USB Proceedings

IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society

Austria Center Vienna Vienna, Austria 10 - 14 November, 2013

Sponsored by

The Institute of Electrical and Electronics Engineers (IEEE) IEEE Industrial Electronics Society (IES)

Co-sponsored by

Austrian Institute of Technology (AIT), Austria Vienna University of Technology (TU Vienna), Austria Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. Copyright ©2013 by IEEE.

IEEE Catalog Number: CFP13IEC-USB ISBN: 978-1-4799-0223-1

November 10–13 2013, Vienna, Austria

Conference Booklet

IECON 2013

39th Annual Conference of the IEEE Industrial Electronics Society

in conjunction with

ICELIE 2013: 7th International Conference on e-Learning in Industrial Electronics IWIES 2013: 1st International Workshop on Intelligent Energy Systems (14.11.2013)

> Austria Center, Vienna, Austria 10-13 November 2013

Sponsored by the **IEEE Industrial Electronics Society**

Vienna, Nov 10-14, 2013

U-637			SS061	SS06 2		SS06 3	TC PETC		U-637	SS09 1		SS09.2		Τ		00001	SS03 2		U-637	SS44 1		SS44 2		SS69 1		SS69 2		U-637		Γ			Π		
U-556			11101	TT10.2		TT10.3	TC STD 1		U-556	SS62 1		Ē			0 1124	7111	11113		U-556	SS49 1		SS49 2		SS51 1		SS512		U-556		F			H		
S-357			TT02 15	TT02 2		TT02 3	TC SA		S-357	TT02.4		TT02 5		1	00000	102 13	11027		S-357	TT02.8		TT02 9		TT02 10		TT02 11		S-357							
K-261			1103 1	TT03 2		TT03 3	TC EM		K-261	TT03.4		TT03 5		t	0 0044	1103 0	1103 7		K-261	TT03 8		SS07 1		SS07 2		SS07.3		K-261							
K-255			SS01 1	SS012		SS01 3	C RSIA		K-255	TT05 1		TT05 2		+	0 2024	2 0011	1105 4		K-255	SS19 1		SS19.2		SS193		SS19.4		K-255							
K-253			SS23 1	SS23 2		SS23 3	TC MC		K-253	SS23 4		SS23 5		+		1 9799	SS28 2		K-253	SS28 3		SS28 4		SS28 5		SS08 1		K-253						-	
K-246			ress Conf	TT06 13		TT06 14			K-246	TT06 15		TT06 16		t		11 0011	TT06 18		K-246	TT06 19		E113		TT06 20		TT01 39		K-248		ſ					
K-142			TT06 12 P	TT09 1		TT09.2	TC RES		K-142	TT09.3		TT09.4		t		CROIL	1109.6		K-142	TT097		TT09 8		1107 18		TT01 39		K-142							
1-141			SS161	SS162		SS35 1	IFC		1-141	SS41 1		SS13	į.	t	0000	0100	SS34 1		1-141	SS04								1-141		ſ					
1-140	PC Brief		1100	TT00		1100	IC NCSA	2	1-140	1700		1100		t		1 1000	SS50 1		1-140	SS02 1		SS61		SS141		SS142		140		ſ					
Hall-P			TT02 1	TT02.6		TT02 14			Hall-P	TT01 29		TT01 30		t		151011	TT01 32		Hall-P	TT01 33		TT01 34		TT01 35		TT01 36		Hall-P						-	
Hall-K			TT01 18	TT01 19		TT01 20			Hall-K	TT01 27		TT01 22		t		110123	TT01 24		Hall-K	TT01 25		TT01 26		TT013		TT01 28		Hall-K							
