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Introduction

e Consider a p-dimensional vector-valued Gaussian process

x[n] = (x1|n], . .. ,:Up[n])T.

e We model x|n| as stationary with summable auto-
covariance function (ACF)

Rim] = E{x[m]x’[0]}.
e The spectral density matrix (SDM) is

S(6) := »  Rm]exp(—j2rmb), for § € [0,1).

e We require the SDM to be sufficiently smooth, or equiva-
lently we require small ACF moments

p =% hm]|[R[m]]«. (1)

e Consider the conditional independence graph (CIG) G =
([p] =={1,...,p}, E) of x[n].

o For a Gaussian process, (k,l) ¢ E <= [S7'(#)],,=0.
e Our interest is in sparse ClGs, containing few edges.

e Goal: Estimate sparse CIG from a finite-length observation
x|[1],...,x|N], where typically N < p.

e \We propose a nonparametric compressive selection scheme
for the CIG of a stationary vector process.

Neighborhood Regression

e First, consider the special case of an i.i.d. sampling process,

i.e., Rlm] = Cd|m)|.

e [ his corresponds to model selection for a Gaussian Markov
random field (GMRF) with covariance matrix C.

e Here, the SDM s flat, i.e., S(0) = C for all # € [0, 1).

e Determine neighborhood N (r) := {l : (r,l) € E} by re-

gressing x,[n| on the remaining components.

e For the i.i.d. case, this regression becomes

T.[n] = Z Bizn] + winl,
lelp\{r}
with 1= ~[C1], /1],

eSince MN(r) coincides with supp(3), with B8 =
vecy B biep)\fr} determining the neighborhood is reduced to
sparse support recovery!

e LASSO based selection scheme proposed by [Meinshausen
& Biihlmann, 2006].

Multitask Learning Formulation

e For a general stationary process, we perform neighborhood
regression in the frequency domain.

o let §((9f) denote an estimate of the SDM S(0y) for 0 :=
(f~1)/F, f € [F]

e For each frequency 0, f € |F|, we define

y(f) _ X(f)/@(f) 4 W(f)’ (2)
with

(Ym X<f)) = \/merg(@f)mem (3)

and parameter vectors
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e Based on (4) it can be shown that

N (r) = gsupp(8) == | supp(8'Y)),

fEF]

with stacked parameter vector 3 = ((5(1>)T, el (B(F>)T)T.

o If the CIG is sparse, i.e., |[N(7)| < p, it follows that 3 is a
block-sparse vector.

e Recovering a block-sparse vector 3 from the measurements
(2) is recognized as a multitask learning problem.

e A popular approach to this is multitask LASSO (mLASSO).

Novel Selection Scheme

e Let w|m| denote a window function with non-negative dis-
crete time Fourier transform.

e We propose the following selection scheme:

o First, for each 6, we compute a multivariate Blackman-
Tukey SDM estimate
N-1
Z w[m|R[m] exp(—j2m0m).

m=—N+1

Here, R[m] := (1/N) 32" x[n + m|x'[n] for m €

{0,..., N — 1} and, by symmetry of the ACF, R|m| :=
R'[-m] form e {-N +1,...,—1}.

e Second, based on §(9f), f € [F], we construct y/) and
X /) according to (3) and compute mLASSO estimate

A . ]
B = arg[‘rjnm {F

0 _ XUGO|E 4+ Auﬁuz,l},

where HIBHQJ
(8",

e The neighborhood N (7) is finally estimated by
N(r) = {118l > 7}

> e 1Bl with 3,
[B8¥)] ) ect.

e Scheme is modular: Different combinations of SDM esti-
mators and sparse support recovery schemes possible.

Performance Guarantees

e Denote by M(A, B, Smax, Pmin; ,u(hl), ®min) the class of sta-
tionary Gaussian processes that satisfy the following condi-
tions
— Uniform boundedness of SDM eigenvalues:

0 < A< Amin(S(0)) < Amae(S(0)) < B < o0.

This technical assumption ensures certain Markov prop-
erties of the CIG.

—Maximum node degree sn.x: We consider sparse ClGs,
whose maximum node degree is bounded as

IN(1)] < Smax <K P.

—Minimum partial coherence pnin > 0: This parameter
quantifies the minimum partial correlation between the
spectral components of the process. In particular, we re-
quire

> [[8700],,./ 870N, I = o
felr]
for all r € [p], " € N(r).

— ACF moment 1!"): We quantify the smoothness of the

processes in M using the ACF moment (1) with weight
function hi|m| := |1 — w|m|(1 — |m|/N)]|.

— Minimum multitask compatibility constant ¢, > 0: For
every process in M, we require

Smax Z (/B(f))HS(ef)/B(f) > ¢r2n|nH/8/\/‘(T)Hg,1

fEF]

for all € [p] and all vectors 3 € C%" such that

|Bsll21 > 0 and ||Bse|]21 < 3||Bsl|2.1-

e We choose mLASSO parameter A = ¢*: pmin/(185max ")
and threshold 7 = pmin/2.

e Combining a deterministic analysis of mLASSO with a large-
deviation characterization of the SDM estimator, we derived
the following result:

Theorem 1 Consider a p-dimensional stationary Gaussian
time series x|n| belonging to M(A, B, Smax, Pmins 1", O min).-
Then, if for some 0 > 0, the rescaled sample size n =
N/(log(p)s3_ ) and the correlation moment 11\ satisfy

4F
n > 10"log (T> [w]B/5* and p™) < —,
Smax

min B
selecting the edge set E is at least 1 — 0, i.e.,

P{ Q}{N(r) = N(r)}} >1-4

with k = (%, / 174)/0min\/A_F, the probability of correctly

Numerical Results

e \We applied our method to a synthetic process obtained by
filtering a p-dimensional white Gaussian process with a FIR
filter of length 2.

e [ he filtered process has a sparse CIG with s, = 3.

e \We computed empirical false alarm ( Py,) and detection ra-
tios (P;) based on 10 simulation runs.

P; vs. rescaled sample size
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e Our method yields reasonable performance even if N = 32
only for a 64-dimensional process.

e [ he rescaled sample size 17 seems to be a good performance
Indicator.
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