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Abstract. We analyze the singular spectrum of selfadjoint operators
which arise from pasting a finite number of boundary relations with
a standard interface condition. A model example for this situation is a
Schrödinger operator on a star-shaped graph with continuity and Kirch-
hoff conditions at the interior vertex. We compute the multiplicity of the
singular spectrum in terms of the spectral measures of the Weyl func-
tions associated with the single (independently considered) boundary
relations. This result is a generalization and refinement of a Theorem of
I.S.Kac.
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1. Introduction

In the present paper we undertake an analysis of the singular spectrum of
selfadjoint operators which are constructed by pasting a finite number of
boundary triples (relations) by means of a standard interface condition.

For the purpose of explaining our results without having to introduce
too much terminology, we consider a model example: A Schrödinger operator
on a star-graph. Consider a star-shaped graph having finitely many edges, say,
E1, . . . , En. We think of the edges as (finite or infinite) intervals El = [0, el),
where the endpoint 0 corresponds to the interior vertex. A selfadjoint operator
can be constructed from the following data:
(1) On each edge El, a real-valued potential ql ∈ L1

loc([0, el)).
(2) Boundary conditions at outer vertices el, if the potential ql at el is regular

or in Weyl’s limit circle case.
(3) An interface condition at the interior vertex.
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i.c.

◦b.c.

◦
b.c.

− d2

dx2 + ql, l = 1, . . . , n

The operator A one can associate with this data acts in the space H :=∏n
l=1 L2(0, el) as

A
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⎜
⎝
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...
un

⎞

⎟
⎠ :=

⎛

⎜
⎝

−u′′
1

...
−u′′

n

⎞

⎟
⎠+

⎛

⎜
⎝

q1u1

...
qnun

⎞

⎟
⎠ , (1.1)

on the domain

dom A :=

{

(u1, . . . , un) ∈
n∏

l=1

L2(0, el) :

ul, u
′
l are absolutely continuous,−u′′

l + qlul ∈ L2(0, el),

ul satisfies the boundary condition at outer vertex (if present),

u1, . . . , un satisfy the interface condition at the inner vertex

}

.

(1.2)

A frequently used interface condition, sometimes called the “standard
condition”, is

u1(0) = · · · = un(0) and
n∑

l=1

u′
l(0) = 0. (1.3)

In the case “n = 2” the condition (1.3) arises when investigating a
whole-line Schrödinger operator with the classical method of Titchmarsh and
Kodaira.

The task now is to describe the projection-valued spectral measure E
of A in terms of the scalar spectral measures μl of the non-interacting oper-
ators Al, l = 1, . . . , n, which are defined by the potentials ql on the edges El

independently (imposing Dirichlet boundary conditions at the inner vertex 0
for each of them).

A precise description of the absolutely continuous part1 Eac of E, in-
cluding computation of its spectral multiplicity, is readily available. It states
that Eac is equivalent (in the sense of mutual absolute continuity) to the

1Notice that the notions of absolute continuity and singularity of measures make sense
also if the involved measures have different ranges. Moreover, Lebesgue decompositions of
a projection-valued measure with respect to a scalar measure (in this case, the Lebesgue
measure) exist.
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sum μ1,ac + · · ·+μn,ac of the absolutely continuous parts of the measures μl.
Moreover, informally speaking, the local spectral multiplicity corresponding
to Eac is equal to the number of overlaps of μ1,ac, . . . , μn,ac (for a precise
formulation see Theorem 1.1). These facts follow from [15, Theorem 6.6],
a result which can be viewed as a higher-dimensional analogue (and refine-
ment) of one half of Aronszajn–Donoghue theory for rank one perturbations.
Namely, of the part which asserts stability of absolutely continuous spectrum,
cf. [2, Theorem 1], [11, Theorems 2 and 6].2 Another approach proceeds via
scattering theory and uses a modification of the Kato–Rosenblum theorem
[5,22], see also [38, Theorem 1.9]. Since the operator A is a finite dimensional
perturbation (in the resolvent sense) of the operator

⊕n
l=1 Al, wave operators

exist and are complete, which in turn means that the absolutely continuous
parts of these operators are unitarily equivalent.

In the present paper, we describe the singular part Es of E, including
a formula for spectral multiplicity. Our main result is Theorem 1.2 below
(where we provide the formulation for the Schrödinger case; for the general
situation see Theorem 4.1). Again speaking informally, it says that:

(I) One part of Es appears where at least two of the singular parts μl,s of
the measures μl overlap. Where only one singular part μl,s is present,
the spectrum disappears.

(II) For the part of Es described in (I), the local spectral multiplicity is
equal to the number of overlaps of μ1,s, . . . , μn,s minus 1. In particular,
the multiplicity cannot exceed n − 1.

(III) The remaining part of Es is mutually singular to each of the spectral
measures μl and has multiplicity 1.

This theorem is a generalization and refinement of a theorem given by
Kac [20].3 He considered the case of two edges and showed that the spectral
multiplicity of the singular part Es is always 1. Kac’ Theorem corresponds
to the upper bound for multiplicity in (II) and simplicity of spectrum in
(III). Realizing a change of boundary condition of a half-line operator as
an interface condition with an “artificial second edge”, we can also reobtain
the half of Aronszajn–Donoghue theory which asserts disjointness of singular
spectra for different boundary conditions, see again [2,11], or [15, Theorem
3.2, (iv)]. This corresponds to the fact in (I) that, if only one spectrum is
present, it disappears.

By using the abstract framework of boundary relations, instead of just
discussing a Schrödinger operator on a star-graph, we achieve a slight gener-
alization and a significant increase of flexibility in applications (various kinds
of operators, not necessarily being differential operators, can be treated).
This bonus comes without additional effort, since our proofs proceed via an

2See also [15, Theorem 3.2, (i)–(iii)] for a summary.
3Full proofs are provided in [21] (in Russian). An English translation of this paper is not
available, however, the proof was reproduced by D.Gilbert in [14]: The operator-theoretic
half of Kac’ theorem is [14, Theorem 5.1], the measure-theoretic half is [14, Theorem

5.5, (i)]. An interesting approach to Kac’ theorem was given recently by Simon [33] who
proceeds via rank-one perturbations and uses Aronszajn–Donoghue theory.
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analysis of Weyl functions and associated measures, and do not rely on the
concrete form of the operators on edges.

The description of the absolutely continuous part Eac is not specific for
the geometry of a star-graph and/or the use of standard interface conditions:
the mentioned result [15, Theorem 6.6] holds for arbitrary finite-rank per-
turbations. Contrasting this, the description of the singular part Es given
in (I)–(III) is specific for the particular situation. This is seen, for example,
from some known formulas for the maximal multiplicity of an eigenvalue of a
Schrödinger operator on a graph (not necessarily a star-graph). It turns out
that this number depends on the geometry of the graph (rather than rank of
the perturbation), see [24] and the references therein. Another good example
is a theorem due to Howland, cf. [18, 2.Theorem]. There for a certain type
of finite-rank perturbation a behavior is witnessed which is fully in opposite
to (I)–(III). Also we should mention that, although the considered operator
A is “only” a rank-one perturbation of the direct sum of the non-interacting
operators Al, classical perturbation theory does not give much information.
For example, the Kato–Rosenblum theorem deals with absolutely continuous
spectrum, or the theorem [36, Satz 10.18] on the ranges of spectral projections
yields information only for isolated eigenvalues. The singular (continuous and
possibly embedded) spectrum is much more instable, and its behavior is much
harder to control.

Let us give a brief outline of the organization of the paper. In the second
part of this introductory section, we explain the structure of the spectrum
of A in some more detail (old and new results). Section 2 is of prepara-
tory nature. We set up notation and collect some results from the literature
concerning: spectral multiplicity, Borel measures, and Cauchy integrals. We
compiled a concise yet exhaustive review of the required machinery and in-
cluded it in the paper since we believe that some of these deep and rather
recent theorems are maybe not widely known among operator theorists.

In Sect. 3, we provide some facts about boundary relations and the
Titchmarsh–Kodaira formula. Some of these statements are well-known and
readily available in the literature, for some others explicit references are not
known to us and hence proofs are given. Most important, we define the main
object of our studies: the pasting of boundary relations with standard in-
terface conditions, cf. Definition 3.16, and compute its matrix valued Weyl
function in terms of the Weyl functions of the single boundary relations, cf.
Proposition 3.18. Moreover, we carry out the calculations required to deter-
mine the point spectrum, cf. Theorem 3.19. Though the case of eigenvalues
is of course included in our main result, we find it worth to be formulated
and proved independently; it serves as an elementary accessible, yet precise,
model for the behavior of singular continuous spectrum.

Section 4 forms the core of the paper. In this section we formulate and
prove our main result Theorem 4.1; the major task is to get control of the
singular continuous (possibly embedded) part of the singular spectrum. The
proof can be outlined as follows: We further divide the singular part Es into
two summands. Namely, setting μ =

∑n
l=1 μl, we decompose Es into the sum

of a measure which is absolutely continuous with respect to μ and one which
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is singular with respect to μ. First, we show that on null sets of the measure
μ only simple spectrum of A may appear, and this shows item (III). Second,
we consider points having certain “good” properties regarding existence of
derivatives of involved measures and pointwise asymptotics of their Poisson
and Cauchy integrals. For such points the multiplicity of the spectrum can
be calculated, and this shows items (I) and (II) on the set of “good” points.
Finally, we show that this set of “good” points in fact supports the full
singular part of μ, and thereby complete the proof of items (I) and (II).

The paper closes with two appendices. In the first appendix we provide
some examples which show that all possibilities permitted by (I)–(III) indeed
may occur. These are not difficult to obtain and are based on classical theory
and some more recent results on concrete potentials on the half-line. This
section will not hold many surprises for the specialist in the field; we include
it to give a fuller picture. In the second appendix we show how to reobtain
from our present results the classical theorem of Aronszajn and Donoghue on
singular spectra associated with different boundary conditions. Moreover, we
include a short discussion of some (a few) interface conditions different from
the standard condition.

There occurs an obvious open problem: Is it true that also for other
finite-rank perturbations the singular continuous spectrum behaves in the
same way as the point spectrum (concerning its multiplicity)? In a very gen-
eral setting, one may think of investigating arbitrary finite rank perturba-
tions; optimally obtaining a full higher-dimensional analogue of Aronszajn–
Donoghue theory for singular spectra. However, this is probably wishful
thinking: Keeping in mind the difficulties which arise when considering eigen-
values in the case of standard (Kirchhoff) interface conditions on a graph
with a somewhat more complicated geometric structure, already a thorough
investigation of this situation seems a challenging task.

At present, the answer to whatever version of the above posed question
is not at all clear. The computations we use in this paper are specific for
the case “star-graph+standard interface conditions”. We plan to address this
problem in future work.

Recently, after the present paper was completed, we learned about a po-
tential different approach to this circle of questions. Namely, to appropriately
construct reducing subspaces, use properties of the orthogonal projections
between these subspaces, and employ classical Aronszajn–Donoghue theory.
This idea is due to Vladimir Kapustin who works on implementing it. We are
grateful to him for discussing his ideas with us.

Detailed Description of the Structure of σ(A)
Again, for the purpose of explaining, we consider a Schrödinger operator A
on a star-graph which is given by the data (1)–(3).

A first, rough, insight into the structure of the spectrum is provided
by the classical Titchmarsh-Kodaira formula. We may consider the operator
A as a selfadjoint extension of the symmetry S whose domain is defined by
requiring that ul(0) = u′

l(0) = 0, l = 1, . . . , n. This symmetry is completely
non-selfadjoint, and has defect index (n, n). The spectral multiplicity of A
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cannot exceed n: There exists an n×n-matrix valued measure Ω such that
the operator A is unitarily equivalent to the operator of multiplication by the
independent variable in the space L2(R,Ω). A measure Ω with this property
can be constructed using Weyl theory. Since A is an extension of S, there
exists a matrix-valued Weyl function M(z) corresponding to A. The measure
Ω in the Herglotz-integral representation of M has the required properties.

Since the spectral projection of the multiplication operator in L2(R,Ω)
onto a Borel set Δ is the multiplication operator with the indicator function
of Δ, it follows that Ω and E are mutually absolutely continuous. If we set
ρ := tr Ω, then it is easy to see that Ω and ρ are mutually absolutely contin-
uous. We call the measure ρ from this construction a scalar spectral measure
corresponding to the operator A (this measure is of course not unique).

The same procedure can be carried out for each of the operators Al. For
the operator Al the defect index of the minimal operator is (1, 1), and one
gets a unitary equivalence to the multiplication operator the space L2(R, μl),
where μl is the (now scalar) measure taken from the Herglotz-integral repre-
sentation of the Weyl function associated with Al.

Let NA(x) be the spectral multiplicity function of A which is defined
ρ-a.e. The detailed definition of NA requires some background; we recall it
in §2, see (2.3). Moreover, set μ :=

∑n
i=1 μl, and

r(x) := # {l ∈ {1, . . . , n} : Dμμl(x) > 0} . (1.4)

Here Dμμl(x) denotes the Radon–Nikodym derivative of μl with respect
to μ, and the function r(x) is defined μ-a.e. Note that

∑n
l=1 Dμμl = 1 and

hence r(x) ≥ 1 for μ-a.a. points x ∈ R.
A complete description of the absolutely continuous part of the spectral

measure E of A follows from [15, Theorem 6.6]. Notation: We use ∼ to denote
mutual absolute continuity of two measures.

Theorem 1.1. [15] Let A be a Schrödinger operator on a star-graph given by
the data (1)–(3) using the standard interface condition (1.3). Denote by E the
projection valued spectral measure of A, let μ be the sum of the scalar spectral
measures of the non-interacting operators Al, and let Eac and μac be their
absolutely continuous parts with respect to the Lebesgue measure. Moreover,
let NA be the spectral multiplicity function of A, and let r(x) be as in (1.4).
Then

(I) Eac ∼ μac.
(II) NA(x) = r(x) for Eac-a.a. points x ∈ R.

The following complete description of the singular part of the spectral mea-
sure E of A is the main result of this paper (formulated for the Schrödinger
case; the general statement is Theorem 4.1). Notation: If X is a Borel set, we
write 1X · ν for the measure acting as (1X · ν)(Δ) = ν(X ∩ Δ).

Theorem 1.2. Let A be a Schrödinger operator on a star-graph given by the
data (1)–(3) using the standard interface condition (1.3). Denote by E the
projection-valued spectral measure of A, let μ be the sum of the scalar spectral
measures of the non-interacting operators Al, and let Es and μs be their
singular parts with respect to the Lebesgue measure. Let Es,ac and Es,s be the
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absolutely continuous and singular parts of Es with respect to μ. Moreover,
let NA be the spectral multiplicity function of A and (as in (1.4))

r(x) := # {l ∈ {1, . . . , n} : Dμμl(x) > 0} .

Then
(I) Es,ac ∼ 1X>1 · μs where X>1 := r−1({2, . . . , n}).

(II) NA(x) = r(x) − 1 for Es,ac-a.a. points x ∈ R.
(III) NA(x) = 1 for Es,s-a.a. points x ∈ R.

Notice that the Radon-Nikodym derivatives Dμμl and the number r are de-
fined μ-a.e. The functions NA and r should be considered as representatives
of the equivalence classes under different equivalence relations. However the
equality in item (II) makes sense and holds true Es,ac-a.e. for any choice of
such representatives, because the measure Es,ac is absolutely continuous with
respect to both E and μ. In turn the set X>1 is defined up to a μ-zero set,
but the measure 1X>1 · μs is defined uniquely.

Finally, let us make explicit the behavior of the point spectrum.

Theorem 1.3. Let A be a Schrödinger operator on a star-graph given by the
data (1)–(3) using the standard interface condition (1.3). Denote by ml the
Weyl functions of the non-interacting operators Al, and r(x) be as in (1.4).
Then a point x ∈ R belongs to σp(A), if and only if one of the following
alternatives takes place.
(I/II) The point x belongs to at least two of the point spectra σp(Al). In this

case the multiplicity of the eigenvalue x is equal to

# {l = 1, . . . , n : x ∈ σp(Al)} − 1.

(III) The limits ml(x) := limε↓0 ml(x + iε) all exist, are real, we have
limε↓0

1
iε

(
ml(x + iε) − ml(x)

) ∈ [0,∞), and
∑n

j=1 ml(x) = 0. In this
case x is a simple eigenvalue.