Hall-I			TT01 40	TT01 1		TT01 4			Halt	EI13		E113	(1		E113	EI13		Halt	EI13		E113		E113		E113		Halt						-	
Hall-H			TT01 21	TT01 6		TT01 7			Hall-H	TT01 8		TT01 9	Contraction of the	t		01 1011	TT01 11		Hall-H	TT01 12		TT01 15		TT01 14		IES JT		Hall-H		ſ					
Hall-G			TT01 13	TT01 16		TT01 17			Hall-G	4		ų,		T		L	=		Hall-G	4		<u>u.</u>		<u>ب</u>				Hall-G							
Hall-D	Opening		TT012						Hall-D					T					Hall-D									Hall-D							
H-633			TT12 1	TT123		TT123	TC ES		H-633	TT124			1	T		1799	SS42		H-633	SS43 1		SS43 2		SS43 3		SS43 4		H-633		ſ					
G-631			TT07 12	TT07 14		TT07 14			G-631	TT07 15				T		11/011	ICELIE 1		G-631	ICELIE 2		ICELIE 3		ICELIE 4		ICELIE 5		G-631	IWIES 1		IWIES 2		IMIES 4		D D D D D D D D D D D D D D D D D D D
G-560			TT07 1	11073		TT073	TC FA		G-560	TT07 4			1	T	0 1011	110/ 0	1107 7		G-560	TT07 8		TT07 9		TT0710		TT07 11		G-560	IES Prep		IES Prep		IES Prep		TO Date
G-5432			SS171	SS17.3		SS173	TC II		G-5432	SS461			1	Ť		1 0400	SS452		G-5432	SS261		SS26 2		SS29 1		SS292		G-5432		ſ			Π		
D-447			SS18 1	TU MCS			TC MEMS		D-447	U-IETCPO			EI14 SC		IN-YENH	1			D-447	101 miles	TU-NET	Τ		SS371		SS65 1		D-447			IWIES 3		IWIES 5		
D-446			SS27 1	TU Ind 4.0		TC SG	TC EEIT		D-446	TU-PHM 1				The second se	U-MUPEN		1		D-446	10000 No 2	TU-SSTC			SS12 1		SS30 1		D-446							
D-445	1		SS52 1	TU ZSI		TC ESOC	TC EEIT		D-445	U-EVCIDG			STD PAR	L COLOU IN	-LCR0				D-445	10480.44	TD-EH	IES WIC		SS014		SS015		D-445	IES Prep		IES Prep		IES Prep		ICO Deen
D-441			11061	TT06.2		TT06.3	TC CRM		D-441	TT06.4 T		TT06.5		O OVAL	00011		TT067		D-441	TT06.8		TT06.9		TT06 10		TT06 11		D-441							
D-358			TT08 1	TT08 2		TT08 3	TCHM		D-358	11084			1108.5	1 1000	1 2000		SS63.2		D-358	TT04 1		TT04 2		TT04 3		TT04 4		D.358	IES Prep		IES Prep		IES Prep		ICC DAM
D-355			SS73	TT015		SS47 1	TC IA		D-355	SS721		EE67		1 200	1/000		SS53		D-355	SS59		TT00		IES AT		IES Chap		D-355							
D-351			SS68-1	SS68 2		SS68 3	TC BACM	ber	D-351	SS711		SS712		10000	10700		SS20.2	rember	D-351	SS151		SS15.2		SS38 1		SS38.2	nhar	D-351		Γ			Π		
D-349			TT02 12	TT01 37		SS48 1	TC AT	th of Novem	D-349	SS601		SS60 2		10100	1 9000		SS58.2	13th of Nov	D-349	SS32 1		SS32 2		SS32 3		SS32 4	Ath of Nova	D-349					Π		
	8:00-09:30	9:30-10:00	2:00-13:00	3:00-15:00	5:00-15:30	6:30-17:30	8:00-18:30	UESDAY 12		8:00-10:30	0:30-11:00	1:00-11:30	1.30-13:00	3:00-14:00	4:00-10:00	0:00-10:30	6:30-18:30	EDNESDA		8:30-10:30	0:30-11:00	1:30-13:00	3:00-14:00	4:00-16:00	6:00-16:30	6:30-18:30	ALIDEDAY +		8:30-10:30	0:30-11:00	1:00-13:00	3:00-14:00	4:00-16:00	6:00-16:30	0.20 10.20

