
USB Proceedings

IECON 2013 - 39th Annual
Conference of the IEEE

Industrial Electronics Society

Austria Center Vienna
Vienna, Austria

10 - 14 November, 2013

Sponsored by

The Institute of Electrical and Electronics Engineers (IEEE)
IEEE Industrial Electronics Society (IES)

Co-sponsored by

Austrian Institute of Technology (AIT), Austria
Vienna University of Technology (TU Vienna), Austria

Copyright and Reprint Permission: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of
patrons those articles in this volume that carry a code at the bottom of the first page,
provided the per-copy fee indicated in the code is paid through Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication
permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane,
Piscataway, NJ 08854. All rights reserved. Copyright ©2013 by IEEE.

IEEE Catalog Number: CFP13IEC-USB
ISBN: 978-1-4799-0223-1

2

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Software Architecture
for a Smart Grids Test Facility

IT Implementation for an Emulated Low Voltage Smart Grid

Alexander Wendt, Mario Faschang, Thomas Leber and
Klaus Pollhammer

Vienna University of Technology
Gusshausstrasse 27-29 E384

A-1040 Vienna, Austria
{wendt, faschang, leber, pollhammer}@ict.tuwien.ac.at

Tobias Deutsch
Siemens AG Österreich, CT RTC NEC INN-AT

Siemensstraße 90, 1210 Wien
tobias.deutsch@siemens.com

Abstract — in the joint smart grids application project
“Intelligent low voltage grid” of SIEMENS and Vienna
University of Technology, households are emulated with
transformers representing photovoltaic facilities and current
sinks representing the loads. The purpose is to test new control
concepts in small scale before a field trial. One example is the use
of smart meter measurement for controlling a local transformer’s
tap changer. For the interconnection and management of the
emulation devices, a software infrastructure is needed. In this
paper, the basic design of the software components and their
interactions are presented. It is a flexible, extendable architecture
which consists of a central server and multiple specialized clients.
A communication service based on remote procedure calls was
written, where Google Protobuf is used for the data exchange. In
two applications, the realization of the concept is demonstrated.

Keywords—smart grids, architecture, protobuf, implementation,
service, datapoint, server, network, communication

I. INTRODUCTION

In order to make the nearing energy turnaround possible,
several problems in the area of energy grids and in storage of
energy have to be solved [2]. There is an increasing amount of
renewable energy generators, which will replace conventional
energy generators. One challenge for electrical grids is to stay
within the voltage band limits as more distributed energy
sources like photovoltaic facilities are connected [1]. The
introduction of e-mobility represents another challenge
because additional high loads are expected. However, smart
grid concepts can minimize the need of extension of the
electric grids or at least delay it. Many concepts have been
developed to counter the mentioned problems, for instance to
use smart meter data to efficiently control the tap changer in
the power transformer between the low and middle voltage
electric grid [6]. As the effort of testing in real electric grids is
very high and risky, and pure software simulations cannot
replace the real hardware, an emulation platform for testing
concepts on hardware in small scale is needed.

This is the goal of the “Intelligent low voltage grid”
project [1]. It emulates a three phase low voltage grid, which

consists of four buildings, of which two use photovoltaic
power generators. The devices are emulated with variable
transformers, current sinks and resistances. Three grid
topologies can be realized within the system: Two separate
branches, a single long branch or a ring. Among others, the
following concepts are being tested in the system: Controlling
of the power transformer at the interface between the low and
middle voltage grid based on smart meter data, analysis of
asymmetric loads and resulting high neutral wire current flow,
topology recognition, co-simulation of grid and its
infrastructure as isolated operation mode. In order to
implement such scenarios, a communication and control
platform is needed [17]. In this paper, a software architecture
is presented, which successfully fulfills the needs for
extendibility, flexibility and simplicity for the operation in
smart grid emulations. The implementation is demonstrated in
two projects.

II. RELATED WORK

The purpose of this test facility is to test smart grid
concepts in small scale before trying them in real electric
grids. In Austria, there are many projects operating in the area
of smart grids, which aim to solve the problems of high
fluctuations in the electric grids, like in the projects “DG
Demonet” [6] and “Smart Grid Modellregion Salzburg” [8].
Another concept, which can be tested within this facility for
reducing the grid fluctuations, is to make use of load shifting
in buildings. They are realized in the projects “Building to
Grid” [10] and “BED – Balancing Energy Demand” [11].