The connection of Theorem 1.3 with the general result Theorem 1.2 is made
as follows: For a point belonging to the point spectrum of at least one of the
operators Al, we have Dμμk(x) > 0 if and only if x ∈ σp(Ak) (k ∈ {1, . . . , n}).
Hence, for such points,

r(x) = #
{
l = 1, . . . , n : x ∈ σp(Al)

}
.

Moreover: If x is an eigenvalue of only one operator Al it disappears.
And the set of all points x which satisfy the conditions stated in (III) is
μ-zero.

2. Preliminaries

2.1. Some Terminology Concerning Measures

First of all, let us fix some measure theoretic language. We denote by B the
σ-algebra of all Borel sets on R. All measures ν are understood to be Borel
measures, and this includes the requirement that compact sets have finite
measure. Whenever writing “ν(X)”, this implicitly includes that X ∈ B. If
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we speak of a positive measure ν, this measure needs not to be finite. For a
complex measure ν, we denote by |ν| its total variation, and this is always a
finite positive measure. If a complex measure takes only real values, we also
speak of a real measure.

In some places we have to deal with sets which are not necessarily Borel
sets, and with functions which are not necessarily Borel measurable. We say
that X is a ν-zero set, if X ⊆ R and there exists a Borel set X ′ ⊇ X
such that ν(X ′) = 0. We say that a set X ⊆ R is ν-full, if its complement
is ν-zero. A property is said to hold ν-a.e. or for ν-a.a. points x, if the
set of all points where it holds is ν-full. Moreover, we say that a partially
defined function f is ν-measurable, if its domain is ν-full and there exists a
Borel measurable function which coincides ν-a.e. with f . Integrals

∫
R

f dν of
ν-measurable functions f are defined accordingly.

Of course, such terminology could be avoided by considering ν as a
measure on the completion of the σ-algebra B with respect to ν, and under-
standing measurability with respect to this larger σ-algebra. However, then
one has to work with different σ-algebras for different measures, and this
would make things technically laborious.

When ν is a (positive or complex) measure, and σ is a positive measure,
we say that ν is absolutely continuous with respect to σ (and write ν 	 σ),
if each σ-zero set is also ν-zero. We say that ν and σ are mutually singular
(and write ν ⊥ σ), if there exists a Borel set Δ which is ν-full and σ-zero.
Moreover, we say that ν and σ are mutually absolutely continuous (and write
ν ∼ σ), if ν 	 σ and σ 	 ν.

Each measure ν has a (essentially unique) decomposition into a sum
ν = νac + νs of a measure νac with νac 	 σ and a measure νs with νs ⊥ σ;
this is called the Lebesgue decomposition of ν with respect to σ. If ν 	 σ,
then there exists a (essentially unique) Borel measurable function Dσν with

ν(Δ) =
∫

Δ

Dσν dσ, Δ ∈ B.

This function is called the Radon-Nikodym derivative of ν with respect
to σ. It belongs to L1(σ), if ν is a complex measure, and to L1

loc(σ), if ν is a
positive measure.

Let ν be a complex measure, and let f ∈ L1(ν). Then we denote by
f · ν the measure which is absolutely continuous with respect to ν and has
Radon-Nikodym derivative f , i.e.,

(f · ν)(Δ) :=
∫

Δ

f dν, Δ ∈ B. (2.1)

In particular, if X is a Borel set, we have (1X ·ν)(Δ) = ν(X∩Δ),Δ ∈ B,
where 1X denotes the indicator function of the set X. If ν is a positive
measure, the same notation will be applied when f ∈ L1

loc(ν), f ≥ 0, and the
product f · ν will again be a positive measure.



Spectral Multiplicity of Schrödinger Operators

The support of a measure ν is the set

supp ν :=
{
x ∈ R : ν([x − ε, x + ε]) > 0, ε > 0

}
=

⋂

A closed,
ν-full

A.

This notion must be distinguished from the notion of a minimal support
of the measure ν. By this one means a any Borel set S with ν(R\S) = 0 and
such that any set S0 ⊆ S with ν(S0) = 0 is also Lebesgue zero.

All these notions also make sense when ν is a projection valued mea-
sure (like the spectral measure of a selfadjoint operator) or a matrix valued
measure (like the measure in the Herglotz integral representation of a matrix
valued Herglotz function).

2.2. The Spectral Multiplicity Function

In order to define the spectral multiplicity function, which measures the local
multiplicity of the spectrum, we have to provide some background material.
These topics are of course classical, see, e.g., [1,6,31]. Let A be a (possibly
unbounded) selfadjoint operator acting in some Hilbert space H, and denote
by E its projection-valued spectral measure. A linear subspace G of H is
called generating for A, if (“

∨
” denotes the closed linear span)

∨{
E(Δ)G : Δ ∈ B} = H

The spectral multiplicity of the operator A is defined as the minimal di-
mension of a generating subspace, and denoted by multA. If mult A = 1, one
also says that A has simple spectrum. For the sake of simplicity (and because
this is all we need), we assume throughout the following that multA < ∞.

There exist (see, e.g., [6, Theorem 7.3.7]) elements gl, l = 1, . . . ,mult A,
such that the subspaces Hl :=

∨{E(Δ)gl : Δ ∈ B} are mutually orthog-
onal, the subspace G := span{g1, . . . , gmult A} is generating, and the scalar
measures νl defined as νl(Δ) := (E(Δ)gl, gl),Δ ∈ B, satisfy

νmult A 	 · · · 	 ν2 	 ν1 ∼ E. (2.2)

Each set {g1, . . . , gmult A} with these properties is called a generating
basis.

If {g1, . . . , gmult A} is a generating basis, the subspaces Hl are mutually
orthogonal and each of them reduces the operator A. The operator A|Hl

has
simple spectrum and is unitarily equivalent to the operator of multiplication
by the independent variable in the space L2(R, νl). Thus A is unitarily equiv-
alent to the multiplication operator in the space

∏mult A
l=1 L2(R, νl). Consider

the sets (which are defined up to E-zero sets)

Yl :=
{
x ∈ R : (Dν1νl)(x) > 0

}
.

Then

R ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ Ymult A,

and these sets may be considered as layers of the spectrum. Hence, it is
natural to define the spectral multiplicity function of A as

NA(x) := #
{
l : x ∈ Yl

}
. (2.3)
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This function is defined almost everywhere with respect to the projec-
tion valued spectral measure of A and does not depend on the choice of a
generating basis {g1, . . . , gmult A}, cf. [6, Theorem 7.4.2]. The spectral mul-
tiplicity function is a unitary invariant. Notice that, since all definitions are
almost everywhere with respect to E, one can always choose Y1 = R. Doing
so, we then have NA(x) ≥ 1 a.e. with respect to E. However, sometimes it is
more natural to use other choices of Y1.

If A is a selfadjoint linear relation, it can be orthogonally decom-
posed into a sum of a selfadjoint linear operator Aop and a pure multival-
ued selfadjoint linear relation (the pure relational part of A). Namely, let
H0 := {g ∈ H : (0; g) ∈ A}, then A decomposes as A = Aop ⊕ ({0} × H0)
where A0 is a selfadjoint operator in H � H0. In this situation, we define
NA := NAop

. Obviously, this definition is also unitarily invariant.
Of course, the spectral multiplicity function of an eigenvalue is equal to

the dimension of the corresponding eigenspace.

2.3. Symmetric Derivatives of Measures

In this subsection we recall the notion of the symmetric derivative of mea-
sures, and the formula of de la Vallée-Poussin which describes the Lebesgue
decomposition of one positive Borel measure with respect to another. These
topics are again classical, see, e.g., [32]. A presentation in an up-to-date lan-
guage can be found, e.g., in [9].

Theorem 2.1. [9] Let ν and σ be positive measures. Then there exists a Borel
set Eν,σ ⊆ supp ν ∩ suppσ with

ν(Eν,σ) = σ(Eν,σ) = 0,

such that for each x ∈ suppσ\Eν,σ the limit

lim
ε↓0

ν
(
[x − ε, x + ε]

)

σ
(
[x − ε, x + ε]

)

exists in [0,∞] and defines a Borel measurable function.

Due to this proposition, we can naturally define a function which is partially
defined, ν-measurable, and σ-measurable (but may be not Borel measurable).

Definition 2.2. Let ν and σ be positive measures. Then the symmetric deriv-
ative dν

dσ of ν with respect to σ is the partially defined function

dν

dσ
(x) :=

{
limε↓0

ν([x−ε,x+ε])
σ([x−ε,x+ε]) , x ∈ supp σ and the limit exists in [0, ∞],

∞, x ∈ supp ν\ supp σ.
(2.4)

Note that this definition is symmetric in ν and σ in the following sense: If a
point x belongs to the domain of dν

dσ , then it also belongs to the domain of dσ
dν

and dσ
dν (x) =

(
dν
dσ (x)

)−1.
The symmetric derivative dν

dσ can be used to explicitly construct the
Lebesgue decomposition of ν with respect to σ. To formulate this fact, denote

X∞(ν, σ) :=
{

x ∈ (supp ν ∪ suppσ)\Eν,σ :
dν

dσ
(x) = ∞

}
.
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Theorem 2.3. (de la Vallée-Poussin) Let ν and σ be positive measures. Then

(i) The function dν
dσ belongs to L1

loc(σ). In particular, σ(X∞(ν, σ)) = 0.
(ii) For each Borel set X ⊆ R, we have

ν(X) = ν
(
X ∩ X∞(ν, σ)

)
+
∫

X

dν

dσ
(x) dσ(x).

Let ν = νac +νs be the Lebesgue decomposition of ν with respect to σ. Then,
indeed, the formula of de la Vallée-Poussin says that

νac =
dν

dσ
(x) · σ, νs = 1X∞(ν,σ) · ν. (2.5)

In particular, if ν 	 σ, then dν
dσ is a Radon-Nikodym derivative of ν

with respect to σ.
In the sequel we extensively use the following immediate consequences

of the de la Vallée-Poussin theorem.

Corollary 2.4. Let ν and σ be positive measures, and let X ⊆ R.

(i) If dν
dσ (x) = 0 for all x ∈ X, then X is ν-zero.

(ii) If the set X is ν-zero, then dν
dσ (x) = 0 for σ-a.a. x ∈ X.

(iii) If X is a Borel set and dν
dσ (x) ∈ [0,∞) for all x ∈ X, then 1X · ν 	 σ.

Proof. Item (i): The set

X0(ν, σ) :=
{

x ∈ (supp ν ∪ suppσ)\Eν,σ :
dν

dσ
(x) = 0

}

is a Borel set, and by Theorem 2.3 we have ν(X0(ν, σ)) = 0. Since X ⊆
Eν,σ ∪ X0(ν, σ), the set X is ν-zero.
Item (ii): There exists a Borel set X ′ ⊇ X such that ν(X ′) = 0. Theorem 2.3
gives

∫
X′

dν
dσ (x) dσ(x) = 0. This shows that dν

dσ (x) = 0 for σ-a.a. x ∈ X ′, and
hence for σ-a.a. x ∈ X.
Item (iii): Let X ′ ∈ B with σ(X ′) = 0 be given. Then also σ(X ′ ∩ X) = 0,
and hence

ν(X ′ ∩ X) =
∫

X′∩X

dν

dσ
(x) dσ(x) = 0.

❑

Corollary 2.5. Let ν and σ be positive measures on R. Let ν = νac + νs and
σ = σac + σs be the Lebesgue decompositions of ν with respect to σ and of σ
with respect to ν, respectively. Then, the following hold:

(i) dν
dσ (x) ∈ [0,∞), σ-a.e.

(ii) dν
dσ (x) ∈ (0,∞], ν-a.e.

(iii) dν
dσ (x) ∈ (0,∞), νac-a.e. and σac-a.e.

(iv) dν
dσ (x) = ∞, νs-a.e.

(v) dν
dσ (x) = 0, σs-a.e.
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Proof. Item (i) is immediate from Theorem 2.3, (i), and item (ii) follows
by exchanging the roles of ν and σ and remembering that the symmetric
derivative is symmetric in ν and σ. For (iii), note that

X :=
{

x ∈ R :
dν

dσ
(x) ∈ (0,∞)

}c

⊆ Eν,σ ∪ X0(ν, σ) ∪ X∞(ν, σ).

We have ν(Eν,σ) = ν(X0(ν, σ)) = 0, and σ(X∞(ν, σ)) = 0. Thus the
union of these sets is νac-zero. Exchanging the roles of ν and σ yields that X
is also σac-zero.

From (2.5), immediately, νs(X∞(ν, σ)c) = 0. Hence, (iv) holds. Item (v)
follows from (iv) again by exchanging the roles of ν and σ. ❑

Remark 2.6. One can also define a symmetric derivative of a complex measure
ν with respect to a positive measure σ by using the same limit

dν

dσ
(x) := lim

ε↓0

ν([x − ε, x + ε])
σ([x − ε, x + ε])

(2.6)

whenever it exists in C. However, satisfactory knowledge can only be obtained
when ν 	 σ. In fact, the following holds: If ν 	 σ, then the limit (2.6) exists
σ-a.e., and is a Radon-Nikodym derivative of ν with respect to σ. This follows
since we can decompose ν as ν = (νr,+−νr,−)+i(νi,+−νi,−) with four positive
and finite measures which are all absolutely continuous with respect to σ.

Remark 2.7. Sometimes the following facts are useful.
(i) Existence and value of the symmetric derivative are local properties in

the sense that
dν

dσ
(x) =

d(1X · ν)
d(1X · σ)

(x)

whenever X is a Borel set which contains x in its interior.
(ii) If f is a continuous and nonnegative function on R, then

d(f · ν)
dν

(x) = f(x), x ∈ R.

2.4. Boundary Behavior of Cauchy Integrals

Let us recall the notion of Herglotz functions.4 In the present section our main
focus lies on scalar valued functions. However, in view of our needs in Sect. 3,
let us provide the definition and the integral representation for matrix valued
functions.

Definition 2.8. A function M : C\R → C
n×n is called a (n×n-matrix valued)

Herglotz function, if
(i) M is analytic and satisfies M(z) = M(z)∗, z ∈ C\R.

(ii) For each z ∈ C
+, the matrix ImM(z) := 1

2i (M(z) − M(z)∗) is positive
semidefinite.

The following statement is known as the Herglotz-integral representation. For
the scalar case, it goes back as far as to [17]. For the matrix valued case see
[15, Theorem 5.4], where also an extensive list of references is provided.

4Often also called Nevanlinna functions.



Spectral Multiplicity of Schrödinger Operators

Theorem 2.9. Let M be a n×n-matrix valued Herglotz function. Then there
exists a finite positive n×n-matrix valued measure5 Ω, a selfadjoint matrix
a, and a positive semidefinite matrix b, such that

M(z) = a + bz +
∫

R

1 + xz

x − z
dΩ(x), z ∈ C\R. (2.7)

Conversely, each function of this form is a Herglotz function.
The data a, b,Ω in the representation (2.7) is uniquely determined by

M . In fact, Ω can be recovered by the Stieltjes inversion formula, b from the
non-tangential asymptotics of M(z) towards +i∞, and a from the real part
of M(i).

In the literature this integral representation is often written in the form

M(z) = a + bz +
∫

R

( 1
x − z

− x

1 + x2

)
dΩ̃(x), z ∈ C\R, (2.8)

where Ω̃ is a positive measure with
∫

R

dΩ̃(x)
1+x2 < ∞. The measures in the

representations (2.7) and (2.8) are related as Ω̃ = (1 + x2) · Ω; here we use
the notation (2.1).

In the present work we also consider the Cauchy-type integral in (2.7)
for complex (scalar valued) measures.

Definition 2.10. Let ν be a complex (scalar valued) measure. Then we denote
by mν the Cauchy-type integral

mν(z) :=
∫

R

1 + xz

x − z
dν(x), z ∈ C\R. (2.9)

Clearly, the function mν is analytic on C\R. Moreover, note that for a real
measure ν it can be written as the difference of two Herglotz functions.