Table of Contents

Welcome Message of the IECON 2013 Chairs	11
Welcome Message of the ICELIE 2013 Chairs	12
Welcome Message of the IWIES 2013 Chairs	13
Welcome Message of the Industry Forum Chairs	14
Overview	15
General Information	16
Floor Plan AUSTRIA CENTER Level U2	19
Opening Keynote	20
Banquet Keynote	21
IWIES Keynote	22
IEEE IECON 2013 Organizing Committees	23
IEEE ICELIE 2013 Organizing Committees	32
IEEE IWIES 2013 Organizing Committees	33
Tutorials	34
Panel: "Criteria and Expectations for Publishing Papers in IES Journals"	36
Technical Committee Meetings	37
Session List	38
Regular Tracks Special Sessions	38 42
Monday 11th of November	46
EX - Exhibition - Exhibition	46
CE - Opening	46
TT02 12 - Fuel Cells & Batteries I	46
1108 1 - Sensor Networks	4/
Enhancement	48
SS27 1 - Advanced Signal Processing Techniques for Power Systems Applications	49
SS18 1 - Compliant robots	50
TT06 1 - Losses in Induction Machines	51
SS68 1 - Human Support Technology on Human Factors I	52
SS73 - Advanced Active Power Filters and Static VAR Compensators	53

TT07 1 - Control Theory	54
TT07 12 - Control in Power Electronics 3	54
SS17 1 - Predictive Control for Power Converters and Drivers	55
TT12 1 - Power Electronics and Charging	56
TT01 40 - High Power Factor Rectifiers	57
TT01 2 - Multilevel Converters 2	58
TT01 21 - Power Conversion	59
TT01 13 - EMI and Noise	60
TT01 18 - DC Conversion Systems 6	61
TT02 1 - Wind Power – Power Electronics	61
SS16 1 - Building Automation Control Networks	62
TT06 12 - PM Drives IV	63
SS01 1 - Matrix Converters	64
SS23 1 - Modular Multilevel Converters I	65
TT03 1 - Power Factor Control and Active filters in power systems	66
TT02 15 - Renewable Energy	67
SS06 1 - Open-end winding multiphase drives with two-sided inverter supply	68
TT10 1 - Modelling for Design of Energy and Automation Systems	69
TT01 37 - Matrix Converters	70
TT08 2 - Sensors and Actuators for Industrial Applications	70
TU - Z-Source Inverter	71
TU - Industry 4.0	72
TU - Tools, Services and Engineering methodologies for Robust, Adaptive, Self-organisi	ng
and Cooperating Monitoring and Control Systems	72
TT06 2 - Fault Diagnosis in Electrical Drives	72
TT01 5 - Z-Source Converters	73
SS68 2 - Human Support Technology on Human Factors II	74
TT07 2 - Control Applications 1	75
TT07 13 - Intelligent Control 1	76
SS17 2 - Predictive Control for Power Converters and Drivers	76
TT12 2 - Batteries	78
TT01 6 - Modulation Techniques 1	79
TT01 16 - DC Conversion Systems 4	79
TT01 19 - DC Conversion Systems 7	80
TT02 6 - Power Systems	81
TT01 1 - Multilevel Converters 1	82
SS16 2 - Simulation and Applications	83
TT06 13 - Multiphase Drives	84
TT09 1 - Modeling, simulation and control of mechatronic systems	84
SS01 2 - Matrix Converters	85
SS23 2 - Modular Multilevel Converters II	86
TT03 2 - Management Techniques in distributed generation	87
TT02 2 - Wind Power – Power Electronics and Machines	88
SS06 2 - Current control and PWM for inverter-fed multiphase drives	89
TT10 2 - Software and Systems Engineering	90
TT08 3 - Sensor processing and actuator control	91