In a related project, a test facility with the same purpose as
the “Intelligent low voltage grid” is built in Italy. It emulates
middle and low voltage grids [9]. However, this facility is
built in a larger scale. Electrical and thermal load emulators
are used in the middle voltage grid. Also a variable topology
with different impedances can be applied through line
emulators. The low voltage grid consists of multiple
generators, real and emulated loads as well as storage systems.
Different communication systems are tested, especially data
exchange solutions, which are compliant to the IEC 61850

978-1-4799-0223-1/13/$31.00 ©2013 IEEE 7060

standard. “Intelligent low voltage grid” models only a low
voltage grid in smaller scale, which makes it cheap and
mobile. A customized control system is being developed
adapted for the emulation needs of the facility.

A related software architecture to the one presented in this
work is Reef [12]. It is an open source smart grid platform,
which relies on a service-oriented architecture. It has many
similarities with the architecture presented in this work, but is
more extended and with a higher granularity. The
communication relies on Google Protobuf [3] and services
based on the REST framework. It consists of a bus, which
manages the connected applications of the following types:
human-machine-interfaces, bridges to communicate with other
external systems, field protocol adapters, tools for calculations
and automated control. The data exchange objects are
represented in measurements, commands, events and alarms,
which all passes the bus. The objects of the system are
connected with relationships like “owns” or “uses” through a
configurable semantic model. Similarly, in the Mosaic
platform, which is a pure simulation platform for smart grids,
devices are also configured within a semantic model [13].
Another common communication architecture, which is being
introduced in the area of Smart Grid is the OPC UA [14].

III. CONCEPT OF A GENERAL ARCHITECTURE

For the design of the system, the use case of controlling a
tap changer based on the measured values of the smart meters
was taken as base. The given hardware and external software
components provided the constraints for the software design
of the Datapoint Server and other components.

Fig. 1. System components and their communication interconnections

The system architecture depicted in Fig. 1 is derived from
the following use case: the goal is to create a smart grid by
using smart meter data from households for controlling a local
transformer between a middle voltage grid and a low voltage
grid [1]. The controlling of the grid is done in this way: In
“Transformer STT800/Current Sink IS100”, three transformer
devices emulate the local low/middle voltage grid

transformers for each phase. The other transformers represent
the photovoltaic generation in the households and the current
sinks provide the loads (1). On each branch of the electric
grid, there are smart meters “Smart Meter” connected, which
measure the voltages and the currents (2). They are connected
with a data concentrator “Data concentrator” via Power Line
Communication and provide it with their measured values [6]
(3). Eventually, those values are collected in a computer
“Nanobox” via Ethernet (4). The “Nanobox” contains
functionality for providing smart meter data as well as
controlling the smart meters, e.g. with a power snapshot [7]. It
is connected with the server computer “Server Computer”,
which receives and processes the smart meter data. The
processing results in new commands for the devices, which
are sent through USB. In that way, values (U, I, P, R) can be
set and read (5).

The “Server Computer” hosts a central server component,
the Datapoint Server and several independent clients. The
“Server Computer” can consist of multiple physical devices.
The clients register themselves in the Datapoint Server, in
order to be operational. The clients can be categorized into
four types:

 Device Clients, which are gateways to the hardware
devices and are used as external interfaces.

 Management Clients, which allows the user to
configure the server.

 Processing Clients, which are general clients used for
the execution of algorithms or actions on hardware
via a device client.

 Representation Clients, which provide human-
machine-interfaces for external representation of
values and control by the user.

The clients communicate via Datapoints, which are managed
in the Datapoint Server. Each Datapoint represents a value,
which a client publishes. Other clients can subscribe
datapoints, which are then pushed from the Datapoint Server
to the subscribers. A component based approach was chosen,
in order to lower system complexity as well as allowing each
client to be run on other hardware and platforms. It is a
centralized network architecture and it allows the usage of a
push model. The push functionality is only implemented in the
server, where the server notifies subscribers about updates. It
can be compared to a multi agent system with one coordinator
agent.