Remark 2.11. Here is the reason why we decided to write the Herglotz integral
representation in the form (2.7) rather than (2.8): For a positive measure
Ω the multiplication (1 + x2) · Ω is always defined and is again a positive
measure (for scalar measures this is immediate, for matrix-valued measures
use that Ω is mutually absolutely continuous with its trace measure ρ := tr Ω).
Contrasting this, for a complex measure ν, the multiplication (1+x2) · ν can-
not anymore be interpreted as a measure, but only as a distribution of order
0. Since we want to avoid using the machinery of distributions, we decided
for the representation (2.7).

For a finite positive measure ν, the imaginary part of mν(z) is (as a Poisson
integral) well-behaved and several explicit relations between ν and the bound-
ary behavior of Immν(z) at the real line are known. In the present context,
the following two pointwise relations play a role. The first one is standard,
see, e.g., [26, §2.3]. Matching the literature is done using Remark 2.7, (ii).

5By a positive matrix valued measure we understand a measure which takes positive semi-
definite matrices as values.
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Theorem 2.12. [26] Let ν be a finite positive measure, and denote by λ the
Lebesgue measure.
(i) Assume that dν

dλ (x) exists in [0,∞]. Then Im mν(z) has a normal bound-
ary value at x, in fact,

lim
ε↓0

Im mν(x + iε) = π(1 + x2)
dν

dλ
(x).

(ii) Conversely, assume that Im mν(z) has a finite normal boundary value
at x. Then dν

dλ (x) exists.

Let us note explicitly that no conclusion is drawn if Immν(z) has an infinite
normal boundary value at x.

The second result is in the same flavor, but may be less widely known.
It is proved in [21, Lemma 1].

Theorem 2.13. [21] Let ν be a real measure and σ be a finite positive measure.
Assume that dν

dσ (x) exists in R, and that dσ
dλ (x) exists (possibly equal to ∞)

and is nonzero. Then

lim
ε↓0

Im mν(x + iε)
Im mσ(x + iε)

=
dν

dσ
(x).

The real part of a Cauchy integral is (as a singular integral) much harder
to control than its imaginary part. We make use of the following two rather
recent results, which deal with boundary values of Remν(z), or even of mν(z)
itself.

The first one says that the set of points x ∈ R for which |Re mν(z)|
dominates Im mν(z) when z approaches x, is small. It has been shown in
[28, Theorem 2.6] for Cauchy integrals of measures on the unit circle. The
half-plane version stated below follows using the standard fractional-linear
transform.

Theorem 2.14. [28] Let ν be a finite positive measure. Then the set of all
points x ∈ R for which there exists a continuous non-tangential path γx from
C+ to x, such that

lim
z→x
z∈γx

|Re mν(z)|
Im mν(z)

= ∞,

is a ν-zero set.

The second result on singular integrals says that for certain points x ∈ R

the Radon-Nikodym derivative of two measures can be calculated from the
boundary behavior of the respective Cauchy integrals. This fact is shown in
[27] for the disk, the half-plane version stated below is [29, Theorem 1.1]

Theorem 2.15. [27] Let ν and σ be finite positive measures, assume that ν 	
σ, and let σs be the singular part of σ with respect to the Lebesgue measure.
Then:
(i) For σ-a.a. points x ∈ R the non-tangential limit lim

z
�−→x

mν(z)
mσ(z) exists in

[0,∞).
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(ii) For σs-a.a. points x ∈ R we have

lim
z

�−→x

mν(z)
mσ(z)

=
dν

dσ
(x).

Together these two theorems imply a statement which is essential for our
present purposes.

Corollary 2.16. Let ν and σ be finite positive measures, and assume that
ν 	 σ. Then for σ-a.a. points x ∈ R there exists a sequence {εn}n∈N (which
may depend on x), such that εn ↓ 0 and the limit

lim
n→∞

Re mν(x + iεn)
Im mσ(x + iεn)

exists and is finite.

Proof. Consider the sets

E1 :=
{

x ∈ R : lim
ε↓0

|Re mσ(x + iε)|
Im mσ(x + iε)

= ∞
}

,

E2 :=

{

x ∈ R : lim
z

�−→x

mν(z)
mσ(z)

does not exist in C

}

.

Then σ(E1 ∪ E2) = 0. Let x ∈ (E1 ∪ E2)c, and choose a sequence εj ↓ 0
such that the limit limj→∞

Re mσ(x+iεj)
Im mσ(x+iεj)

exists in R. Since

mν(z)
mσ(z)

=
mν(z)

Im mσ(z)
(
i + Re mσ(z)

Im mσ(z)

) , z ∈ C\R,

it follows that

lim
j→∞

Re mν(x+iεj)
Im mσ(x+iεj)

=Re
[(

lim
j→∞

mν(x+iεj)
mσ(x+iεj)

)
·
(
i+ lim

j→∞
Re mσ(x+iεj)
Im mσ(x+iεj)

)]

.

❑

We need the above stated facts in a slightly more general situation. Namely,
for arbitrary Herglotz functions rather than Cauchy-type integrals. This is
easy to deduce.

Corollary 2.17. The above statements 2.12, 2.13, 2.14, 2.15, (ii), and 2.16
remain true when the Cauchy-type integrals mν and mσ are substituted by
arbitrary scalar valued Herglotz functions having the measures ν and σ in
their Herglotz integral representation.

Proof. Throughout this proof, let m, m̃ be Herglotz functions, and write
m(z) = a + bz + mν(z) and m̃(z) = ã + b̃z + mσ(z).
Theorem 2.12: We have

lim
ε↓0

Im
(
a + b(x + iε)

)
= 0, x ∈ R.

Hence the limit limε↓0 Im m(x+iε) exists if and only if limε↓0 Im mν(x+
iε) does. Moreover, if these limits exist, they coincide.
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Theorem 2.13: Since dσ
dλ (x) exists and is nonzero, we have

lim
ε↓0

Im mσ(x + iε) > 0.

Thus

lim
ε↓0

Im m(x + iε)
Im m̃(x + iε)

= lim
ε↓0

⎡

⎣
(

bε

Im mσ(x + iε)
+

Im mν(x + iε)
Im mσ(x + iε)

)

·

·
(

1 +
b̃ε

Im mσ(x + iε)

)−1
⎤

⎦ = lim
ε↓0

Im mν(x + iε)
Im mσ(x + iε)

.

Theorem 2.14: The set of all points x ∈ R with dν
dλ (x) ∈ (0,∞] is ν-full.

Hence, we may restrict all considerations to points x belonging to this set,
and hence assume that limε↓0 Im mν(x + iε) > 0. Now use the estimate

|Re mν(z)|
Im mν(z)

− |a| + |b| · |z|
Im mν(z)

≤ |Re m(z)|
Im m(z)

(

1 +
b Im z

Im mν(z)

)

≤ |Re mν(z)|
Im mν(z)

+
|a| + |b| · |z|
Im mν(z)

.

Theorem 2.15, (ii): For σs-a.a. points x ∈ R we have dσ
dλ (x) = ∞, and hence

limε↓0 Im mσ(x + iε) = ∞. Thus also limε↓0 |mσ(x + iε)| = ∞, and it follows
that

lim
z

�−→x

m(z)
m̃(z)

= lim
z

�−→x

⎡

⎣
(

a + bz

mσ(z)
+

mν(z)
mσ(z)

)

·
(

1 +
ã + b̃z

mσ(z)

)−1
⎤

⎦ = lim
z

�−→x

mν(z)
mσ(z)

.

Corollary 2.16: For σ-a.a. points x ∈ R we have dσ
dλ (x) ∈ (0,∞], and hence

limε↓0 Im mσ(x + iε) > 0. Thus also limε↓0 Im m̃(x + iε) > 0, and it follows
that

lim
n→∞

Re m(x + iεn)
Im m̃(x + iεn)

=
a + bx

limn→∞ Im mσ(x + iεn)
+ lim

n→∞
Re mν(x + iεn)
Im mσ(x + iεn)

.

❑

Convention: When referring to one of the above statements 2.12, 2.13, 2.14,
2.15, (ii), 2.16, we mean their general versions provided in Corollary 2.17.

3. Boundary Relations

Throughout the following we use without further notice the language and
theory of linear relations. In particular, we will think of a linear operator T
interchangeably as a map or as a linear relation (i.e., identify the operator T
with its graph). Notationally, we interchangeably write y = Tx or (x; y) ∈ T .

Our standard references for the theory of boundary triples are [7] and
the survey article [8]. There also some basic notations and results about linear
relations can be found.
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3.1. Boundary Relations and Weyl Families

Boundary relations provide a general framework to study symmetric opera-
tors and their extensions. Let us recall their definition, see, e.g., [8, Definition
3.1].

Definition 3.1. Let S be a closed symmetric linear relation in a Hilbert space
H, and let B be an auxiliary Hilbert space. A linear relation Γ ⊆ H2 × B2 is
called a boundary relation for S∗, if
(BR1) The domain of Γ is contained in S∗ and is dense there.
(BR2) For each two elements ((f ; g); (α;β)), ((f ′; g′); (α′;β′)) ∈ Γ the ab-

stract Green’s identity

(g, f ′)H − (f, g′)H = (β, α′)B − (α, β′)B

holds.
(BR3) The relation Γ is maximal with respect to the properties (BR1) and

(BR2).

If the auxiliary space B is finite-dimensional, the theory of boundary relations
becomes significantly simpler. Since this is all we need in the present paper,
we will in most cases assume that dim B < ∞.

A central notion is the Weyl family associated with a boundary relation,
cf. [8, Definition 3.4].

Definition 3.2. Let Γ ⊆ H2 × B2 be a boundary relation for S∗. Then, for
each z ∈ C\R, we define a linear relation M(z) as

M(z) :=
{
(α;β) ∈ B2 : ∃ f ∈ H with ((f ; zf); (α;β)) ∈ Γ

}
.

This family of relations is called the Weyl family of Γ. If mulM(z) = {0}
for all z, one also refers to M as the Weyl function of Γ.

Definition 3.3. A family of boundary relations M(z) in the Hilbert space B
is called a Nevanlinna family, if
(i) for each z ∈ C

+, the relation M(z) is maximal dissipative;
(ii) M(z)∗ = M(z), z ∈ C\R;

(iii) for some w ∈ C
+ the operator valued function z �→ (M(z) + w)−1 is

holomorphic in C
+.

The basic representation theorem for Weyl families reads as follows, see, e.g.,
[8, Theorem 3.6] or [7, Theorem 3.9].

Theorem 3.4. [8] Let Γ ⊆ H2 × B2 be a boundary relation for S∗, and let M
be its Weyl family. Then M is a Nevanlinna family. Conversely, each Nevan-
linna family can be represented as the Weyl family of a boundary relation for
the adjoint of some symmetric linear relation S. Moreover, S can be chosen
to be completely non-selfadjoint ( simple).

This representation theorem is accompanied by the following uniqueness re-
sult, see corresponding part in the proof of [7, Theorem 3.9].

Theorem 3.5. [7] Let Sj be closed symmetric simple linear relations in Hilbert
spaces Hj, and Γj ⊆ H2

j × B2 be boundary relations for S∗
j , let Mj be their
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Weyl families, j = 1, 2. If M1 = M2, then there exists a unitary operator U
of H1 onto H2 such that

Γ2 =
{(

(Uf ;Ug); (α;β)
)

:
(
(f ; g); (α;β)

) ∈ Γ1

}
. (3.1)

Two boundary relations which are related as in (3.1) are called unitarily
equivalent.

The following properties, which a boundary relation may or may not
possess, play a role in the present paper.

Definition 3.6. Let Γ ⊆ H2 × B2 be a boundary relation for S∗.
(i) Γ is called of function type, if

mul Γ ∩ ({0} × B
)

= {0}.

(ii) Γ is called a boundary function, if

mul Γ = {0}.

It is an important fact that these properties reflect in properties of the Weyl
family associated with Γ. For the following statement see, e.g., [8, Proposi-
tion 3.7] and [7, Lemma 4.1].

Theorem 3.7. [7] Let dim B < ∞ and Γ ⊆ H2 × B2 be a boundary relation
for S∗. Then
(i) Γ is of function type, if and only if mul M(z) = {0}, z ∈ C\R.

(ii) If Γ is a boundary function, then M(z) is an invertible operator in B
for every z ∈ C\R.

Given a boundary relation Γ for S∗ which is of function type, we can single
out a particular selfadjoint extension of S. Namely, let π1 : B2 → B be the
projection onto the first component, and set

A := ker
[
π1 ◦ Γ

]
. (3.2)

The fact that the relation A is selfadjoint, follows from [8, Proposi-
tion 3.16], since the auxiliary space B is finite-dimensional.
For later use, let us mention the following facts which follow from [8, Propo-
sition 3.2].

Remark 3.8. Let dim B < ∞ and Γ ⊆ H2 × B2 be a boundary relation for
S∗.
(i) The relation S has finite and equal defect indices n±(S). Moreover,

dim B = n±(S) + dim mul Γ.

(ii) Assume that dim B = 1. Then either mul Γ = {0} and S has defect
index (1, 1), or dim mul Γ = 1 and S is selfadjoint.

(iii) Assume that dim B = 1,mul Γ �= {0} and that S is simple. Then either
Γ = {0}2 × ({0} × C) or Γ = {0}2 × {(w;mw), w ∈ C},m ∈ R, and the
Weyl function is equal to m, a real constant.6

6The case that mul Γ = {0} × C informally corresponds to the “Weyl function” m ≡ ∞
(formally to the Weyl family m ≡ {0} × C).
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Next, we recall four methods to construct new boundary relations from given
ones. The first one is just taking orthogonal sums, the second is making a
change of basis. Both are easy to verify (and common knowledge); we skip
the details.

Lemma 3.9. Let n ∈ N, and let for each l ∈ {1, . . . , n} a boundary relation
Γl ⊆ H2

l × B2
l for S∗

l be given. Define

n∏

l=1

Γl :=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

⎛

⎜
⎝

⎛

⎜
⎝

f1

...
fn

⎞

⎟
⎠ ;

⎛

⎜
⎝

g1

...
gn

⎞

⎟
⎠

⎞

⎟
⎠ ;

⎛

⎜
⎝

⎛

⎜
⎝

α1

...
αn

⎞

⎟
⎠ ;

⎛

⎜
⎝

β1

...
βn

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠ :

(
(fl; gl); (αl;βl)

) ∈ Γl, l = 1, . . . , n

⎫
⎪⎬

⎪⎭
⊆
(

n∏

l=1

Hl

)2

×
(

n∏

l=1

Bl

)2

.

Then
∏n

l=1 Γl is a boundary relation for
∏n

l=1 S∗
l . Its Weyl family is

given as

n∏

l=1

Ml(z) :=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

⎛

⎜
⎝

α1

...
αn

⎞

⎟
⎠;

⎛

⎜
⎝

β1

...
βn

⎞

⎟
⎠

⎞

⎟
⎠ : (αl;βl) ∈ Ml(z), l=1, . . . , n

⎫
⎪⎬

⎪⎭
⊆
(

n∏

l=1

Bl

)2

.

The relation
∏n

l=1 Γl is of function type (a boundary function) if and
only if all relations Γl are.

Lemma 3.10. Let Γ ⊆ H2 ×B2 be a boundary relation for S∗ of function type
with Weyl function M . Moreover, let U : B → B be unitary, and define

Γ1 :=
{
(
(f ; g); (Uα;Uβ)

)
:
(
(f ; g); (α;β)

) ∈ Γ
}

⊆ H2 × B2.

Then Γ1 is a boundary relation for S∗ which is of function type, and the
Weyl function M1 is given as

M1(z) = UM(z)U−1.

The relation Γ1 is a boundary function, if and only if Γ is.

The third construction shows how to realize the sum of two Weyl functions
as a Weyl function, cf. [8, Corollary 4.5].