	SS48 1 - Advanced Control of Low Voltage Distribution Networks	92
	SS47 1 - Industrial Agents	93
	TT06 3 - Sensorless control methods	94
	SS68 3 - Human Support Technology on Human Factors III	95
	TT07 3 - Control Applications 2	96
	TT07 14 - Intelligent Control 2	97
	SS17 3 - Predictive Control for Power Converters and Drivers	98
	TT12 3 - EV Technology I	99
	TT01 7 - Modulation Techniques 2	100
	TT01 4 - Multilevel Converters 4	100
	TT01 17 - DC Conversion Systems 5	101
	TT01 20 - DC Conversion Systems 1	102
	TT02 14 - Energy Harvesting & Rural Electrification	103
	SS35 1 - V2X Communication Technology Status, Outlook and remaining Challenges	104
	TT06 14 - Losses in electrical Machines	105
	TT09 2 - Small-scale and accurate motion control	106
	SS01 3 - Matrix Converters	107
	SS23 3 - Multilevel Converters I	108
	TT03 3 - Optimization techniques for distributed systems 1	109
	TT02 3 - Photovoltaic Systems	110
	TT10 3 - Systems Modelling and Optimization	111
	SS06 3 - Multiphase machine analysis/design, parameter identification and drive contra	ol
	issues	112
	ASF - Student and absent authors Poster	113
	BT - Banquet	115
Tuoco	tay 12th of November	116
luest	EX Exhibition Exhibition	116
	TTO8 4 - Microtechnologies I	116
	TIL Electric Vehicle Charging Integration in Distribution Grids	117
	TU - Electric Vehicle Charging integration in Distribution Grus	117
	TU - Frim of fuel cell system - a state of the art	117
	TTO - Industrial Ethernet - Technologies, Comparisons, Fractical Considerations	117
	SS71.1 Health and Sustainable Technologies for Next Concration Home and Building	11/
	Automation	118
	SS60 1 - Control Techniques for Renewable Energy Micro-grids	119
	SS72 1 - Advanced Controllers for High Performance AC Drives	120
	TT07 4 - Control Applications 3	121
	TT07 15 - Power Systems & Control	122
	SS46 1 - Advanced Signal Processing Tools for Failures Detection and Diagnosis in Elect	tric
	Machines and Drives	123
	TT12 4 - Energy Management	123
	TT01 8 - Renewable Energy Systems 1	124
	TT13 1 - Energieinformatik 2013	125
	IF 1 - Industry Forum - Automation "Next Generation Industrial Cyber-Physical Systems Merging SoA and Cloud Computing Technologies"	: 125
	TT01 27 - Control Techniques for Power Converters 6	126
		-

TT01 29 - Control Techniques for Power Converters 8	.127
SS41 1 - Smart and Universal Grids	.127
TT06 15 - Special Machines I	.129
TT09 3 - Human-robot interfaces	.129
TT05 1 - Filters and ANN	.130
SS23 4 - Multilevel Converters II	.131
TT03 4 - Power system modeling	.132
TT02 4 - Photovoltaic Inverter I	.133
SS09 1 - Real-time Simulation and Hardware-in-the-Loop Validation Methods for Power	•
and Energy Systems	.134
SS62 1 - Demand Response integration in the Smart Grids	.135
TT08 5 - Microtechnologies II	.135
TT06 5 - Switched Reluctance Machines	.136
SS67 - Sensorless Control of Permanent Magnet Synchronous Machines	.137
SS71 2 - Health and Sustainable Technologies for Next Generation Home and Building	120
SS60.2 Management and Optimization of Renewable Energy Micro gride	120
TTO 7.5 Control Applications 4	140
TT07 16 Pobot Control	1/1
SS46.2 - Advanced Signal Processing Tools for Failures Detection and Diagnosis in Elec	tric
Machines and Drives	.141
TT12 5 - EV Technology II	.142
TT01 9 - Renewable Energy Systems 2	.143
TT13 2 - Energieinformatik 2013	.144
IF 2 - Industry Forum - Security "Advances in Cyber Security"	.144
TT01 22 - Control Techniques for Power Converters 1: Parallel Converters	.144
TT01 30 - Control Techniques for Power Converters 9	.145
SS13 - Recent applications of signal and image processing techniques and pattern	
recognition algorithms to condition monitoring of electrical machines and drives	.146
TT06 16 - Special Machines II	.147
TT09 4 - Control and simulation of robts and vehicles	.148
TT05 2 - Detection	.149
SS23 5 - Multilevel Converters III	.150
TT03 5 - Optimization techniques for distributed systems 2	.151
TT02 5 - Photovoltaic Inverter II	.152
SS09 2 - Real-time Simulation and Hardware-in-the-Loop Validation Methods for Power	153
TT111 - Communication systems	154
SS63.1 - Photovoltaics: Characterization, Modeling and Simulation Methods	155
TU - Frequency Control and Inertia Response Schemes for the Future Power Networks	155
TU - Modern Design Process of Electric Motors	.156
TU - Xilinx - Enabling New Product Innovations Across Markets with Zvng-7000 All	
Programmable SoC, Vivado HLS and IP Integrator	.156
TT06 6 - Motor Drives I	.156
SS20 1 - LED Drivers and Discharge Lamp Ballasts	.157
SS58 1 - Current Status of Intelligent Spaces - Conversion of Robotics, Mechatronics, Control and Interfaces I	. 158

