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Introduction

•Consider a p-dimensional vector-valued Gaussian process

x[n] = (x1[n], . . . , xp[n])
T .

•We model x[n] as stationary with summable auto-
covariance function (ACF)

R[m] := E{x[m]xT [0]}.

•The spectral density matrix (SDM) is

S(θ) :=

∞∑

m=−∞

R[m] exp(−j2πmθ), for θ ∈ [0, 1).

•We require the SDM to be sufficiently smooth, or equiva-
lently we require small ACF moments

µ(h) :=

∞∑

m=−∞

h[m]‖R[m]‖∞. (1)

•Consider the conditional independence graph (CIG) G =
([p] := {1, . . . , p}, E) of x[n].

• For a Gaussian process, (k, l) /∈ E ⇐⇒
[
S−1(θ)

]
k,l

≡ 0.

•Our interest is in sparse CIGs, containing few edges.

•Goal: Estimate sparse CIG from a finite-length observation
x[1], . . . ,x[N ], where typically N ≪ p.

•We propose a nonparametric compressive selection scheme
for the CIG of a stationary vector process.

Neighborhood Regression

• First, consider the special case of an i.i.d. sampling process,
i.e., R[m] = Cδ[m].

•This corresponds to model selection for a Gaussian Markov
random field (GMRF) with covariance matrix C.

•Here, the SDM is flat, i.e., S(θ) = C for all θ ∈ [0, 1).

•Determine neighborhood N (r) := {l : (r, l) ∈ E} by re-
gressing xr[n] on the remaining components.

• For the i.i.d. case, this regression becomes

xr[n] =
∑

l∈[p]\{r}

βlxl[n] + w[n],

with βl = −
[
C−1

]
r,l
/
[
C−1

]
r,r
.

• Since N (r) coincides with supp(β), with β :=
vec{βl}l∈[p]\{r} determining the neighborhood is reduced to
sparse support recovery!

• LASSO based selection scheme proposed by [Meinshausen
& Bühlmann, 2006].

Multitask Learning Formulation

• For a general stationary process, we perform neighborhood
regression in the frequency domain.

• Let Ŝ(θf) denote an estimate of the SDM S(θf) for θf :=
(f − 1)/F , f ∈ [F ].

• For each frequency θf , f ∈ [F ], we define

y(f) = X(f)β(f) +w(f), (2)

with (
y(f) X(f)

)
:=

√
P1↔rŜ(θf)P1↔r, (3)

and parameter vectors

β(f) :=
[
S(θf)

]−1

[p]\{r},[p]\{r}

[
S(θf)

]
[p]\{r},r

. (4)

•Based on (4) it can be shown that

N (r) = gsupp(β) :=
⋃

f∈[F ]

supp(β(f)),

with stacked parameter vector β :=
((
β(1)

)T
, . . . ,

(
β(F )

)T)T
.

• If the CIG is sparse, i.e., |N (r)| ≪ p, it follows that β is a
block-sparse vector.

•Recovering a block-sparse vector β from the measurements
(2) is recognized as a multitask learning problem.

•A popular approach to this is multitask LASSO (mLASSO).

Novel Selection Scheme

• Let w[m] denote a window function with non-negative dis-
crete time Fourier transform.

•We propose the following selection scheme:

• First, for each θf , we compute a multivariate Blackman-
Tukey SDM estimate

Ŝ(θ) :=

N−1∑

m=−N+1

w[m]R̂[m] exp(−j2πθm).

Here, R̂[m] := (1/N)
∑N−m

n=1 x[n + m]xT [n] for m ∈

{0, . . . , N − 1} and, by symmetry of the ACF, R̂[m] :=
R̂T [−m] for m ∈ {−N + 1, . . . ,−1}.

• Second, based on Ŝ(θf), f ∈ [F ], we construct y(f) and
X(f) according to (3) and compute mLASSO estimate

β̂ = argmin
β

{
1

F

∑

f∈[F ]

‖y(f) −X(f)β(f)‖22 + λ‖β‖2,1

}
,

where ‖β‖2,1 :=
∑

r∈[q] ‖βr‖2 with βr :=
( [

β(1)
]
r
, . . . ,

[
β(F )

]
r

)T
∈C

F .

•The neighborhood N (r) is finally estimated by

N̂ (r) := {l : ‖β̂l‖2 > τ}.

• Scheme is modular: Different combinations of SDM esti-
mators and sparse support recovery schemes possible.

Performance Guarantees

•Denote by M(A,B, smax, ρmin, µ
(h1), φmin) the class of sta-

tionary Gaussian processes that satisfy the following condi-
tions
–Uniform boundedness of SDM eigenvalues:

0 < A ≤ λmin(S(θ)) ≤ λmax(S(θ)) ≤ B < ∞.

This technical assumption ensures certain Markov prop-
erties of the CIG.

–Maximum node degree smax: We consider sparse CIGs,
whose maximum node degree is bounded as

|N (r)| ≤ smax ≪ p.

–Minimum partial coherence ρmin > 0: This parameter
quantifies the minimum partial correlation between the
spectral components of the process. In particular, we re-
quire

∑

f∈[F ]

∣∣[S−1(θf)
]
r,r′
/
[
S−1(θf)

]
r,r

∣∣2≥ ρ2min

for all r ∈ [p], r′ ∈ N (r).

–ACF moment µ(h1): We quantify the smoothness of the
processes in M using the ACF moment (1) with weight
function h1[m] := |1− w[m](1− |m|/N)|.

–Minimum multitask compatibility constant φmin> 0: For
every process in M, we require

smax
∑

f∈[F ]

(
β(f)

)H
S(θf)β

(f) ≥ φ2
min‖βN (r)‖

2
2,1

for all r ∈ [p] and all vectors β ∈ C
qF such that

‖βS‖2,1 > 0 and ‖βSc‖2,1 ≤ 3‖βS‖2,1.

•We choose mLASSO parameter λ = φ2
minρmin/(18smaxF )

and threshold τ = ρmin/2.

•Combining a deterministic analysis of mLASSO with a large-
deviation characterization of the SDM estimator, we derived
the following result:

Theorem 1Consider a p-dimensional stationary Gaussian

time series x[n] belonging to M(A,B, smax, ρmin, µ
(h1), φmin).

Then, if for some δ > 0, the rescaled sample size η :=
N/(log(p)s3max) and the correlation moment µ(h1) satisfy

η > 103 log

(
4F

δ

)
‖w‖21B

2/κ2 and µ(h1) ≤
κ

2s
3/2
max

,

with κ := (φ2
min/174)ρmin

√
AF
B , the probability of correctly

selecting the edge set E is at least 1− δ, i.e.,

P

{ ⋂

r∈[p]

{N̂ (r) = N (r)}

}
≥ 1− δ.

Numerical Results

•We applied our method to a synthetic process obtained by
filtering a p-dimensional white Gaussian process with a FIR
filter of length 2.

•The filtered process has a sparse CIG with smax = 3.

•We computed empirical false alarm (Pfa) and detection ra-
tios (Pd) based on 10 simulation runs.
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•Our method yields reasonable performance even if N = 32
only for a 64-dimensional process.

•The rescaled sample size η seems to be a good performance
indicator.