IV. IMPLEMENTATION

The software design will be explained in detail by
describing the data model, the server, a general client and the
low level communication service with help of an example.

Datapoint

The Datapoint consists of a logical address, a physical
address and properties. The default property is the value, but
other properties like time stamp or minimal and maximal
values also exist. The client - which creates and writes a
Datapoint - registers the datapoint’s physical address in the

Nanobox Data
Concentrator

Server Computer

Smart Meter

Transformer
STT800/
Current sink
IS100

Representation Client

Datapoint Server Device Client

1 n

n

1

n1

n m

Processing Client
USB

Powerline

communication

Ethernet

Ethernet

(1)

(2)(3) (4)

(5)

Monitoring Client

of U and I

Measurement

7061

Datapoint Server. In the Datapoint Server, the Datapoint is
mapped to a predefined logical address. This mapping is
equivalent to the models used in [12] and [13]. However, the
difference is that much of the modeling is decentralized into
the different clients instead of being kept in a single semantic
model. However, semantic models are not used yet, but may
be a useful extension, in order to increase flexibility. Each
client manages its own subscriptions and Datapoints. In the
Datapoint Server only the ownership of a Datapoint is
managed. For subscribers, only the logical address is
available. The advantage of using logical and physical
addresses is that the physical address is dependent on the
client creating it and if devices are exchanged, the physical
address is also exchanged, but the logical address remains
constant. The Physical Datapoint address is created in the
following way:

PH.[PhysicalAddress].[Entity].[Property]

where the address can be built like this: “1000.USBDevice1”,
where “1000” is the client id and “USBDevice1” is the device
name. The entity may take physical values like U (voltage) or
I (current). With the hierarchical structure of the address, it is
possible to use a wildcard search to receive e.g. all datapoints
written by a certain client, a certain device of a certain client, a
certain device type of all clients or all entities of type voltage
for all devices. The Logical Datapoint address is put together
in an equivalent way:

S.[LogicalAddress].[Entity]

The logical address could look like this:
“Branch2.Load.Phase1”. The properties are then extracted
from the entity and not explicitly addressed. Here, wildcard
search are also available.

Datapoint Server

The Datapoint Server can be seen as a database and router
with extended management capability. It offers three services
for clients. Clients who belong to one of the four types,
mentioned in the previous chapter, offer services as well. The
following service pairs are defined:

 Service-pair for device clients, where Device Clients
registers Datapoints, writes values from and to
hardware devices and receives new Datapoint values
from other clients.

 Service-pair for subscribers, where Processing Clients
and Representation Clients are the consumers and
providers of Datapoint values.

 Service-pair for manager clients, where Management
Clients can receive and set server configurations.

This architecture only allows connections of clients with
the server and not the clients with other clients. Unlike service
oriented architectures, there is no real service discovery or
yellow pages in the system. Processing clients have to know,
which Logical Datapoints they need to subscribe. This is set in
the configuration of the clients. A future possibility could be
to add semantic descriptions to the Datapoints and to use a
match algorithm to retrieve them like in the project

ORCHESTRA [4], but for a small scale system, there is no
need of it at this time.

For the integration of components (server with client), the
integration style “remote procedure invocation” is
implemented. A remote procedure call is used as a normal
method, where the Datapoint Server offers implemented
service methods. The client implements a stub of those service
methods. By executing the stub methods, the parameters are
transported via Google Protobuf to the implementation, where
the method is executed.