Theorem 3.11. [8] Assume that dim B < ∞. For j = 1, 2, let Γj ⊆ H2
j ×B2 be

boundary relations for S∗
j of function type with corresponding Weyl functions

Mj. Define

Γ :=
{(((

f1

f2

)

;
(

g1

g2

))
;
(
α;β1 + β2

)
)

:

(
(fj ; gj); (α;βj)

) ∈ Γj , j = 1, 2
}

⊆ (
H1×H2

)2 × B2,
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and

S :=
{((f1

f2

)

;
(

g1

g2

))
: ∃β ∈ B with

(
(f1; g1); (0;β)

) ∈ Γ1,
(
(f2; g2); (0;−β)

) ∈ Γ2

}

⊆ (
H1×H2

)2
.

Then S is a closed symmetric relation in H1×H2, and Γ is a boundary
relation for S∗. The relation Γ is of function type, and its Weyl function is
given as

M(z) = M1(z) + M2(z).

With the fourth procedure we construct a new boundary relation via a frac-
tional linear transform. A proof can be found in [8, Proposition 3.11]. Before
we can formulate this, let us introduce one more notation. We denote by JCn

the 2n×2n-matrix

JCn := i

(
0 ICn

−ICn 0

)

.

Then JCn defines a non-degenerated inner product on C
2n. Let w be a

2n×2n-matrix. Then w is JCn-unitary (i.e., unitary with respect to the inner
product induced by JCn) if and only if

w∗JCnw = JCn . (3.3)

Theorem 3.12. [8] Let Γ ⊆ H2 × (Cn)2 be a boundary relation for S∗. Let w
be a JCn-unitary 2n×2n-matrix, and write w in block form as w = (wij)2i,j=1

with n×n-blocks wij , i, j = 1, 2. Then the composition

Γ1 := w ◦ Γ =
{(

(f ; g); (w11α + w12β;w21α + w22β)
)

:
(
(f ; g); (α;β)

) ∈ Γ
}

.

is a boundary relation for S∗, and its Weyl family M1(z) is given as

M1(z) =
{(

w11α + w12β;w21α + w22β
)

: (α;β) ∈ M(z)
}
, z ∈ C\R.

(3.4)

3.2. The Titchmarsh–Kodaira Formula

Let Γ be a boundary relation of function type, and let A be the selfadjoint
relation (3.2). Then the data a, b,Ω in the integral representation (2.7) of
the Weyl function M associated with Γ can be used to construct a functional
model for A = ker[π1◦Γ] acting as the multiplication operator in an L2-space
(to be exact, the relational analogue of the multiplication operator). For a
Schrödinger operator on the half line (meaning limit-circle on one end and
limit-point on the other) or on the whole line (limit-point at both ends) this
is a classical fact. In the first case (where the spectral measure is scalar) this
goes back to the initial considerations of Weyl, cf. [37], in the second case
(where the spectral measure is 2×2-matrix valued) to the independent works
of Titchmarsh and Kodaira, cf. [35] and [23]. See also [12, XII.5.Theorems 13
and 14], where differential expressions of arbitrary order are studied.

In the present context this functional model plays an important role,
since it allows us to compute the spectral multiplicity function by computing
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the rank of a certain matrix; the precise statement being Proposition 3.15
below.

First, let us recall the appropriate notion of a “multiplication operator”.
Let Ω = (Ωij)n

i,j=1 be a positive n×n-matrix valued measure, and denote by ρ

the (scalar) trace-measure ρ :=
∑n

i=1 Ωii. Since, for each Borel set Δ, the ma-
trix Ω(Δ) is positive semidefinite, we have |Ωij(Δ)| ≤ √

Ωii(Δ)Ωjj(Δ), i, j =
1, . . . , n, and this yields that Ω ∼ ρ. Hence, the Radon-Nikodym derivative
DρΩ = (DρΩij)n

i,j=1 is well-defined and ρ-a.e. positive.
Consider now the set of all ρ-a.e. finite functions f : R �→ C

n, such that
each component is ρ-measurable and such that

∫

R

(
f(x),DρΩ(x)f(x)

)
Cn dρ(x) < ∞.

The space L2(Ω) is the space of equivalence classes of such functions
under the equivalence relation

f ∼ g if and only if
∫

R

(
f(x) − g(x),DρΩ(x)(f(x) − g(x))

)
Cndρ(x) = 0.

When endowed with the inner product7

(f, g)Ω :=
∫

R

(
f(x),DρΩ(x)g(x)

)
Cndρ(x), f, g ∈ L2(Ω),

this space becomes a Hilbert space. The operator of multiplication At

by the independent variable t in this space is selfadjoint, see [19] or [12,
XIII.5.Theorem 10].

Moreover, for a positive semidefinite n×n-matrix b, denote by Gb the
space ran b endowed with the inner product defined as

(bx, by)Gb
:= (bx, y)Cn , x, y ∈ C

n.

Definition 3.13. Let Ω be a positive n×n-matrix valued measure, and let b
be a positive semidefinite n×n-matrix. Then we set

HΩ,b := L2(Ω) ⊕ Gb, AΩ,b := At ⊕ ({0} × Gb

)
.

Clearly, HΩ,b is a Hilbert space and AΩ,b is a selfadjoint linear relation in
HΩ,b.

Let us now provide the afore mentioned functional model for A =
ker[π1 ◦ Γ]. The essence of this result is the model constructed in [10, Propo-
sition 5.2], and it is easily deduced from this.

Proposition 3.14. Let Γ ⊆ H2 × C
2n be a boundary relation of function type

with Weyl function M , let a, b,Ω be the data in the integral representation
(2.7) of M , and set Ω̃ := (1 + t2) · Ω. Then the selfadjoint relation A :=
ker[π1 ◦ Γ] is unitarily equivalent to the relation AΩ̃,b.

7The right-hand side of this formula does not depend on the choice of the representative
of the equivalence class; as usual we slightly abuse notation.
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Proof. The following facts are well-known (for an explicit proof see, e.g., [3,
Proof of Theorem 3.2]): The kernel of ImM(z) for z ∈ C\R is independent
of z. Denote its codimension by n0. There exists a constant unitary matrix U
such that U−1 ker Im M(i) = {0}⊕C

n−n0 and U−1(M(z)−a)U = M0(z)⊕0
(the block form with respect to the decomposition C

n = C
n0 ⊕ C

n−n0). At
the same time U−1Ω̃U = Ω̃0 ⊕ 0, U−1bU = b0 ⊕ 0 and

M0(z) = b0z +
∫

R

( 1
x − z

− x

1 + x2

)
dΩ̃0(x)

is the Herglotz-integral representation for the function M0. The latter is such
that Im M0(z) is invertible for each z ∈ C\R. We apply [10, Proposition 5.2]
to obtain a functional model for M0: The relation

S :=

⎧
⎨

⎩
(f(t) ⊕ 0; tf(t) ⊕ y) ∈ H2

Ω̃0,b0
:
∫

R

dΩ̃0(t)f(t) + y = 0

⎫
⎬

⎭

is closed symmetric and simple, its adjoint is given by

S∗ :=
{

(f(t) ⊕ x; g(t) ⊕ y)∈H2
Ω̃0,b0

: ∃h ∈ C
n0 : g(t)−tf(t)=−h, x=b0h

}

.

Obviously, the element h in this formula is uniquely determined by the
element (f(t) ⊕ x; g(t) ⊕ y) of S∗. Hence, we may define

Γ0

(
(f(t) ⊕ x; g(t) ⊕ y)

)
:=h,

Γ1

(
(f(t) ⊕ x; g(t) ⊕ y)

)
:=y +

∫

R

dΩ̃0(t)
tg(t) + f(t)

1 + t2
.

Then it follows from [10] that the relation

Γ̊ :=
{((

f(t) ⊕ x; g(t) ⊕ y
)
;
(
Γ0(f(t) ⊕ x; g(t) ⊕ y); Γ1(f(t) ⊕ x; g(t) ⊕ y)

))
:

(
f(t) ⊕ x; g(t) ⊕ y

) ∈ S∗
}

is a boundary function for S∗. The Weyl function of Γ̊ is equal to M0, and
ker Γ0 = AΩ̃0,b0

. Obviously ΓU := Γ̊ ⊕ ({0}2 × {(w; 0), w ∈ C
n−n0} is a

boundary relation of function type for S∗ with the Weyl function M0 ⊕0 and
ker[π1 ◦ ΓU ] = AΩ̃0,b0

. Next, Γ̂ := {((f ; g); (Uα;Uβ)) : ((f ; g); (α;β)) ∈ ΓU}
is another boundary relation of function type for S∗ with the Weyl function
M − a and ker[π1 ◦ Γ̂] = AΩ̃0,b0

. Finally, the selfadjoint constant a is the
Weyl function of the boundary relation {0}2 × {(w; aw), w ∈ C

n} acting in
{0}2 × C

2n. Using Theorem 3.11, we obtain a boundary relation Γ̃ having M

as its Weyl function. Explicitly computing Γ̃ shows that the relation ker[π1◦Γ̃]
coincides with AΩ̃0,b0

. Uniqueness part of Theorem 3.5 ensures that ker[π1◦Γ]
is unitary equivalent to ker[π1 ◦ Γ̃] = AΩ̃0,b0

. Obviously, the relation AΩ̃0,b0
can be identified with the relation AΩ̃0⊕0,b0⊕0 = AU−1Ω̃U,U−1bU , which is
unitarily equivalent to AΩ̃,b. ❑
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Now we come to the promised way to compute the spectral multiplicity func-
tion. For the case “n = 2” this fact is proved and used in [20], see also [14].
It is of course not hard to believe that it holds for arbitrary n ≥ 2, however,
we are not aware of an explicit reference, and therefore provide a complete
proof.

Proposition 3.15. Let Γ ⊆ H2 × B2 be a boundary relation of function type.
Denote by M its Weyl function, and set A := ker[π1 ◦ Γ]. Let a, b,Ω be the
data in the integral representation (2.7) of M , let ρ be the trace measure of
Ω, and let ω be the symmetric derivative

ω :=
dΩ
dρ

. (3.5)

Then (NA is the spectral multiplicity function of A)

NA = rankω, ρ-a.e. (3.6)

Proof. From the readily established by Proposition 3.14 unitary equivalence,
we see that it is enough to compute the spectral multiplicity function of the
multiplication operator At in the space L2(Ω). To do this, the idea is to con-
struct a measurable (ρ-measurable, or Borel measurable on a compliment of
some Borel ρ-zero set) diagonalization of ω(x). Once this is done, it is easy to
give a unitarily equivalent form of A (and a particular generating basis) from
which NA(x) can be read off. The essential tool in the proof is Hammersley’s
theorem on the measurability of the zeros of a random polynomial, cf. [16,
Theorem 4.1].8

By Hammersley’s theorem there exist measurable functions ξ1, . . . , ξn

such that

det
[
ω(x) − t

]
= (−1)n

n∏

j=1

(
t − ξj(x)

)
, x ∈ R.

Since ω(x) is nonnegative, we have ξj(x) ≥ 0, j = 1, . . . , n. By pointwise
rearranging (which can be done in a measurable way) we can redefine the
functions ξj , such that in addition

0 ≤ ξn(x) ≤ ξn−1(x) ≤ · · · ≤ ξ1(x), x ∈ R.

What follows is basic linear algebra. For j, k ∈ {1, . . . , n} and
{i1, . . . , ik} ⊆ {1, . . . , n}, i1 < · · · < ik, set

M j,k
i1,...,ik

:=
{

x ∈ R : rank
[
ω(x) − ξj(x)

]
= k,

det
(
wilim

(x) − ξj(x)δilim

)k

l,m=1
�= 0

}
.

The determinant of a matrix is a polynomial of the entries, and hence
is measurable. The rank of a matrix depends, as the maximal order of an

8See also [4, Theorem 2.2], where a short proof based on von Neumann’s measurable
selection theorem is given.
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invertible square minor, measurably on the entries of the matrix. It follows
that M j,k

i1,...,ik
is a Borel set. Also the set

M j,0
∅ :=

{
x ∈ R : ω(x) = ξj(x)

}

is a Borel set.
Let j ∈ {1, . . . , n} be fixed. For each x ∈ M j,k

i1,...,ik
the submatrix

(wilim
(x)− ξj(x)δilim

)k
l,m=1 of [ω(x)− ξj(x)] is invertible. Applying Cramer’s

rule, we find a basis of the eigenspace ker[ω(x) − ξj(x)] which depends mea-
surably on x ∈ M j,k

i1,...,ik
. Applying the Gram-Schmidt orthogonalization pro-

cedure, we obtain an orthonormal basis which also depends measurably on
x ∈ M j,k

i1,...,ik
. For x ∈ M j,0

∅ the canonical basis of C
n is an orthonormal basis

of ker[ω(x) − ξj(x)].
Clearly, for each j, the sets M j,k

i1,...,ik
, k ∈ {0, . . . , n}, {i1, . . . , ik} ⊆

{1, . . . , n} together cover the whole line. Hence, we can produce a disjoint
covering of R with each set of the covering being a Borel subset of some
intersection

n⋂

j=1

M
j,kj

ij,1,...,ij,kj
.

By the above paragraph, we can thus find a measurable orthonormal
basis in C

n which consists of eigenvectors of ω. The corresponding basis
transform U(x) is a measurable function and diagonalizes ω(x):

U(x)−1ω(x)U(x) = D(x)

with

D(x) :=

⎛

⎜
⎝

ξ1(x)
. . .

ξn(x)

⎞

⎟
⎠ .

The map f �→ U−1f is an isometric isomorphism of L2(Ω) onto L2(D·ρ),
and establishes a unitary equivalence between the respective multiplication
operators. One can regard ξl·ρ as νl from (2.2), so Dν1νl(x) = ξl(x). Therefore
the spectral multiplicity function computes as

#
{
l ∈ {1, . . . , n} : ξl(x) > 0

}
= rankD(x) = rankω(x). ❑

3.3. Pasting of Boundary Relations with Standard Interface Conditions

Let n ≥ 2, and let for each l ∈ {1, . . . , n} a closed symmetric relation Sl in
a Hilbert space Hl and a boundary relation Γl ⊆ H2

l × C
2 for S∗

l be given.
Moreover, denote

Al := ker
[
π1 ◦ Γl

]
. (3.7)

Consider the Hilbert space H :=
∏n

l=1 Hl, the linear relation S :=
∏n

l=1 Sl acting in this space, and the orthogonal sum Γ̃ =
∏n

l=1 Γl, cf. Lemma
3.9.
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Now we define another boundary relation Γ by using in Theorem 3.12
the JCn-unitary matrix w = (wij)2i,j=1 whose blocks wij are given as

w11 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1 0 · · · 0 1
0 −1 · · · 0 1
...

...
. . .

...
...

0 0 · · · −1 1
0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, w12 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
1 1 · · · 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.8)

w21 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, w22 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.9)

A straightforward computation shows that this matrix w indeed satisfies
(3.3). Explicitly, the relation Γ is given as

Γ := w ◦ Γ̃ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎝

⎛

⎜
⎝

f1

...
fn

⎞

⎟
⎠ ;

⎛

⎜
⎝

g1

...
gn

⎞

⎟
⎠

⎞

⎟
⎠ ;

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

−α1 + αn

...
−αn−1 + αn

β1 + · · · + βn

⎞

⎟
⎟
⎟
⎠

;

⎛

⎜
⎜
⎜
⎝

−β1

...
−βn−1

−αn

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

:

(
(fl; gl); (αl;βl)

) ∈ Γl, l = 1, . . . , n
}

. (3.10)

Definition 3.16. Let n ≥ 2, and let for each l ∈ {1, . . . , n} a closed symmetric
relation Sl in a Hilbert space Hl and a boundary relation Γl ⊆ H2

l × C
2 for

S∗
l be given. Assume that

(Hyp1) Each relation Sl is simple.
(Hyp2) Each boundary relation Γl is of function type.
(Hyp3) There exists an index l ∈ {1, . . . , n}, such that Γl is a boundary

function.

Obviously, the relation Γ depends on the order in which the relations
Γ1,Γ2, . . . ,Γn are taken, but the selfadjoint relation A := ker[π1 ◦ Γ] does
not. Thus we call A the relation constructed by pasting the family {Γl : l =
1, . . . , n}, with standard interface conditions.