SS57 1 - Advanced Power Electronics for Power Factor Correction in Distributed	150
Generation Systems	159
1107 6 - Control Applications 5	160
110/1/- Signals & Estimation 1	161
SS45 1 - Aspects of Design and Manufacturing in Electrical Machine Design for Variab Speed Drives and Generators in Automotive and Renewable Energy Applications I	le- 162
SS21 - Haptics for Human Support	163
TT01 10 - Renewable Energy Systems 3	163
TT13 3 - Energieinformatik 2013	164
IF 3 - Industry Forum - Power and Energy 1 "Smart Grid Developments and Demonstra Projects"	ation 164
TT01 23 - Control Techniques for Power Converters 2: Faults	165
TT01 31 - Control Techniques for Power Converters 10	166
SS64 1 - Energy and Information Technology	167
SS10 - RFID Technology and Wireless Sensor Networks	168
TT06 17 - Control of Electrical Drives	168
TT09 5 - Teleoperation	169
TT05 3 - Image Processing	170
SS28 1 - Advance motion control on new mobility and automotive	171
TT03 6 - Control and monitoring techniques in smart grid I	172
TT02 13 - Fuel Cells & Batteries II	173
SS03 1 - Induction Heating Systems	173
TT11 2 - Wireless Systems	174
SS63 2 - Photovoltaics: Characterization, Modeling and Simulation Methods	175
SS53 - Self-organising Robust Automation Systems	176
TT06 7 - Reluctance Drives	177
SS20 2 - Advanced Lighting Systems	178
SS58 2 - Current Status of Intelligent Spaces - Conversion of Robotics, Mechatronics, Control and Interfaces II	179
TT07 7 - Control in Machines and Drives 1	180
ICELIE - Exhibition	180
SS45 2 - Aspects of Design and Manufacturing in Electrical Machine Design for Variab Speed Drives and Generators in Automotive and Renewable Energy Applications II	le- 180
SS42 - High Perfomance Power Supplies	181
TT01 11 - Power Semiconductor Devices 1	182
TT13 4 - Energieinformatik 2013	183
IF 4 - Industry Forum - Electric Vehicles "Advances in EV Technology, making EVs sma	rter
and more connected"	183
TT01 24 - Control Techniques for Power Converters 3: Active Filtering	183
TT01 32 - DC Conversion Systems 1	184
SS50 1 - Modeling and Simulation of Cyber-Physical Energy Systems	185
SS34 1 - Engineering Tool Integration for Mechatronical Engineering and Industrial Automation System Development	186
TT06 18 - Induction Machine and Drives	187
TT09 6 - Biologically inspired and human-like robots	188
TT05 4 - Applications	189
SS28 2 - Advanced motion control: theory and servo design	190