Fig. 2. Datapoint server processing structure

In Fig. 2, the server architecture is explained with an
example how a subscriber is registered in the server and how it
receives the subscribed Datapoint values. The
ServerDevice starts a ClientAcceptor thread (the
“T” in the figures) (1). As soon as a client connects to the
socket (2) a new RPC_Driver is created for each new socket
(3). The RPC_Driver is a client manager, which initializes
services for the client on connect and manages the connected
client in the server. The RPC_Driver initializes the
communication service JRPCService, which handles all
communication in the system (4). In a later chapter, the
JRPCService is explained in detail. It initializes the correct
service pair (subscription service – notify service) for the
client. At the same time, a ClientHandler is started (5).
There are three different types of ClientHandler, one for
each service-pair. It implements the service stub of the
connected client. In this example, the connected client is a
subscriber and the ClientHandler is added to a list of
subscribers in the ServerDevice (6). Therefore, the main
role of this type of ClientHandler is to manage the
subscriptions of each client. Then, the next step is to subscribe
Datapoints. An incoming message “subscribe” (7) is received
from the client, which contains the logical addresses of the
Datapoints, which shall be subscribed. The JPRCService
calls the service method “subscribe” (8) in the service
SUBSCRIPTION_SERVICE_SERVER. This service adds the
addresses to the ClientHandler (9). Now, a Datapoint is
subscribed. The sending of acknowledgement messages is
excluded in this explanation, in order to keep the overview. In
the next step, the value of this Datapoint is updated. An
incoming message “writeDatapoints” with new Datapoint
values is received in the JRPCService (10). The
corresponding method “writeDatapoint” is called in the
service (11). The Datapoint values are updated in the
ServerDevice, which keeps all Datapoint values (12).

7062

Afterwards, all subscribers are notified (the treads are woke
up) and if the Datapoint address matches the subscribed
Datapoint address, the new value is sent to the subscribing
client through the client service stub (14) (15). As the service
SUBSCRIPTION_SERVICE_AT_SERVER also allows
reading Datapoints from the server, this architecture allows
both push and pull models.

Clients

In the following general client architecture is presented on
which most of the Processing Clients rely. The architecture is
described in Fig. 3 of how a client starts, subscribes a
Datapoint, receives a new Datapoint value and reacts on it.
The Client starts the Communicator (1), which is a
common communication interface for the Processing Clients.
The Communicator initializes the service for the Datapoint
Server, the NOTIFY_SERVICE_CLIENT (2) and starts the
JRPCService in an own thread (3). The service is set in the
JRPCService (4). Then, the Controller is started in an
own thread (5). Its purpose is to react on commands from
other clients. Therefore, it is implemented as a blocking
queue, in order only to change state if incoming Datapoints
requires it. Two examples will demonstrate the functionality.
The client subscribes a Datapoint with the commands
“START” and “STOP”. If the “START” command is set, the
Controller executes some actions until the “STOP”
command is given. In another case the client shall only react
on the change of some subscribed Datapoint values and the
controller always waits between the notify messages. Further,
the Controller starts the Manager (6), which is the
executor of all actions of the client. As soon as all components
are started, the Client sends the Logical Datapoint
addresses to the server, which shall be subscribed (7) (8) (9).

Fig. 3. General processing structure in clients

As the subscribed Datapoint value changes, the Datapoint
Server sends a message “notify” with the new value (10). The
method “notify” is called in the service (11). The new values
are passed through the Client (12) to trigger some behavior
of the Controller (13). If a defined behavior is triggered,
the Manager is executed, which processes subscribed
Datapoints or calculates new values to be set (14). The new
values are sent to the Datapoint Server (15) (16) (17), where
another client may be notified about these changes.

Intercomponent Communication

For this platform a TCP/IP based asynchronous RPC
service based on the service concept of Google Protobuf and it
uses only one socket. Google Protobuf is “a way of encoding
structured data in an efficient yet extensible format” [3].

Originally, it was supposed to use ZeroMQ [5] with Protobuf,
but as it was not possible to use both a publisher-subscriber
and a request-response pattern on a single socket, which is
realized in the JRPCService.

The architecture of the JRPCService is described in
Fig. 4 and Fig. 5. It is explained with the example of the
subscription service. The service-pair consists of the
SUBSCRIPTION_SERVICE_SERVER and the
NOTIFY_SERVICE_CLIENT. All data types, services and
their methods are defined within Protobuf [3].

The JRPCService manages all communication and
additionally allows the replacement of services. At the
connection with a client, the server does not know which type
of client is requesting and therefore services have to be set
first, see steps 1-6 in Fig. 4. As explained before, in the server,
a client manager, the RPC_Driver is defined. It implements
a JRPCServiceCallbacks interface, which demands the
implementation of the method “NewServiceRequest”. In that
way, services can be changed by putting a new “connect”
request with a service identifier. If the request “connect” with
the service name “SUBSCRIPTION_SERVICE_SERVER” is
received from a client (1), the RPC_driver starts the
JRPCService (2) in a separate thread (marked with “T” in
the figure). In that way, each accepted socket (client) has an
own independent JRPCService available. On “connect”,
the method “NewServiceRequest” is executed in the
RPC_driver (3). The service
SUBSCRIPTION_SERVICE_SERVER is started (4) and it is
set in the JRPCService (5). Additionally, a
ClientHandler is started, which is adapted to the
connecting client (6), in this type a subscriber.