The hypothesis (Hyp1) ensures that knowledge about the spectrum of A can
be deduced from the associated Weyl family (in fact, the Weyl function, see
below). The hypotheses (Hyp2), (Hyp3), are required in order to avoid trivial
cases (remember Remark 3.8).

To justify our choice of terminology, let us return to our model example.

Example 3.17. Let a Schrödinger operator on a star-shaped graph be given
by the data (1)–(3). Let Sl be the minimal operator on the l-th edge, i.e.
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dom Sl :=
{

u ∈ L2(0, el) : u, u′ absolutely continuous,

− u′′ + qlu ∈ L2(0, el),

u(0) = u′(0) = 0, u satisfies b.c. at el, if present
}

.

Slu := −u′′ + qlu, u ∈ dom Sl.

Moreover, define

Γl :=
{(

(u; v); (u(0);u′(0)
)

: (u; v) ∈ S∗
l

}
.

Then Γl is a boundary relation for S∗
l . The selfadjoint extension Al =

ker[π1 ◦ Γl] is just the Schrödinger operator given by the potential ql with
Dirichlet boundary conditions at 0.

Now consider the boundary relation Γ defined by (3.10). The operator
A := ker[π1 ◦Γ], is nothing but the operator defined by (1.1), (1.2), using the
standard interface condition (1.3).

In order to understand the spectrum of a pasting with standard interface
conditions, we will analyze the Weyl function of the boundary relation Γ.
Using Theorem 3.12, this Weyl function can be computed explicitly in terms
of the Weyl functions of the boundary relations Γl.

Proposition 3.18. Let Γl be as in Definition 3.16, and let Γ be the boundary
relation given by (3.10). Denote by ml the Weyl function of Γl, and set m :=∑n

l=1 ml. Then we have mul Γ∩ ({0}× C
n) = {0}, and the Weyl function M

of Γ is given as

M =
1
m

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m1(m−m1) −m2m1 · · · −mn−1m1 −m1

−m1m2 m2(m−m2) · · · −mn−1m2 −m2

...
...

. . .
...

...
−m1mn−1 −m2mn−1 · · · mn−1(m−mn−1) −mn−1

−m1 −m2 · · · −mn−1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(3.11)

Proof. Consider an element of mul Γ∩({0}×C
n). By the definition of Γ there

exist (αl;βl) ∈ mul Γl, l = 1, . . . , n, such that this element is equal to

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

−α1 + αn

...
−αn−1 + αn

β1 + · · · + βn

⎞

⎟
⎟
⎟
⎠

;

⎛

⎜
⎜
⎜
⎝

−β1

...
−βn−1

−αn

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

0
...
0
0

⎞

⎟
⎟
⎟
⎠

;

⎛

⎜
⎜
⎜
⎝

−β1

...
−βn−1

−αn

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

.

By (Hyp3), there exists an index l0 with αl0 = βl0 = 0. Now it follows
that αl = 0 for all l, and (Hyp2) implies that also βl = 0 for all l. This shows
that mul Γ ∩ ({0} × C

n) = {0}.
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The Weyl function of the boundary relation Γ̃ =
∏n

l=1 Γl is

M̃ =

⎛

⎜
⎜
⎜
⎝

m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...
0 0 · · · mn

⎞

⎟
⎟
⎟
⎠

.

Computation gives:

w11 + w12M̃ =

⎛

⎜
⎜
⎜
⎝

−1 · · · 0 1
...

. . .
...

...
0 · · · −1 1

m1 · · · mn−1 mn

⎞

⎟
⎟
⎟
⎠

,

w21 + w22M̃ =

⎛

⎜
⎜
⎜
⎝

m1 · · · 0 0
...

. . .
...

...
0 · · · −mn−1 0
0 · · · 0 −1

⎞

⎟
⎟
⎟
⎠

,

and

det
(
w11 + w12M̃

)
= (−1)n−1

n∑

l=1

ml.

Since there exists at least one index l such that ml is not a real constant,
this determinant does not vanish throughout C\R.

Next, let M be the matrix defined by (3.11). It is easy to check that M

satisfies M(w11 + w12M̃) = w21 + w22M̃ , and this implies that

M = (w21 + w22M̃)(w11 + w12M̃)−1.

Theorem 3.12 now yields that M is indeed the Weyl function of Γ. ❑

3.4. The Point Spectrum

It is elementary to locate the point spectrum of a pasting.

Theorem 3.19. Let n ≥ 2, and let for each l ∈ {1, . . . , n} a closed symmetric
relation Sl in a Hilbert space Hl and a boundary relation Γl ⊆ H2

l ×C
2 for S∗

l

be given. Assume that these data are subject to (Hyp1)–(Hyp3), and consider
the selfadjoint operator A constructed by pasting {Γl : l = 1, . . . , n} with
standard interface conditions.

Let x ∈ R. Then x ∈ σp(A) if and only if one of the following two
alternatives takes place.
(I/II) The point x belongs to at least two of the point spectra σp(Al). In this

case the multiplicity NA(x) of x as an eigenvalue is equal to

NA(x) = #
{
l ∈ {1, . . . , n} : x ∈ σp(Al)

}− 1

= #
{
l ∈ {1, . . . , n} : lim

ε↓0
ε Im ml(x + iε) > 0

}− 1.

(III) The limits ml(x) := limε↓0 ml(x + iε) all exist, are real, we have
limε↓0

1
iε

(
ml(x + iε) − ml(x)

) ∈ [0,∞), and
∑n

l=1 ml(x) = 0. In this
case x is a simple eigenvalue.
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First we prove a technical statement which is an immediate consequence of
(Hyp1), (Hyp2).

Lemma 3.20. Let S be a closed symmetric simple relation in a Hilbert space
H, let Γ ⊆ H2 × C

2 be a boundary relation for S∗ of function type. Set
A := ker[π1 ◦ Γ].
(i) For each (f ; g) ∈ A there exists a unique number β ∈ C such that

((f ; g); (0;β)) ∈ Γ.
(ii) Let Υ : A → C be defined as Υ(f ; g) = β where ((f ; g); (0;β)) ∈ Γ, and

let x ∈ R. Then the restriction of Υ to the set {(f ;xf) : f ∈ ker(A−x)}
is injective.

(iii) Let x ∈ R and α ∈ C\{0}. Then there exists at most one element of the
form ((f ;xf); (α;β)) which belongs to Γ.

Proof. Existence of β is the definition of A. Uniqueness follows since mul Γ∩
({0} × C) = {0}. This shows (i) and that the map Υ in (ii) is well-defined.
Since Γ is minimal, S is completely non-selfadjoint. We clearly have ker Υ ⊆
S, and hence ker Υ ∩ {(f ;xf) : f ∈ ker(A − x)} = {0}. This shows (ii).

To show (iii), assume that ((f ;xf); (α;β)), ((f ′;xf ′); (α;β′)) ∈ Γ and
that f �= f ′. Without loss of generality assume that f �= 0. By minimality of
Γ this implies that (remember Remark 3.8)

mul Γ = {0}, dim S∗/S = 2, dim Nx ≤ 1, x ∈ R,

where Nx := {f ∈ H : (f ; zf) ∈ S∗}. Let λ be such that f ′ = λf , then
((0; 0); ((λ−1)α;λβ−β′)) ∈ Γ. Since λ �= 1 and α �= 0, we obtain mul Γ �= {0}
a contradiction. We conclude that f = f ′. Since mul Γ ∩ ({0} × C) = {0}, it
follows that also β = β′. ❑

Proof of Theorem 3.19. Step 1; A preliminary observation: In this step, we
show that

⎛

⎜
⎝

⎛

⎜
⎝

f1

...
fn

⎞

⎟
⎠ ;

⎛

⎜
⎝

g1

...
gn

⎞

⎟
⎠

⎞

⎟
⎠ ∈ A =⇒ ∃!α, βl :

(
(fl; gl); (α;βl)

) ∈ Γl

Moreover, for these numbers βl, it holds that β1 + · · · + βn = 0.
By the definition of A and Γ, cf. (3.10), there exist α1, . . . , αn and

β1, . . . , βn such that
(
(fl; gl); (αl;βl)

) ∈ Γl, −α1 + αn = · · · = −αn−1 + αn = β1 + · · · + βn = 0.

This proves the existence part (set α := α1). For uniqueness, assume
that α′ and β′

1, . . . , β
′
n are such that ((fl; gl); (α′;β′

l)) ∈ Γl. By (Hyp3) there
exists an index l0 ∈ {1, . . . , n} with mul Γl0 = {0}. It follows that α′ = α and
β′

l0
= βl0 . Due to (Hyp2) it follows that for all indices β′

l = βl.
Step 2; Two examples of eigenvectors: Let x ∈ R. First, consider the space

Lx :=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

f1

...
fn

⎞

⎟
⎠ ∈

n∏

l=1

ker(Al − x) :
n∑

l=1

Υl(fl;xfl) = 0

⎫
⎪⎬

⎪⎭
.
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Since each map Υl is injective, we have

dim Lx =

{
0, if for every l ker(Al − x) = {0},
∑n

l=1 dim ker(Al − x) − 1, if for some l ker(Al − x) �= {0}.

It is clear that Lx ⊆ ker(A − x).
Second, assume that there exist elements fl ∈ ker(S∗

l − x) and βl ∈
C such that ((fl;xfl); (1;βl)) ∈ Γl and β1 + · · · + βn = 0. Then, clearly,
(f1, . . . , fn) ∈ ker(A − x).
Step 3; Determining the eigenspace: Let x ∈ R and (f1, . . . , fn) ∈ ker(A −
x)\{0} be given, and let α and β1, . . . , βn be the unique numbers with
((fl;xfl); (α;βl)) ∈ Γl, l = 1, . . . , n. We distinguish the two cases that α = 0
and α �= 0.

Assume that α = 0. Then fl ∈ ker(Al − x) and βl = Υl(fl;xfl). Hence,
in this case, (f1, . . . , fn) ∈ Lx.

Assume that α �= 0. Clearly, fl ∈ Nl,x for all l. Moreover, whenever
mul Γl = {0}, we must have fl �= 0. Let us show that

ker(Al − x) = {0}, l = 1, . . . , n.

If fl = 0, then mul Γl �= {0}, and hence Hl = {0}. If fl �= 0 and
ker(Al − x) �= {0}, then fl ∈ ker(Al − x) since dim Nl,x ≤ 1. Thus there
exists β′

l with ((fl;xfl); (0;β′
l)) ∈ Γl, and it follows that mul Γl �= {0}. This

contradicts the fact that fl �= 0.
Next we show (still assuming α �= 0) that

ker(A − x) = span
{
(f1, . . . , fn)

}
.

Let g = (g1, . . . , gn) ∈ ker(A−x)\{0} be given, and let α′ and β′
1, . . . , β

′
n

be the unique numbers with ((gl;xgl); (α′;β′
l)) ∈ Γl, l = 1, . . . , n. If α′ = 0,

we would have ker(Al − x) �= {0} for at least one index l. This contradicts
what we showed in the previous paragraph, and we conclude that α′ �= 0. Set
λ := α′

α . Then ((λfl;xλfl); (α′;λβl)) ∈ Γl, and it follows from Lemma 3.20,
(iii), that gl = λfl.

Putting together these facts with what we showed in Step 2, we obtain
that for each real point x one of the following three alternatives holds:

(i) ker(A − x) = {0}.
(ii) There exist at least two indices l with ker(Al − x) �= {0}.

(iii) We have ker(Al − x) = {0}, l = 1, . . . , n, and Nl,x �= {0} whenever
mul Γl = {0}.

If the alternative (ii) takes place, then ker(A − x) = Lx. If (iii) takes
place, then dim ker(A − x) = 1.
Step 4; Asymptotics of ml: The characterizations stated in the theorem now
follow from standard Weyl function theory (see, e.g., [15, §2,3] for the relation
of Weyl functions, measures, and spectral properties). First, a point x ∈ R is
an eigenvalue of Al if and only

lim
ε↓0

ε Im ml(x + iε) > 0.
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Next, assume that mul Γl = {0}. Then we have Nl,x\ ker(Al − x) �= ∅ if
and only if

ml(x) := lim
ε↓0

ml(x + iε) ∈ R, lim
ε↓0

1
iε

(
ml(x + iε) − ml(x)

) ∈ (0,∞).

If mul Γl �= {0}, then ml is identically equal to a real constant, and hence
trivially limε↓0 ml(x + iε) exists in R and limε↓0

1
iε

(
ml(x + iε) − ml(x)

)
=

0. Conversely, if these two relations hold, the function ml must be a real
constant.

Finally, we need to relate the limit ml(x) with the boundary relation Γl

under the assumption that this limit at all exists, and that limε↓0
1
iε

(
ml(x +

iε)−ml(x)
) ∈ [0,∞). For ε > 0, let fl,ε and βl,ε be the unique elements with

(
(fl,ε; (x + iε)fl,ε); (1;βl,ε)

) ∈ Γl.

Then, by the definition of ml, we have ml(x + iε) = βl,ε. The abstract
Green’s identity gives

ε‖fl,ε‖2 = Im ml(x + iε),

and hence ‖fl,ε‖ remains bounded when ε approaches 0. Let fl be the weak
limit of fl,ε for ε ↓ 0. Since Γl is a closed linear relation, it is weakly closed,
and we obtain

(
(fl;xfl); (1;ml(x))

) ∈ Γl.

This finishes the proof. ❑

4. Computation of Rank for Singular Spectrum

The following theorem is our main result, and this section is entirely de-
voted to its proof. Concerning terminology for boundary relations, remember
Definition 3.6.

Theorem 4.1. Let n ≥ 2, and let for each l ∈ {1, . . . , n} a closed symmetric
simple relation Sl in a Hilbert space Hl and a boundary relation Γl ⊆ H2

l ×C
2

for S∗
l be given. Assume that each Γj is of function type, and that at least

one Γl is a boundary function. Let μl be the measure in the Herglotz-integral
representation of the Weyl function of Γl, set μ :=

∑n
l=1 μl, and let μs be the

singular part of μ with respect to the Lebesgue measure.
Consider the selfadjoint operator A constructed by pasting {Γl : l =

1, . . . , n} with standard interface conditions. Denote by E the projection val-
ued spectral measure of A, let Es be its singular part with respect to the
Lebesgue measure, and let Es,ac and Es,s be the absolutely continuous and
singular parts of Es with respect to μ. Moreover, let NA be the spectral mul-
tiplicity function of A and

r(x) := #
{
l ∈ {1, . . . , n} : Dμμl(x) > 0

}
.

Then the following hold:
(I) Es,ac ∼ 1X>1 · μs where X>1 := r−1({2, . . . , n}).

(II) NA(x) = r(x) − 1 for Es,ac-a.a. points x ∈ R.
(III) NA(x) = 1 for Es,s-a.a. points x ∈ R.
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Remark 4.2. We may assume without loss of generality that all boundary
relations Γl with possible exception of Γn are boundary functions: First,
reordering the boundary relations Γl obviously does not change the rela-
tion A. Second, it is easy to see that the pasting with standard inter-
face conditions of a collection as given in the theorem is always unitary
equivalent to the pasting with standard interface conditions of a collection
with at most one boundary relation being a proper relation (take instead
of k pure relations {((0; 0); (w;βlw)), w ∈ C}, l = l1, . . . , lk, one relation
{((0; 0); (w;

∑k
j=1 βlj w)), w ∈ C}).

Let us recall some notation: The Weyl functions of the boundary relations Γl

are denoted as ml, and we set m :=
∑n

l=1 ml. The boundary relation Γ is as
in 3.10, and we denote by M(z) = (Mij(z))n

i,j=1 its Weyl function. Explicitly,
the function M is given by (3.11). Let Ω = (Ωij)n

i,j=1 be the n×n-matrix
valued measure in the Herglotz-integral representation (2.9) of M , let ρ be the
trace measure ρ := tr Ω, and let ω = (ωij)n

i,j=1 be the symmetric derivative
of Ω with respect to ρ, i.e.

