}\left(A, B, s_{\text {max }}, \rho_{\text {min }}, \mu^{\left(h_{1}\right)}, \phi_{\text {min }}\right)$. Then, if for some $\delta>0$, the rescaled sample size $\eta:=$ $N /\left(\log (p) s_{\text {max }}^{3}\right)$ and the correlation moment $\mu^{\left(h_{1}\right)}$ satisfy

$$
\eta>10^{3} \log \left(\frac{4 F}{\delta}\right)\|w\|_{1}^{2} B^{2} / \kappa^{2} \text { and } \mu^{\left(h_{1}\right)} \leq \frac{\kappa}{2 s_{\max }^{3 / 2}}
$$

with $\kappa:=\left(\phi_{\text {min }}^{2} / 174\right) \rho_{\text {min }} \sqrt{\frac{A F}{B}}$, the probability of correctly selecting the edge set E is at least $1-\delta$, i.e.,

$$
\mathrm{P}\left\{\bigcap_{r \in[p]}\{\widehat{\mathcal{N}}(r)=\mathcal{N}(r)\}\right\} \geq 1-\delta
$$

Numerical Results

- We applied our method to a synthetic process obtained by filtering a p-dimensional white Gaussian process with a FIR filter of length 2.
- The filtered process has a sparse CIG with $s_{\max }=3$.
- We computed empirical false alarm $\left(P_{f a}\right)$ and detection ratios $\left(P_{d}\right)$ based on 10 simulation runs.

- Our method yields reasonable performance even if $N=32$ only for a 64 -dimensional process.
- The rescaled sample size η seems to be a good performance indicator.