For each incoming request, an
IncomingWorkingPackage is started in an own thread
(7). It creates a predefined empty response message as a
thread, the RPC_Response_CallBack (8). This message
is passed to the service in the method call “connect” (9). At
the end of the method execution in the service, the message
thread is started; it builds itself with the content of the service
method and independently executes the send function from the
JRPCService (10). In case of the message “connect”, only
an acknowledgement is returned. The message “acknowledge”
is then sent to the client via the JRPCService (11). For
incoming messages, like messages to execute the method
“subscribeDatapoints”, the steps 1 and 7-10 in Fig. 4 are
executed.

Fig. 4. JRPCService processing for incoming requests

In step 6 in Fig. 4, a ClientHandler was initialized for the
client. In this example, the client handler is used to update the

7063

client with subscribed Datapoint values. In Fig. 5, this process
is illustrated. First, a remote method is executed at the client
(1), e.g. to notify a subscriber. The remote method of the stub
rpc.NOTIFY_SERVICE_CLIENT.BlockingInterfa
ce is called (2) and the executing party waits for response
during the function call. The stub-method then calls method
“CallBlockingMethod” (3), which is demanded by Protobuf
and implemented within the JRPCService. It sends the
request to the client (4) and additionally creates a
BlockingQueue (5). There, the BlockingQueue waits
until the response is received (6) or a timeout is exceeded. The
response is the trigger to wake the BlockingQueue (7),
which is woken up (8). Finally, the response is returned (9)
from the stub-function to the caller.

Fig. 5. JRPCService processing for outgoing requests

Security Aspects

Since Google Protobuf does not implement a client server
authentication, messages within the system are unencrypted
and readable for all devices within the network. However,
since the communication relies on TCP/IP a SSH/VPN tunnel
can be used to harden the information exchange between the
substations and the server.

V. EXISTING IMPLEMENTATIONS

The general communication architecture is being realized
within two projects, which are presented in the following.

Intelligent Low Voltage Grid

This project is the realization of the defined use case
shown in Fig. 1. The Datapoint Server is implemented as
described above. Most of the following clients are
implemented based on the general client architecture. Device
and Smart Meter Clients are the gateways for other clients to
access the devices STT800 and IS100 for write and read. The
Device Client communicates through USB and the Smart
Meter Client through Ethernet. The Smart Meter Client
provides two ways of reading from the smart meters:
continuous independent reading of voltage values from the
smart meters and power snapshot [7], where all connected
smart meters are read with the same time stamp. Different to
the Device Clients above, Algorithm is a Processing Client,
which subscribes Datapoints from the Device Clients, which
represent the voltage values of the loads (IS100) and the
photovoltaic power generators (STT800). Based on the
voltage limit violations of the Datapoints, the new tap position
is calculated. The tap position is a discrete percentage value of
a default position, e.g. tap position 1 is 230V * 1.02. Five tap
positions are available. It is used to control the local
transformers (STT800). The Tap Changer subscribes the tap
position, which was provided by the Algorithm. Based on the
given tap position, it writes new transformer values, which are
set by the Device Client. The Profile Client generates the

emulation values for all devices in the system. Default load
and generator profiles of households are downscaled for this
application. It writes the currents to the devices. 24h profiles
are used, but are run through within 2 min. Consequently, the
Profile Client also provides the system time. In order to know
when to start and stop, it subscribes a Datapoint with the
commands “START”, “PAUSE” and “STOP” from the User
Interface Client. The User Interface Client provides the
human-machine-interface of the system. Unlike all other
software, it was implemented in National Instruments
LabVIEW and the corresponding communication driver
(JRPCService) was implemented in Visual C++. Finally,
the Manager Client is used for configuring the Datapoint
Server, i.e. the mapping between the Physical and Logical
Datapoints and to discover mapping error of devices.