ωij(x) :=
dΩij

dρ
(x), i, j = 1, . . . , n,

whenever these derivatives exist.
Moreover, remember 3.15 which says that the actual task is to compute

rankω(x).

Stage 1: μ-singular part.
In this part, we prove the following statement.

Proposition 4.3. If the set X ⊆ R is μ-zero, then for ρ-a.a. points x ∈ X the
symmetric derivative ω(x) exists and rankω(x) = 1.

The proof is split into two parts. First, the case when the right lower entry
Mnn of M dominates.

Lemma 4.4. Let x ∈ R, and assume that

(i) The symmetric derivative ω(x) exists.
(ii) dρ

dλ (x) = ∞.
(iii) ωnn(x) > 0.

Then the limits ml(x) := limε↓0 ml(x + iε), l = 1, . . . , n, exist, are real, and

m(x) := lim
ε↓0

m(x + iε) = 0.

The rank of the matrix ω(x) is equal to one.

Proof. Step 1. Existence of limits. The present hypotheses imply that

dΩnn

dλ
(x) = dΩnn

dρ (x) · dρ
dλ (x) = ∞ , (4.1)

dΩij

dΩnn
(x) = dΩij

dρ (x) · dρ
dΩnn

(x) = ωij(x)
ωnn(x) . (4.2)
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Applying Theorem 2.12 with Ωnn gives limε↓0 Im Mnn(x + iε) = ∞.
However, Mnn = − 1

m , and we thus have

lim
ε↓0

∣
∣
∣ Im

1
m(x + iε)

∣
∣
∣ = ∞.

In particular, limε↓0 m(x+ iε) = 0. Since Imml is nonnegative through-
out the upper half-plane, this implies that also limε↓0 Im ml(x + iε) = 0, l =
1, . . . , n.

In order to capture the behavior of the real parts, we apply Theorem 2.13
with the measures Ωij and Ωnn. This gives

lim
ε↓0

Im Mij(x + iε)
Im Mnn(x + iε)

=
ωij(x)
ωnn(x)

.

Let l ∈ {1, . . . , n − 1}. For each z ∈ C
+, we have

Im Mln(z)
Im Mnn(z)

=
Im ml(z)

m(z)

Im 1
m(z)

= Re ml(z) +
Im ml(z)Re 1

m(z)

Im 1
m(z)

, (4.3)

and
∣
∣
∣
∣Im ml(z)Re

1
m(z)

∣
∣
∣
∣ ≤ Im ml(z)

∣
∣
∣

1
m(z)

∣
∣
∣ ≤ Im ml(z)

Im m(z)
≤ 1.

Hence, the limit of Re ml exists, in fact,

lim
ε↓0

Re ml(x + iε) =
ωln(x)
ωnn(x)

.

Since we already know that imaginary parts tend to zero, thus

lim
ε↓0

ml(x + iε) =
ωln(x)
ωnn(x)

, l = 1, . . . , n − 1.

Since m tends to zero, it follows that limε↓0 mn(x+iε) = −∑n−1
l=1

ωln(x)
ωnn(x) .

Step 2. Computing rank. Let l ∈ {1, . . . , n − 1}. For each z ∈ C
+, we have

Im Mll(z) = Im
ml(z)[m(z) − ml(z)]

m(z)

= Im
1

m(z)
Re

(
ml(z)[m(z) − ml(z)]

)

+ Re
1

m(z)
Im

(
ml(z)[m(z) − ml(z)]

)
,

(4.4)
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and
∣
∣
∣
∣Re

1
m(z)

Im
(
ml(z)[m(z) − ml(z)]

)
∣
∣
∣
∣

≤
∣
∣
∣
∣Re

1
m(z)

· Im ml(z) · Re
(
m(z) − ml(z)

)
∣
∣
∣
∣

+
∣
∣
∣
∣Re

1
m(z)

· Re ml(z) · Im
(
m(z) − ml(z)

)
∣
∣
∣
∣

≤
∣
∣
∣
∣Re

1
m(z)

∣
∣
∣
∣ · Im m(z) ·

n∑

j=1

|Re mj(z)|

≤ Im m(z)
|m(z)| ·

n∑

j=1

|Re mj(z)| ≤
n∑

j=1

|Re mj(z)|.

Since mj(x + iε) approaches a real limit when ε ↓ 0, and m(x + iε)
tends to zero, and | Im 1

m(x+iε) | tends to infinity, we obtain (here “o(1)” is
understood as a term which may depend on ε but tends to zero if ε ↓ 0)

Im Mll(x + iε) = − Im
1

m(x + iε)
· (m2

l (x) + o(1)
)
, l = 1, . . . , n − 1.

Arguing analogously, we obtain

Im Mlk(x + iε) = − Im
1

m(x + iε)
· (ml(x)mk(x) + o(1)

)
,

l, k = 1, . . . , n − 1, l �= k,

Im Mln(x + iε) = − Im
1

m(x + iε)
· (ml(x) + o(1)

)
, l = 1, . . . , n − 1.

Therefore

Im tr M(x + iε) = − Im
1

m(x + iε)

(

1 +
n−1∑

l=1

m2
l (x) + o(1)

)

,

and hence, referring again to Theorem 2.13,

ω(x) =
1

1 +
∑n−1

l=1 m2
l (x)

×

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m2
1(x) m2(x)m1(x) · · · mn−1(x)m1(x) m1(x)

m1(x)m2(x) m2
2(x) · · · mn−1(x)m2(x) m2(x)

...
...

. . .
...

...
m1(x)mn−1(x) m2(x)mn−1(x) · · · m2

n−1(x) mn−1(x)
m1(x) m2(x) · · · mn−1(x) 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Obviously, the rank of this matrix is 1. ❑

Second, the case that the right lower entry of M does not dominate. In this
case, a more refined argument is necessary. First, two technical observations.
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Lemma 4.5. Let D ⊆ C be a connected set with x ∈ D. Moreover, let f, g :
D → C

+ be continuous functions. If limt→x
f(t)
g(t) = −1, then

lim
t→x

Im f(t)
Re f(t)

= lim
t→x

Im g(t)
Re g(t)

= 0. (4.5)

Proof. For z ∈ C
+, let arg z denote the branch of the argument of z in [0, π].

Then arg f and arg g are continuous functions. We have

lim
t→x

[
arg f(t) − arg g(t)

]
= π mod 2π,

and hence either

lim
t→x

arg f(t) = π and lim
t→x

arg g(t) = 0,

or

lim
t→x

arg f(t) = 0 and lim
t→x

arg g(t) = π.

In both cases, (4.5) follows. ❑

Lemma 4.6. Let α ∈ R, and let {fj}j∈N and {gj}j∈N be sequences of complex
numbers. Assume that
(i) For each j ∈ N we have Im gj �= 0.

(ii) limj→∞
fj

gj
= α.

(iii) Re gj

Im gj
= O(1) as j → ∞.

Then limj→∞
Im fj

Im gj
= α.

Proof. Let ε > 0. Then, for sufficiently large indices j, we have
∣
∣
∣
∣
fj

gj
− α

∣
∣
∣
∣ < ε.

This implies that
∣
∣ Im fj − α Im gj

∣
∣ ≤ |fj − αgj | < ε|gj |, and hence

∣
∣
∣
∣
Im fj

Im gj
− α

∣
∣
∣
∣ < ε

|gj |
| Im gj | .

Due to our assumption (iii), the right-hand side of this estimate can be
made arbitrarily small for large indices j. ❑

Now we are ready to settle the case that Mnn does not dominate.

Lemma 4.7. Let x ∈ R, and assume that
(i) The symmetric derivative ω(x) exists.

(ii) dρ
dλ (x) = ∞.

(iii) ωnn(x) = 0.
(iv) dμ

dρ (x) = 0.

(v) There exists no k ∈ {1, . . . , n} with limε↓0
| Re Mkk(x+iε)|
Im tr M(x+iε) = ∞.

Then the rank of the matrix ω(x) is equal to one.
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Proof. Since wnn(x) = 0, there exists an index k ∈ {1, . . . , n − 1} such that
ωkk(x) > 0. From this, the condition (ii), and Theorem 2.13, it follows that

lim
ε↓0

Im Mkk(x + iε)
Im tr M(x + iε)

= ωkk(x) > 0. (4.6)

Throughout the proof we fix an index k with this property.
Step 1: In this step we deduce that

lim
ε↓0

m(x + iε)
mk(x + iε)

= 0. (4.7)

By Theorem 2.13, the present hypotheses (iv) and (ii) imply that

lim
ε↓0

Im m(x + iε)
Im tr M(x + iε)

= 0.

Therefore, using (4.6), one has limε↓0
Im m(x+iε)

Im Mkk(x+iε) = 0. We compute

Im Mkk = Im
mk(m − mk)

m
=

Im[mk(m − mk)m]
|m|2

=
Im[mk(m − mk)(m − mk + mk)]

|m|2

=
∣
∣
∣
m − mk

m

∣
∣
∣
2

Im mk +
∣
∣
∣
mk

m

∣
∣
∣
2

Im(m − mk). (4.8)

From this we have
Im m

Im Mkk
=

1
∣
∣mk

m

∣
∣2 Im(m−mk)

Im m +
∣
∣m−mk

m

∣
∣2 Im mk

Im m

.

Using the estimate

∣
∣
∣
mk

m

∣
∣
∣
2 Im(m − mk)

Im m
+
∣
∣
∣
∣
m − mk

m

∣
∣
∣
∣

2 Im mk

Im m
≤
∣
∣
∣
mk

m

∣
∣
∣
2

+
∣
∣
∣
∣
m − mk

m

∣
∣
∣
∣

2

≤ 2
∣
∣
∣
mk

m

∣
∣
∣
2

+ 2
∣
∣
∣
mk

m

∣
∣
∣+ 1

we see that the limit relation limε↓0
Im m(x+iε)

Im Mkk(x+iε) = 0 implies (4.7).

In addition, further rewriting (4.7) as limε↓0
m(x+iε)−mk(x+iε)

mk(x+iε) = −1, we
get from Lemma 4.5 that

lim
ε↓0

Im mk(x + iε)
Re mk(x + iε)

= 0, lim
ε↓0

Im[m(x + iε) − mk(x + iε)]
Re[m(x + iε) − mk(x + iε)]

= 0.

Step 2: In this step we show that for each l ∈ {1, . . . , n − 1}

al(x) := lim
ε↓0

ml(x + iε)
mk(x + iε)

exists in R.

Let l ∈ {1, . . . , n − 1} be given. By (i), (ii), and Theorem 2.13, we have
limε↓0

Im Mll(x+iε)
Im tr M(x+iε) = ωll(x). Using (4.6), thus limε↓0

Im Mll(x+iε)
Im Mkk(x+iε) = ωll(x)

ωkk(x) .
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From the computation (4.8), it follows that

Im Mll(z)
Im Mkk(z)

=

∣
∣ml(z)
mk(z)

∣
∣2 Im(m(z)−ml(z))

Im m(z) +
∣
∣ml(z)
mk(z) − m(z)

mk(z)

∣
∣2 Im ml(z)

Im m(z)

Im(m(z)−mk(z))
Im m(z) +

∣
∣1 − m(z)

mk(z)

∣
∣2 Im mk(z)

Im m(z)

.

Due to (4.7), the denominator tends to 1 when z = x + iε and ε ↓ 0.
Therefore, the numerator has the limit ωll(x)

ωkk(x) , i.e.

lim
ε↓0

[∣
∣
∣
ml(x+iε)
mk(x+iε)

∣
∣
∣
2

+
(∣
∣
∣
ml(x+iε)
mk(x+iε)

− m(x+iε)
mk(x+iε)

∣
∣
∣
2

−
∣
∣
∣
ml(x+iε)
mk(x+iε)

∣
∣
∣
2
)

Im ml(x+iε)
Im m(x+iε)

]

=
ωll(x)
ωkk(x)

. (4.9)

Let us show that limε↓0

∣
∣ml(x+iε)
mk(x+iε)

∣
∣2 = ωll(x)

ωkk(x) . First, if ml(x+iε)
mk(x+iε) were not

bounded as ε ↓ 0, then there would exists a sequence {εj}j∈N with εj ↓ 0,
such that limj→∞

∣
∣ml(x+iεj)
mk(x+iεj)

∣
∣ = ∞. We have

∣
∣
∣
ml

mk
− m

mk

∣
∣
∣
2

−
∣
∣
∣
ml

mk

∣
∣
∣
2

=
∣
∣
∣
ml

mk

∣
∣
∣
2

·
(∣
∣
∣
∣1 −

m
mk

ml

mk

∣
∣
∣
∣− 1

)

,

and it follows that
∣
∣
∣
ml(x+iεj)
mk(x+iεj)

− m(x+iεj)
mk(x+iεj)

∣
∣
∣
2

−
∣
∣
∣
ml(x+iεj)
mk(x+iεj)

∣
∣
∣
2

= o

(∣
∣
∣
ml(x+iεj)
mk(x+iεj)

∣
∣
∣
2
)

as j → ∞. (4.10)

Since 0 < Im ml(x+iε)
Im m(x+iε) ≤ 1, it follows that the expression on the left side

of (4.9) would also be unbounded, a contradiction. This means that ml(x+iε)
mk(x+iε)

remains bounded when ε ↓ 0. We have
∣
∣
∣
∣

∣
∣
∣
ml

mk
− m

mk

∣
∣
∣
2

−
∣
∣
∣
ml

mk

∣
∣
∣
2
∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
ml

mk
− m

mk

∣
∣
∣−

∣
∣
∣
ml

mk

∣
∣
∣

∣
∣
∣
∣

(∣
∣
∣
ml

mk
− m

mk

∣
∣
∣+

∣
∣
∣
ml

mk

∣
∣
∣

)

≤
∣
∣
∣

m

mk

∣
∣
∣

(∣
∣
∣
ml

mk
− m

mk

∣
∣
∣+

∣
∣
∣
ml

mk

∣
∣
∣

)

,

and it follows that
∣
∣
∣
ml(x+iε)
mk(x+iε)

− m(x+iε)
mk(x+iε)

∣
∣
∣
2

−
∣
∣
∣
ml(x+iε)
mk(x+iε)

∣
∣
∣
2

= o(1) as ε ↓ 0.

Now we get from (4.9) that

lim
ε↓0

∣
∣
∣
∣
ml(x + iε)
mk(x + iε)

∣
∣
∣
∣

2

=
ωll(x)
ωkk(x)

.

Next, rewrite

Im
(ml

mk

)
=

Im ml

|mk| · Re mk

|mk| − Re ml

|mk| · Im mk

|mk| .
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Since

|Re mk|
|mk| ≤ 1,

|Re ml|
|mk| ≤

∣
∣
∣
ml

mk

∣
∣
∣ = O(1),

Im ml

|mk| ,
Im mk

|mk| ≤ Im m

|mk| ≤
∣
∣
∣

m

mk

∣
∣
∣ = o(1),

we have limε↓0 Im
(ml(x+iε)

mk(x+iε)

)
= 0. Therefore

either lim
ε↓0

ml(x + iε)
mk(x + iε)

=

√
ωll(x)
ωkk(x)

or lim
ε↓0

ml(x + iε)
mk(x + iε)

= −
√

ωll(x)
ωkk(x)

.

In both cases the limit limε↓0
ml(x+iε)
mk(x+iε) exists and is real.

Step 3; Computing rank: Let l, p ∈ {1, . . . , n − 1}. If l �= p, then

lim
ε↓0

Mlp(x + iε)
Mkk(x + iε)

= lim
ε↓0

ml(x+iε)
mk(x+iε) · mp(x+iε)

mk(x+iε)

1 − m(x+iε)
mk(x+iε)

= al(x)ap(x). (4.11)

If l = p, then

lim
ε↓0

Mll(x + iε)
Mkk(x + iε)

= lim
ε↓0

ml(x+iε)
mk(x+iε) · (ml(x+iε)

mk(x+iε) − m(x+iε)
mk(x+iε)

)

1 − m(x+iε)
mk(x+iε)

= a2
l (x). (4.12)

From (v) it follows that there exists a sequence {εj}j∈N with εj ↓ 0,
such that limj→∞

Re Mkk(x+iεj)
Im Mkk(x+iεj)

= O(1) as j → ∞. Applying Lemma 4.6, we
get from (4.11) and (4.12) that

Im Mlp(x + iεj)
Im Mkk(x + iεj)

= al(x)ap(x), l, p = 1, . . . , n − 1.

