
Analysis of spin-coherent drift-diffusion model for
spin-polarized transport in semiconductors
Ansgar Jüngel*, Claudia Negulescu, Polina Shpartko* polina.shpartko@tuwien.ac.at

* Institute of Analysis and Scientific Computing - Vienna University of Technology

P
D E
n

Main theses
- The model – continuity equations (for electron density components) + Poisson equation (for electric potential) – describes electron transport in semiconductor with magnetic properties
- Equations in the system are strongly coupled, system is nonlinear (coupling of the densities and potential)
- We present analytical results (existence, uniqueness of the solution, its boundedness, monotonicity of the entropy) and numerical results for 1D.

Model
We studied a spin-coherent matrix drift-diffusion model derived in the work [1]:

N ∈ C2×2 - electron density,
J ∈ C2×2 - current,
Ω ⊂ R3 - domain,
V - potential.

∂tN + divJ + iγ[N, ~m · ~σ] =
1

τ

(
1

2
tr(N)σ0 −N

)
, (1)

J = −DP−1/2(∇N + N∇V )P−1/2, (2)

N =
1

2
nDσ0 on ∂Ω, t > 0, N(0) = N0 in Ω. (3)

−λ2
D∆V = tr(N)− C(x) in Ω, V = VD on ∂Ω. (4)

γ > 0 - pseudo-exchange field,
~m ∈ R3 - direction of magnetization,
τ > 0 - spin-flip relaxation time,
D = D(x) > 0 - space-dependent diffusion coefficient,
~σ = (σ1, σ2, σ3) - triple of the Pauli matrices, σ0 - unit matrix in C2×2,
P = σ0 + p~m · ~σ, where p = p(x) ∈ [0, 1).

The model describes evolution of electron charge and spin densities in semiconductor matter under impact of electric and magnetic fields.

It takes into account drift and diffusion of electron charge and spin densities, precession of spin around magnetic field direction, relaxation of spin.

Difficulties: strong coupling of the model equations and the quadratic-type nonlinearity of the drift term. Due to this there are no analytical results available for systems like this one.

Theory Numerics

Reformulation of the problem (1)-(4) in Pauli basis: N = 1
2n0σ0 + ~n · ~σ, J = 1

2j0σ0 +~j · ~σ.
n0 - electron charge density,
~n = (n1, n2, n3) - spin-vector density.

∂tn0 − div
(
D

η2
(J0 − 2p ~J · ~m)

)
= 0,

∂tnk − div
(
D

η2

(
ηJk + (1− η)( ~J · ~m)mk −

p

2
J0mk

))
− 2γ(~n× ~m)k = −nk

τ
,

k = 1, ..3, J0 = ∇n0 + n0∇V, ~J = ∇~n + ~n∇V, x ∈ Ω, t > 0.

Advantage: system of scalar equations

Main analytical result:

Theorem 1 (Existence of bounded weak solutions). Let T > 0, Ω ⊂ R3 - bounded domain :
∂Ω ∈ C1,1. Let λD, γ, D > 0, 0 ≤ p < 1, ~m ∈ R3 : |~m| = 1, C ∈ L∞(Ω),

0 ≤ nD ∈ H1(Ω) ∩ L∞(Ω), VD ∈ W 2,q0(Ω), q0 > 3,

n0
0, ~n

0 · ~m, |~n0| ∈ L∞(Ω),
1

2
n0

0 ± ~n
0 · ~m ≥ 0.

Then ∃ a unique solution (N = 1
2n0σ0 + ~n · ~σ, V ) to (1) - (4) such that

n0, nk ∈ W 1,2(0, T ;H1
0 , L

2), V ∈ L∞(0,∞;W 2,q0(Ω)), q0 > 3,

0 ≤ n0 ± ~n · ~m ∈ L∞(0,∞;L∞(Ω)), |~n| ∈ L∞(0, T ;L∞(Ω)).

The key idea of the proof – exploiting of reformulations with different variables:
- in Pauli basis (n0, n1, n2, n3)
- spin up/down densities: n± = 1

2n0 ± ~n · ~m
- parallel/perpendicular densities: ~n‖ = (~n · ~m)~m and ~n⊥ = ~n− (~n · ~m)~m.
For existence proof we used Leray-Schauder Fixed Point Theorem, for boundedness esti-
mates – Stampacchia and Moser-type iteration methods.

Von-Neumann entropy:

HQ(t) =

∫
Ω

(
tr[N(logN − 1)−ND(logND − 1)] +

λ2
D

2
|∇(V − VD)|2

)
dx

Proposition 2 (Monotonicity of HQ). Let log(nD/2) + VD = const. in Ω, (N, V ) - a smooth
solution to (1)-(4) : 1

2n0 > |~n| in Ω, t ≥ 0. Then t 7→ HQ(t) is nonincreasing for t > 0.

This follows from spectral theory and matrix trace properties.

Entropy HQ(t) of numerical solution converging to the thermal equilibrium state:
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Figure 1: Semilogarithmic plot of the entropy HQ(t): exponential decay

We considered 1D problem for 3-layered structure composed of layers of different magnetic
and semiconductor properties:

Figure 2: Scheme of the considered problem

This is a "toy problem" which could be considered as a first approximation of spin transistor.

Difficulties: discontinuity of coefficients due to abrupt change of magnetic properties, nu-
merical degeneration of Poisson equation (small λ2

D), possible instability due to large ∇V .

Solution was implemented with finite volumes method, implicit in time; Gummel iteration
scheme was used for mutual solution of continuity and Poisson equations.

Solution of continuity equations with given (linear) potential was exploited as a reference
solution as it was already presented in the work [1].

Influence of potential nonlinearity is significant, especially for smaller spin polarization p:
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Figure 3: Charge density n0: solution of continuity equations with given (linear) potential (left), solution of full
drift-diffusion-Poisson model (right).

On the contrary solution with Poisson equation for n3 differs from solution with linear potential
only slightly:
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Figure 4: Charge density n3: solution of continuity equations with given (linear) potential (left), solution of full
drift-diffusion-Poisson model (right).

Conclusion: Implemented numerics gives distribution of charge and spin densities, respec-
tively charge and spin currents, but for now only in 1D.

Future work
-Solution in 2D
-Coupling with Landau-Lifschits-Gilbert equation (gives evolution of ~m in time)
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