Smart Heating Control

Another realization of the general communication architecture
is a building automation application for controlling home
heating systems. This “Smart Heating Control” system has
been developed at Vienna University of Technology on base
of the communication architecture described in this paper. The
main goal was the development of a flexible, extensible and
cheap state-of-the-art building automation system for
controlling private households.

Raspberry Pi

Local temperature sensor

Device Client

Local relay through GPIO

Device Client

MySQL Server

Datapoint
Server

Heating
Control

Algorithm

Processing
Client

ZigBee
Transceiver

Device Client

RFID Reader

Device Client

Fig. 6. Overview of home automation application relying on the datapoint

communication architecture

In Fig. 6 a structural overview of the smart heating system
is shown. It consists of a Datapoint Server and two Device
Clients. One is used as a driver for a local I2C temperature
sensor and the other is used as a driver for a mono stable relay
to switch the heating system. They were implemented on a
Raspberry Pi single-board-computer operating an
ARM1176JZF-S processor [15]. Beside the Datapoint Server
and the Device Clients, this credit-card size low cost computer
hosts a Processing Client for the temperature control
algorithm.

Additionally to the previous project, a data persistence
extension in the Datapoint Server has been made. It uses a
MySQL server to persist the historical data of the different
sensors. The added persistence functionality is a crucial
element for the heating control system, as its algorithm is
meant to also use historical data for forecasting and decision
making. Further, the Device Clients had to be adapted for
proper system operation: The first one connected to an RFID
reader unit (OMNIKEY ® 5553 Reader Board) operated by a

7064

Device Client implementation. This unit acts a presence
recognition unit, which is located at the key rack and reads
RFID tags connected to the residents’ keys. When detecting a
newly added or removed key it updates the corresponding
Datapoint in the Datapoint Server. This information is then
forwarded to all subscribing clients. The second Device Client
implementation operates a wireless 2.4 GHz ZigBee
transceiver (Atmel AVR Raven [16]), which acts as a
communication host towards some wireless temperature
sensors.

For the implementation, temperature measurement was
possible only through the wired transceiver. In further
development stages, room thermostats should be connected
wirelessly as well, which would provide the possibility not
only to control the central house heating system, but every
room individually.

VI. RESULTS AND CONCLUSION

A smart grid in small scale is emulated by transformers
and current sinks. For the realization, a service concept, the
“JRPCService” was introduced based on Google Protobuf. As
the communication layer is hardly a cause of errors, it can be
seen as very robust and flexible. The complexity of the
Datapoint Server could possibly be reduced, if the usage of
Physical Datapoints would be removed. Actually, only the
clients have to know the physical addresses of their devices.
For all levels above, only Logical Datapoints are needed.
Hence, Physical Datapoints assure that only one client can
“own” a Datapoint, due to the predefined mapping. In “Smart
Heating Control”, one drawback was the non-persistence of
data in the Datapoint Server as no historical data can be
subscribed and obtained by any client. Therefore, an extension
of the Datapoint Server had to be made. New clients can
easily be created from the common client architecture. The
push model worked well for all clients except the User
Interface Client. Here, problems with message flooding from
the server emerged in the interface of the tow used
programming languages. A pull model was chosen where the
client has all control over the data flow. Originally, the
purpose was to implement business logic within the User
Interface Client. It showed up to be very faulty, which made it
necessary to split the system functionality in many
independent components, such as the Profile Client. In
general, one of the major challenges was to create a well
working system that integrated different types of hardware and
software. The selected counter measure was to reduce the
systems overall complexity and to use several, simple built,
independent components or clients.

This software architecture was successfully implemented
in two projects. Although, related software architectures
provide proper frameworks, this architecture allows complete
customization of the concepts needed for this application and
as this test facility is still small, the need for scalability is
limited. In the project “Intelligent Low Voltage Grid”, the
system will be extended with a building automation agent and
e-mobility, where the demand for extending the platform with
other types of clients rises.

VII. ACKNOWLEDGMENT

The development of the system in this work was supported
by Siemens AG Austria.

VIII. REFERENCES
[1] T. Deutsch, T. Leber, F. Kupzog, Ö. Karacan, A. Einfalt,

“Versuchsanlage Intelligentes Niederspannungsnetz”, in proceedings of
the 8. Internationale Energiewirtschaftstagung IEWT 2013, Austria,
2013.