Since ω(x) is positive semidefinite, (iii) implies that

ωij(x) = 0, i = n or j = n.

Altogether,

ω(x) =
1

∑n−1
l=1 a2

l (x)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2
1(x) a2(x)a1(x) · · · an−1(x)a1(x) 0

a1(x)a2(x) a2
2(x) · · · an−1(x)a2(x) 0

...
...

. . .
...

...

a1(x)an−1(x) a2(x)an−1(x) · · · a2
n−1(x) 0

0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The rank of this matrix obviously cannot exceed 1. However, ak(x) = 1,
and hence it is nonzero. ❑

Having available Lemma 4.4 and Lemma 4.7, it is not difficult to prove Propo-
sition 4.3.
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Proof of Proposition 4.3. Let a μ-zero set X ⊆ R be given. It is enough to
show that the conditions (i), (ii) appearing in Lemma 4.4 and Lemma 4.7,
and the conditions (iv), (v) appearing in Lemma 4.7 are satisfied ρ-a.e. on X.

The fact that the symmetric derivative ω(x) exists ρ-a.e., has been noted
in Remark 2.6. Denote by μac and ρac the absolutely continuous parts of μ
and ρ with respect to the Lebesgue measure. By Theorem 1.1, ρac ∼ μac 	 μ.
Thus the set X is ρac-zero. Corollary 2.5, (iv), says that for ρs-a.a. points
x ∈ R one has dρ

dλ (x) = ∞. Since X is ρac-zero, one has dρ
dλ (x) = ∞ not only

for ρs-a.a., but even for ρ-a.a. x ∈ X.
Corollary 2.4, (ii), shows that for ρ-a.a. points x ∈ X we have dμ

dρ (x) = 0.
Corollary 2.16 applied with the measure ρ and the measures that correspond
to the Herglotz functions Mll gives

|Re Mll(x + iε)|
Im tr M(x + iε)

� ∞ as ε ↓ 0, l = 1, . . . , n − 1,

for ρ-a.a. x ∈ R. ❑

Stage 2: μ-Absolutely Continuous Part.
Consider the sets

Xreg :=
{

x ∈ R :
dμ

dλ
(x) = ∞,

dρ

dμ
(x) ∈ [0,∞),

|Re m(x + iε)|
Im m(x + iε)

� ∞ as ε ↓ 0,

∀ l = 1, . . . , n :
dμl

dμ
(x) exists, and lim

ε↓0

ml(x + iε)
m(x + iε)

=
dμl

dμ
(x)

}

.

X1
reg :=

{
x ∈ Xreg : ∃ l ∈ {1, . . . , n} :

dμl

dμ
(x) = 1

}
,

X>1
reg :=

{
x ∈ Xreg : � l ∈ {1, . . . , n} :

dμl

dμ
(x) = 1

}
.

Note that, since
∑n

l=1
dμl

dμ (x) = 1 and dμl

dμ (x) ∈ [0, 1], one of the following
alternatives takes place:

(1) There exists one index k0 with dμk0
dμ (x) = 1, and for all other indices

k �= k0 we have dμk

dμ (x) = 0.
(>1) For all indices k we have dμk

dμ (x) < 1, and there exist at least two indices
k with dμk

dμ (x) > 0.

In this part we show the following statement.

Proposition 4.8. The following hold:

(i) The set X1
reg is ρ-zero.

(ii) For ρ-a.a. points x ∈ Xreg the symmetric derivative ω(x) exists and

rankω(x) = r(x) − 1.

First, an elementary fact which we use to compute rank.
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Lemma 4.9. Let n ∈ N, let b1, b2, . . . , bn, d ∈ R\{0}, and consider the matrix

Md :=

⎛

⎜
⎜
⎜
⎝

b1(d − b1) −b2b1 · · · −bnb1

−b1b2 b2(d − b2) · · · −bnb2

...
...

. . .
...

−b1bn −b2bn · · · bn(d − bn)

⎞

⎟
⎟
⎟
⎠

.

If d =
∑n

l=1 bl, then rankMd = n − 1. Otherwise rankMd = n.

Proof. We have:

rankMd = rank

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d − b1 −b1 · · · −b1

−b2 d − b2 · · · −b2

...
...

. . .
...

−bn −bn · · · d − bn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d 0 · · · −b1

0 d · · · −b2

...
...

. . .
...

−d −d · · · d − bn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=rank

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · −b1

0 1 · · · −b2

...
...

. . .
...

−1 −1 · · · d − bn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · −b1

0 1 · · · −b2

...
...

. . .
...

0 0 · · · d −∑n
l=1 bl

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

{
n − 1, d −∑n

l=1 bl = 0,

n, d −∑n
l=1 bl �= 0.

The next two lemmata contain the essential arguments. ❑

Lemma 4.10. For each x ∈ Xreg we have

dρ

dμ
(x) =

n−1∑

l=1

dμk

dμ
(x)

(
1 − dμk

dμ
(x)

)
.

Proof. Since dμ
dλ (x) = ∞, Theorem 2.12 gives limε↓0 Im m(x + iε) = ∞. This

implies that

lim
ε↓0

Im Mnn(x + iε)
Im m(x + iε)

= lim
ε↓0

1
|m(x + iε)|2 = 0.

Let l ∈ {1, . . . , n − 1}. Then we have

lim
ε↓0

Mll(x + iε)
m(x + iε)

=
dμl

dμ
(x)

(
1 − dμl

dμ
(x)

)
.
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Choose a sequence {εj}j∈N, εj ↓ 0, such that | Re m(x+iεj)|
Im m(x+iεj)

remains
bounded when j → ∞. Lemma 4.6 yields that also

lim
j→∞

Im Mll(x + iεj)
Im m(x + iεj)

=
dμl

dμ
(x)

(
1 − dμl

dμ
(x)

)
, l = 1, . . . , n. (4.13)

Now we use the sequence {εj}j∈N to evaluate dρ
dμ (x) by means of Theo-

rem 2.13. This gives

dρ

dμ
(x) = lim

j→∞
Im tr M(x + iεj)
Im m(x + iεj)

=
n−1∑

l=1

dμl

dμ
(x)

(

1 − dμl

dμ
(x)

)

. (4.14)

❑

Corollary 4.11. Let x ∈ Xreg. Then

dρ

dμ
(x)

{
= 0, x ∈ X1

reg,

> 0, x ∈ X>1
reg.

Proof. Let x ∈ Xreg. Then we have x ∈ X1
reg if the above alternative (1)

takes place, and x ∈ X>1
reg if (> 1) takes place. Hence, for x ∈ X1

reg we have
∑n−1

l=1
dμk

dμ (x)
(
1 − dμk

dμ (x)
)

= 0, and for x ∈ X>1
reg this sum is positive. ❑

Lemma 4.12. Let x ∈ X>1
reg, and assume that

(i) The symmetric derivative ω(x) exists.
(ii) dρ

dλ (x) = ∞.

Then

rank ω(x) = #
{

l ∈ {1, . . . , n} :
dμl

dμ
(x) > 0

}
− 1. (4.15)

Proof. By Theorem 2.13, the present assumptions (i) and (ii) ensure that

ω(x) = lim
ε↓0

Im M(x + iε)
Im tr M(x + iε)

. (4.16)

It is easy to show that the last row and column of the matrix ω(x)
vanishes: By Theorem 2.12, our assumption (ii) gives limε↓0 Im tr M(x+iε) =
∞. We already saw in the proof of the last lemma that limε↓0 Im m(x+ iε) =
∞, and it follows that limε↓0 Im Mnn(x+ iε) = 0 and ωnn(x) = 0. Since ω(x)
is positive semidefinite, all entries ωij(x) with i = n or j = n must vanish.

To shorten notation, set dl(x) := dμl

dμ (x). Let {εj}j∈N be the same se-
quence as in the proof of the previous lemma. Then not only (4.13) holds,
but also

lim
j→∞

Im Mlk(x + iεj)
Im m(x + iεj)

= −dl(x)dk(x), l, k = 1, . . . , n − 1, l �= k.
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Referring to (4.16) and (4.14), we obtain

ω(x) =
1

∑n−1
l=1 dl(x)(1 − dl(x))

×

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d1(x)(1 − d1(x)) −d2(x)d1(x) · · · −dn−1(x)d1(x) 0
−d1(x)d2(x) d2(x)(1 − d2(x)) · · · −dn−1(x)d2(x) 0

...
...

. . .
...

...
−d1(x)dn−1(x) −d2(x)dn−1(x) · · · dn−1(x)(1 − dn−1(x)) 0

0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Applying Lemma 4.9 with the matrix obtained from ω(x) by deleting
all rows and columns which contain only zeros, gives

rankω(x) =

⎧
⎨

⎩

#
{
l : 1 ≤ l ≤ n−1, dl(x) > 0

}
,

∑n−1
l=1 dl(x) �= 1,

#
{
l : 1 ≤ l ≤ n−1, dl(x) > 0

}− 1,
∑n−1

l=1 dl(x) = 1.

The condition
∑n−1

l=1 dl(x) �= 1 is equivalent to dn(x) �= 0, and the
formula (4.15) follows. ❑

Proof of Proposition 4.8. Corollary 4.11 and Corollary 2.4, (i), show that
X1

reg is ρ-zero. Denote

X+
reg :=

{
x ∈ X>1

reg : ω(x) exists,
dρ

dλ
(x) = ∞

}
.

Then Lemma 4.12 says that

rankω(x) = #
{

l ∈ {1, . . . , n} :
dμl

dμ
(x) > 0

}
− 1, x ∈ X+

reg. (4.17)

We have

Xreg\X+
reg ⊆ {x ∈ R : ω(x) does not exist} ∪ {x ∈ R :

dρ

dλ
(x) ∈ [0,∞)

}

∪{x ∈ R :
dρ

dλ
(x) does not exist

} ∪ X1
reg.

The first set in this union is ρ-zero by Remark 2.6. By Corollary 2.5,
(iv), the second set is ρs-zero. The third set is ρ-zero by Theorem 2.1, and
the last by the already proved item (i). Together, and due to the fact that
the set Xreg itself is Lebesgue-zero, we see that Xreg\X+

reg is ρ-zero.
We have

Xreg ⊆ {
x ∈ R\Eρ,μ :

dρ

dμ
(x) ∈ [0,∞)

} ∪ Eρ,μ.

Using Corollary 2.4, (iii), we obtain that the intersection of every μ-zero
set with Xreg is ρ-zero. Hence, Dμμl(x) = dμl

dμ (x) for ρ-a.a. x ∈ Xreg, and
(4.17) implies that

rankω(x) = r(x) − 1, for ρ-a.a. x ∈ Xreg. ❑

Stage 3: Finishing the proof of the main theorem.
Having available Propositions 4.3 and 4.8, it is not difficult anymore to

complete the proof of Theorem 4.1.
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Proof of Theorem 4.1. Let μ = μac + μs and ρ = ρac + ρs be the decomposi-
tions of μ and ρ with respect to the Lebesgue measure.

The set Xreg is μac-zero, because (as we know from Corollary 2.5, (iii))
the set

{
x ∈ R : dμ

dλ (x) = ∞}
is μac-zero. The following properties hold:

(1) dμ
dλ (x) = ∞ μs-a.e. (due to Corollary 2.5, (iv)).

(2) dρ
dμ (x) ∈ [0,∞) and the limit dμl

dμ (x) exists μ-a.e. (due to Corollary 2.5,
(i), and Theorem 2.1).

(3) | Re m(x+iε)|
Im m(x+iε) � ∞ as ε ↓ 0 μ-a.e. (due to Theorem 2.14).

(4) limε↓0
ml(x+iε)
m(x+iε) = dμl

dμ (x) μs-a.e. (due to Theorem 2.15, (ii)).

Hence, the set Xreg is μs-full. Thus we can choose a Borel set X ⊆ Xreg

with μs(R\X) = 0 and μac(X) = 0 (since Xreg is Lebesgue-zero).
Let E :=

⋃n
l=1 Eμl,μ where Eμl,μ are exceptional sets as in Theorem 2.1.

By passing from X to X\E , we may assume that the functions dμl

dμ

∣
∣
X

are
Borel measurable. Set

Xs,ac := X ∩ X>1
reg.

It is a Borel set. The set X>1 = r−1({2, . . . , n}) in the formulation of
the theorem is determined only up to a μ-zero (and hence ρs,ac-zero) set.
Since the symmetric derivative dμl

dμ coincides μ-a.e. with the Radon-Nikodym
derivative Dμμl (i.e., is a representative of the class of equivalent functions),
we may use

X>1 :=
{

x ∈ R\E : for at least two indices
dμl

dμ
(x) > 0

}
.

Then X>1 ∩ X = Xs,ac.
Now we can determine the Lebesgue decomposition of ρs with respect

to μ. Choose a Borel set Y with ρs(Y c) = 0 and λ(Y ) = 0, so that ρs = 1Y ·ρ.
Our candidates for the Lebesgue decomposition are:

ρs,ac := 1Xs,ac
· ρs, ρs,s := 1Xc · ρs = 1Xc∩Y · ρ.

Since X\Xs,ac ⊆ X1
reg, by Proposition 4.8, (i), we have ρ(X\Xs,ac) = 0,

so ρs = ρs,ac +ρs,s. Furthermore, for every x ∈ Xs,ac we have dρ
dμ (x) ∈ (0,∞),

and hence by Corollary 2.4, (iii),

ρs,ac ∼ 1Xs,ac · μ = 1X>1 · 1X · μ = 1X>1 · μs. (4.18)

Finally, from μs(Xc) = 0 it follows that ρs,s ⊥ μs and therefore ρs,s ⊥ μ.
Thus, indeed, ρs,ac and ρs,s are the absolutely continuous and singular part
of ρs with respect to μ.

From the fact that E ∼ ρ and (4.18) it follows that Item (I) of Theo-
rem 4.1 holds. Since X ⊆ Xreg and ρs,ac(Xc) = 0, Proposition 4.8 implies
that

rankω(x) = r(x) − 1 for ρs,ac − a.a. points x ∈ R,

which gives item (II). Due to the fact that μ(Xc ∩ Y ) = 0, Proposition 4.3
implies

rankω(x) = 1 for ρs,s-a.a. points x ∈ R,
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and this is item (III). ❑
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Appendix A. Some Examples

In this appendix we provide four examples in order to show that all possibil-
ities for the spectrum which are admitted by Theorem 4.1 indeed may occur.
We realize these examples on the level of Schrödinger operators. Due to the
general inverse theorem stated as the second part of Theorem 3.4, it would
be somewhat simpler to realize them on the level of boundary relations. How-
ever, in order to remain in a more intuitive setting, we decided to stick to the
Schrödinger case. Also we should say it very clearly that our emphasis in this
appendix is on examples and methods rather than on maximal generality.

Let us first recall in some detail how a half-line Schrödinger operator
can be considered as a boundary relation. This is of course a (if not “the”)
standard example for boundary relations, see [13] and the references therein.
Formulated in our present language it reads as follows.

Remark A.1. Let q be a real and locally integrable potential defined on
(0,∞), and assume that 0 is a regular endpoint and that Weyl’s limit point
case prevails at the endpoint ∞. Denote by Tmax the maximal differential
operator generated in L2(0,∞) by the differential expression − d2

dx2 + q. For
α ∈ R, denote by Γ(α) the relation

Γ(α) :=
{(

(u;Tmaxu);
(
u(0) cos α + u′(0) sin α;−u(0) sin α + u′(0) cos α

))
:

u ∈ dom Tmax

}
⊆ L2(0,∞)2 × C

2

Then it is easy to see that Γ(α) is a boundary relation (in fact, “boundary
function”) for the operator Tmax: For α = 0 see [7, Example 1.3]. For other
values of α note that Γ(α) and Γ(0) are related by

Γ(α) = wα ◦ Γ(0)

with the JC-unitary matrix

wα :=
(

cos α sin α
− sin α cos α

)

,

and apply Theorem 3.12.
Apparently, the selfadjoint operator

Aα := ker
[
π1 ◦ Γ(α)

]
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is nothing but the selfadjoint restriction of Tmax given by the boundary con-
dition

u(0) · cos α + u′(0) · sin α = 0.

First we consider Es,ac and Eac and give an example that an arbitrary number
of overlaps (embedded into absolutely continuous spectrum or not) can be
produced. This is very simple; we elaborate it only for the sake of illustration
and completeness.

Example A.2. Let λ1, λ2 be measures such that (λ is the Lebesgue measure)

λ1 ⊥ λ2, λj ⊥ λ, suppλj = [0, 1], λj({0}) = λj({1}) = 0, j = 1, 2.

For n,m ∈ Z, n < m, set

λ
(n,m)
j (Δ) :=

m−1∑

l=n

λj

(
Δ − l

)
, Δ Borel set.

Moreover, let f be the function

f(x) :=

{
2
3π x

3
2 , x ≥ 9

2 ,

0, otherwise.

We consider the measures μ1, . . . , μ4 defined as

μ1 := λ
(2,3)
1 + λ

(4,5)
1 +λ

(3,4)
2 + λ

(6,7)
2 +f · λ,

μ2 := λ
(2,6)
1 +λ

(6,7)
2 +f · λ,

μ3 := +λ
(0,7)
2 +f · λ,

μ4 := λ
(0,1)
1 + λ

(7,8)
1 +λ

(3,8)
2 +f · λ.

Now we appeal to the version of the Gelfand-Levitan theorem which
applies to the Dirichlet boundary condition, cf. [25, §2.9]. The hypotheses of
this result are obviously fulfilled, and we obtain a potentials q1, . . . , q4 on the
half-line, such that μj is the measure in the integral representation of the
Titchmarsh-Weyl coefficient constructed from the potential qj with Dirichlet
boundary conditions.

Let A1, . . . , A4 be the corresponding non-interacting operators, and let
A be their pasting with standard interface conditions. The support sets of
the spectral measures of A1, . . . , A4 can be pictured as follows:
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0 1 2 3 4 5 6 7 8 · · ·−1x :

A1 :

A2 :

A3 :

A4 :

. . . contribution of λ1-shifts . . . contribution of λ2-shifts

. . . contribution of f · λ

Support sets of Es,ac and Eac including multiplicities are:

NA(x): values Es,ac-a.e.

Support set of Eac:

Values Eac-a.e.:

Support set of Es,ac:

NA(x) = 4NA(x) = 0

0 1 2 3 4 5 6 7 8 · · ·−1

0

1

2

3

This example also demonstrates that from the singular spectra σs(Aj)
(which are the closures of the above pictured support sets), one cannot draw
any conclusions about the singular spectrum σs(A) or the spectral multiplic-
ity function NA.

Next, we investigate with Es,s, i.e., the possible appearance of new singular
spectrum. This is not so straightforward. In order to make explicit computa-
tions, we consider the situation which resembles a single half-line operator.

Remark A.3. Let q be real and locally integrable potential defined on (0,∞),
and assume that 0 is a regular endpoint and that Weyl’s limit point case
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prevails at the endpoint ∞. Let n ≥ 2, and extend the potential q to the
star-graph with n edges by symmetry (i.e., consider the same potential on all
edges). Matching the notation of Theorem 4.1, we thus have

Γl := Γ(0), l = 1, · · · , n,

where Γ(0) is defined for q as in Remark A.1. Then the Weyl functions ml

are all equal, namely equal to the classical Weyl function m(0) constructed
from the potential q. Thus, m = n · m(0).

From Proposition 3.18 we see that the n×n-matrix valued Weyl func-
tion M corresponding to the boundary relation Γ constructed by pasting
Γ1, · · · ,Γn with standard interface conditions is given as

M =
1
n

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(n − 1)m(0) −m(0) · · · −m(0) −1
−m(0) (n − 1)m(0) · · · −m(0) −1

...
...

. . .
...

...
−m(0) −m(0) · · · (n − 1)m(0) −1

−1 −1 · · · −1 − 1
m(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

In particular,

tr M =
1
n

[
(n − 1)2m(0) − 1

m(0)

]
.

Denote by μ0 and σ0 the measures in the integral representations of m(0)

and − 1
m(0)

, respectively. Then, for the trace measure ρ constructed from M

we have

ρ ∼ μ0 + σ0.

Using the notation of Theorem 4.1, we thus have

μ = n · μ(0), r(x) = n for μ-a.a. points x ∈ R,

and hence (denoting by μ(0),s and σ0,s the singular parts of μ(0) and σ0 with
respect to the Lebesgue measure)
(I) Es,ac ∼ μ(0),s,

(II) NA(x) = n − 1 for Es,ac-a.a. points x ∈ R,

Es,s ∼ σ0,s. (A.1)

Using appropriately chosen potentials q, we can now provide examples that
new singular spectrum (embedded or not) does appear, or that no new sin-
gular spectrum appears.

Example A.4 (Appearance of new spectrum, partially embedded). In [30,
Theorem 3.5] a class of potentials is given, such that for every boundary
condition the corresponding Schrödinger operator Aα satisfies (F denotes a
certain Smith-Volterra-Cantor-type set with positive Lebesgue measure)

σsc(Aα) = [0,∞), σac(Aα) = F 2, σp(Aα) ∩ (0,∞) = ∅.

Using measure theoretic terms, we may thus say that there exist minimal
supports of the corresponding singular continuous parts μ(α),sc of the spectral
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measures μ(α) which are Lebesgue-zero sets, mutually disjoint, and dense in
[0,∞).

For such potentials we see from (A.1) that Es,s �= 0, i.e., new singular
spectrum appears (precisely on a minimal support of μ( π

2 ),s). The part of
this new spectrum located on the positive half-line is singular continuous.
Moreover, since ∅ �= suppEac = F 2 ⊆ [0,∞), some part of it is embed-
ded into the absolutely continuous spectrum. The spectrum originating from
overlaps (which happens precisely on a minimal support of μ(0)) shares these
properties.

Example A.5 (Appearance of new spectrum, not embedded). Consider the
potential

q(x) :=

{
k,

∣
∣x − exp(2k

3
2 )
∣
∣ < 1

2 ,

0, otherwise.

This potential was studied in [34], and it turned out that for every
boundary condition the corresponding selfadjoint operator Aα satisfies

σac(Aα) = ∅, σsc(Aα) = [0,∞).

Moreover, depending on the boundary condition either σp(Aα) is empty
or consists of one negative eigenvalue. Expressed in measure theoretic terms,
this means that there exist minimal supports of the corresponding spectral
measures μ(α) which are all Lebesgue-zero sets, are mutually disjoint, whose
intersection with [0,∞) is dense in [0,∞), which contain at most one point
on the negative half-line, and that μ(α) has no point masses in [0,∞).

For this potential we see from (A.1) that Es,s �= 0, i.e., new singu-
lar spectrum appears. This new part of the spectrum is singular continuous
and embedded into the spectrum originating from overlaps (the closures of
minimal supports of Es,ac and Es,s are both equal to [0,∞)).

Example A.6 (Non-appearance of new spectrum). We follow the idea given
in [11] to construct examples, and use the type of measures discussed in [11,
Example 1] and the Gelfand-Levitan theorem. However, we need to refer to
the version of the Gelfand-Levitan theorem which applies to the Dirichlet
boundary condition, cf. [25, §2.9].

Let us first recall the argument made in [11, Example 1].9 Let f be a
continuous, bounded, and positive function on R, let λ0 be a positive measure
with

∫
R

dλ0(t)
1+t2 < ∞, and consider the measure

ν := λ0 + f · λ,

where λ is the Lebesgue measure. Denote by m the corresponding Herglotz-
function

m(z) :=
∫

R

( 1
t − z

− t

1 + t2

)
dν(t), z ∈ C\R.

9Again, we do not aim for maximal generality.
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Then, since ν ≥ f · λ, we have

lim inf
ε↓0

Im m(x + iε) ≥ πf(x), x ∈ R.

In particular, the function m(z) never approaches a real boundary value
when z tends to a real point (along a perpendicular ray).

Consider the Herglotz functions

mτ (z) :=
τm(z) − 1
m(z) + τ

, τ ∈ R,

and let ντ be the measure in the integral representation of mτ . Then, by
Aronszajn–Donoghue (cf. [15, Theorem 3.2,(3.17)]), the measures ντ are all
absolutely continuous with respect to the Lebesgue measure.

Next, we make an appropriate choice of f and λ0, so to allow an appli-
cation of the Gelfand-Levitan theorem. Set, for example,

f(x) :=
2
3π

·
{

ex−1, x < 1,

x
3
2 , x ≥ 1,

and let λ0 be compactly supported. Then the hypotheses of the Gelfand-
Levitan theorem are obviously fulfilled, and we obtain a potential q on the
half-line, such that the measure ν is the measure in the integral representation
of the Weyl function constructed from the potential q with Dirichlet boundary
conditions.

Symmetrically extending the potential q constructed in the above para-
graph, yields examples with
(i) Es = 0 (choose λ0 = 0),

(ii) Es,ac �= 0 but Es,s = 0 (choose λ0 to be singular).

Appendix B. Other Boundary/Interface Conditions

In the first statement of this section we show how Theorem 4.1 can be used
to deduce the classical result of Aronszajn–Donoghue that the singular parts
of the spectral measures corresponding to different boundary conditions in
a half-line problem are mutually singular. This approach is of course more
complicated than the original one, and hence should not be viewed as a “new
proof of an old result”. The reasons why we still find it worth to be elaborated
are: (1) reobtaining previously known results gives a hint that the new result
is not unnecessarily weak, and (2) it demonstrates the usage of boundary
relations with a nontrivial multivalued part.

Corollary B.1. (Aronszajn–Donoghue) Let q be a real and locally integrable
potential defined on (0,∞), assume that 0 is a regular endpoint and that
Weyl’s limit point case prevails at the endpoint ∞. Moreover, for α ∈ [0, π),
denote by Aα the selfadjoint operator given by the differential expression
− d2

dx2 + q and the boundary condition

u(0) · cos α + u′(0) · sin α = 0.
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Then, for each two α1, α2 ∈ [0, π), α1 �= α2, the singular parts of the
spectral measures of Aα1 and Aα2 are mutually singular.

Proof. Let Tmax be the maximal operator associated with differential ex-
pression − d2

dx2 + q, and let Γαj
be the boundary relations constructed in

Remark A.1. Moreover, denote by μ(αj), j = 1, 2, the measure in the integral
representation of the Weyl function of Γαj

.
Set β := α1 − α2, and denote by Γ̊ the boundary relation

Γ̊ :=
{(

(0; 0); (−w sin β;w cos β)
)

: w ∈ C
} ⊆ {0}2 × C

2. (B.1)

Then the pasting Γ of Γ̊ and Γ(α1) with standard interface conditions is
given as

Γ =

{(((
0

u

)

;

(
0

Tmaxu

))

;

((
w sin β+[u(0) cos α1+u′(0) sin α1]

w cos β+[−u(0) sin α1+u′(0) cos α1]

)

;

(
−w cos β

−[u(0) cos α1+u′(0) sin α1]

)))

:

w ∈ C, u ∈ dom Tmax

}

⊆
(
{0}×L2(0, ∞)

)2 × C
2.

A short computation shows that (we identify {0} × L2(0,∞) with
L2(0,∞)) ker

[
π1 ◦ Γ

]
= Aα2 . The Weyl function m̊ of Γ̊ is equal to the

real constant − cot β; note here that β ∈ (−π, π)\{0}. The measure μ̊ in its
integral representation is thus equal to 0. Using the notation of Theorem 4.1,
we have

μ = μ(α1), r(x) = 1 for μ-a.a. points x ∈ R,

and hence Es,ac = 0. However, E ∼ μ(α2), and we see that μ(α2),s =
μ(α2),s,s ⊥ μ(α1). Therefore μ(α1),s ⊥ μ(α2),s. ❑

Finally, we provide some knowledge on other interface conditions than the
standard ones. In the context of this example, it is however important to add
two remarks:

(1) The formula for spectral multiplicity will not be given in terms of the
spectral measures of the non-interacting operators, but in terms of the
corresponding Weyl functions. Hence, the below result cannot be viewed
as a strict analogue of Theorem 4.1 for other interface conditions.

(2) The applied method provides knowledge only about a particular (small)
class of interface conditions. It does not lead to a treatment of arbi-
trary interface conditions on a star-graph, and even less to a formula for
multiplicity on graphs with a more complicated geometry.

Proposition B.2. Let n ≥ 2 and real valued locally integrable potentials ql, l =
1, . . . , n, on the half-line be given, such that ql is regular at 0 and in Weyl’s
limit point case at ∞. Let a1, . . . , an ∈ [0, 2π) and b ∈ (0, π) be given, and
consider the selfadjoint matrix Schrödinger operator A defined on L2(0,∞)n
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by the differential expression − d2

dx2 + V with the diagonal matrix potential

V (x) :=

⎛

⎜
⎝

q1(x)
. . .

qn(x)

⎞

⎟
⎠

and the interface conditions

u1(0) cos a1 + u′
1(0) sin a1 = · · · = un(0) cos an + u′

n(0) sin an,
n∑

l=1

[
ul(0) cos(al − b) + u′

l(0) sin(al − b)
]

= 0.

(B.2)

Denote the Titchmarsh-Weyl coefficient constructed from the potential
ql (with Dirichlet boundary conditions) as ml, and set

Sl :=

{{
x ∈ R : limε↓0 ml(x + iε) = − cot al

}
, al �∈ {0, π},

{
x ∈ R : limε↓0 Im ml(x + iε) = ∞}

, al ∈ {0, π}.

Then

NA(x) =

{
#
{
l ∈ {1, . . . , n} : x ∈ Sl

}− 1, Es,ac-a.e.,
1, Es,s-a.e.

Proof. First of all, let us explicitly state how the operator A acts:

A

⎛

⎜
⎝

u1

...
un

⎞

⎟
⎠ := − d2

dx2

⎛

⎜
⎝

u1

...
un

⎞

⎟
⎠+

⎛

⎜
⎝

q1u1

...
qnun

⎞

⎟
⎠ ,

on the domain

dom A :=
{

(u1, . . . , un) ∈
n∏

l=1

L2(0,∞) :

ul, u
′
l are absolutely continuous,−u′′

l + qlul ∈ L2(0,∞),

u1, . . . , un satisfy the interface conditions (B.2)
}

.

For l = 1, . . . , n let Γl be the boundary relation which is defined from
the potential ql as Γ(al), cf. Remark A.1. Moreover, let Γ̊ be the boundary re-
lation defined in (B.1). We consider the pasting of Γ1, . . . ,Γn, Γ̊ with standard
interface conditions. Then an element (u1, . . . , un) belongs to the domain of
the operator10 ker[π1 ◦ Γ] if and only if

∃ w ∈ C :

{
ul(0) cos al + u′

l(0) sin al = −w sin b, l = 1, . . . , n,
∑n

l=1

[− ul(0) sin al + ul(0) cos al

]
= −w cos b.

Eliminating w from these equations, yields the assertion. ❑

Remark B.3. Some observations are in order:

10Similar to the previous example: we identify L2(0, ∞)n×{0} with L2(0, ∞)n.
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(i) It is interesting to notice that the support set and the multiplicity func-
tion corresponding to Es,ac do not depend on the choice of the parameter
b.

(ii) The fact that the value “b = 0” is excluded is natural. For this value
the conditions (B.2) reduce to

u1(0) cos a1 + u′
1(0) sin a1 = · · · = un(0) cos an + u′

n(0) sin an = 0,

i.e., the operator A is equal to the direct sum of the non-interacting
operators Al defined by the potentials ql using the boundary condition
ul(0) cos al + u′

l(0) sin al = 0.
(iii) The case that “b = π

2 ” could be treated somewhat simpler. For this
value the operator A coincides with ker[π1 ◦ Γ] where Γ is the pasting
of Γ1, . . . ,Γn with standard interface conditions.
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