[2] J. P. Barton, D. G. Infield, “Energy Storage and Its Use With
Intermittent Renewable Energy”. In IEEE Transactions on Energy
Conversion 19, p. 441–448, 2004.

[3] Google Protocol Buffers, https://code.google.com/p/protobuf, accessed
on April 17th 2013.

[4] U. Bügel, D. Hilbring, “Application of Semantic Services in
ORCHESTRA”, in the proceedings of the International Symposium on
Environmental Software Systems ISSES 2007; Prague, Czech Republic,
May 22-25, 2007.

[5] ZeroMQ, http://www.zeromq.org, accessed on April 17th 2013.

[6] A. Einfalt, F. Kupzog, H. Brunner, A. Lugmaier, “Control strategies for
smart low voltage grids - the Project DG DemoNet - Smart LV Grid”, in
proceedings of CIRED 2012 Workshop: Integration of Renewables into
the Distribution Grid, page 238, 2012

[7] A. Abart, D. Burnier, B. Bletterie, A. Lugmaier, A. Schenk, M. Stifter,
H. Brunner, “Power snapshot analysis: a new method for analyzing low
voltage grids using a smart metering system”, in proceedings of 21st
International Conference on Electricity Distribution, Germany, 6-9 June
2011, Paper 1083, 2011.

[8] G. Zucker, F. Kupzog, D. Reiter, “Smart grids strategy for salzburg,
austria”, in proceedings of 21st International Conference on Electricity
Distribution, Germany, 6-9 June 2011, Paper 0787, 2011.

[9] S. Scalari, G. Valtorta, R. Giglioli, F. Pilo, R. Caldon, S. Massucco, C.
A. Nucci, A. Testa, “An Italian facility to test distributed energy
resources management for SmartGrids”, in SmartGrids for Distribution,
IET-CIRED. CIRED Seminar, 23-24 June 2008, p. 1-4, 2008

[10] A. Wendt, K. Pollhammer, “Turning Buildings into Active Participants
of a Smart Grid”. In proceedings of the ComForEn 2012, 5th September
2012 (Tagungsband ComForEn 2012), p. 74-80, Eigenverlag des
Österreichischen Verband für Elektrotechnik, ISBN: 978-3-85133-072-
4, Austria, 2012

[11] K. Pollhammer, A. Wendt, “BED – Balancing Energy Demand with
Buildings”. In proceedings of the ComForEn 2012, 5th September 2012
(Tagungsband ComForEn 2012), p. 110-115, Eigenverlag des
Österreichischen Verband für Elektrotechnik, ISBN: 978-3-85133-072-
4, Austria, 2012

[12] Green Energy Corp, “Reef Reference Documentation”,
http://docs.plymouthsystems.com/0.4.7/reef-docs-single/Overview.html,
accessed on April 18th 2013

[13] S. Schütte, S. Scherfke, M. Sonnenschein, "mosaik - Smart Grid
Simulation API". In Proceedings of SMARTGREENS 2012 -
International Conference on Smart Grids and Green IT Systems, edited
by B. Donnellan, J. P. Lopes, J. Martins, and J. Filipe, 14-24:
SciTePress, 2012.

[14] S. Rohjans, D. Fensel, A. Fensel, “OPC UA goes Semantics: Integrated
Communications in Smart Grids”, in Proceedings of the IEEE 16th
Conference on Emerging Technologies & Factory Automation (ETFA),
E-ISBN: 978-1-4577-0016-3, 2011

[15] Raspberry Pi Foundation; “Raspberry Pi | An ARM GNU/Linux box for
$25. Take a byte!”; http://www.raspberrypi.org, accessed on April 23th
2013

[16] Atmel Corporation; “AVR Raven”;
http://www.atmel.com/tools/avrraven.aspx, accessed on April 23th 2013

[17] T. Deutsch, F. Kupzog, T. Leber, A. Einfalt, „Pilot System „Intelligent
Low Voltage Grid“, in proceedings of the „ CIRED 2013: International
Conference on Electricity Distribution“, to be published.

7065

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

	0001-cover
	conferenceguide_reduced
	IECON13_TestArchInSmartGrids_7060-vf-021504