TT03 7 - Power electronics for smart grids	190
TT02 7 - Power Electronics I	
SS03 2 - Induction Heating Systems	192
TT11 3 - Information Processing and Communications	
Wednesday 13th of November	
EX - Exhibition - Exhibition	194
TT04 1 - Electronics System-on-Chips, Power Applications	194
TU - Energy Harvesting from Motion: Fundamentals and Recent Advances	195
TU - Solid-State Transformer Concepts in Traction and Smart Grid Applicatio	ns195
TU - New Emerging Technologies in Motion Control Systems	195
SS59 - Systems and devices for promoting energy efficiency in compressed	air systems
TTOC 0 Identification in Flactuical Drives	
Control Control Control Cystems and Applications	
SSIS 1 - Network-based Control Systems and Applications	
TTO 7. 8 Control in Machines and Drives 2	
ITU7 8 - Control in Machines and Drives 2	
ICELIE 1 - Elearning lechnical Aspects and Hybrid Learning	
SS26 1 - Biomimetics and Bionics Robotics	
5543 1 - Power Converters, Control and Energy Management for Distributed	202
TT01 12 - Power Semiconductor Devices 2	203
TT13 5 - Energieinformatik 2013	204
IF 5 - Industry Forum - Power and Energy 2 "DER Components and ICT Syste	ems for Smart
Grids"	204
TT01 25 - Control Techniques for Power Converters 4	204
TT01 33 - DC Conversion Systems 2	205
SS02 1 - Power Management based on Advanced Identification and Classific	ation
Techniques	
SS04 - Control and Filtering For Distributed Networked Systems	207
TT06 19 - Fault Tolerant Systems	
TT09 7 - Control of robot trajectory	
SS19 1 - New Trends in Converter Topologies and Control Methods for Active Distribution Grids I	≥ Power
SS28 3 - Advance motion control on force and birateral control	
TT03 8 - Control and monitoring techniques in smart grid II	
TT02 8 - Power Electronics II	
SS44 1 - Power Electronics, Control, Motor Drives and Energy Management	in Electric and
Fuel Cell Venicles	
TTO 1.2 Systems on China Design Simulation and Verification	
TTOE 0 DM Drives L	
LIUO 9 - PM Drives I	
SSID 2 - Network-based Control Systems and Applications	
TTOZ Q Control in Machines and Drives 2	
I TO / 9 - CONTOLIN Machines and Makila Taashing	
ICELIE 2 - 10015, Platforms and Mobile Teaching	
5520 Z - BIOMIMETICS AND BIONICS RODOTICS	

SS43 2 - Power Converters, Control and Energy Management for Distributed Generation	n
TT01.15 DC Companying Container 2	.220
TT12 6 Energia informatily 2012	.221
1113 6 - Energieinformatik 2013	. 222
for Smart Grid Systems"	ols . 222
TT01 26 - Control Techniques for Power Converters 5	.222
TT01 34 - Resonant Converters	.223
SS61 - Renewable Energy Sources and their integration to Grid Power Supply	.224
TT13 9 - Energieinformatik 2013	.225
TT09 8 - Image processing and vision	.225
SS19 2 - New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids II	.226
SS28 4 - Advance motion control for high-precision systems	.227
SS07 1 - Control strategies for wind energy generation systems	.228
TT02 9 - Microgrids	.229
SS44 2 - Power Electronics, Control, Motor Drives and Energy Management in Electric a	and 230
SS49.2 - Emerging Methods and Tools for Eco-Factories Engineering	231
TT04.3 - Electronics System-on-Chips, Sensors and Image Applications	231
SS01 4 - Matrix Converters	232
SS12 1 - Ambient Intelligence of Mobile Robots for Vehicle with Human Factors	232
SS37 1 - Engineering Paradigms for Automated Facilities	233
TT06 10 - PM Drives II	235
SS38 1 - Photovoltaic energy conversion systems I	235
SS32 3 - Energy storage management and applications I	235
TTO7 10 Control in Power Electronics 1	.230
ICELIE SS01 Toaching Industrial Electronics for Suctainable Energy	227
SS20 1 Electric Traction Drives for Poad Vehicles	220
SS29 1 - Electric fraction Drives for Rodu Venicles	.239
5345 5 - Power Converters, Control and Energy Management for Distributed Generatio	240
TT01 14 - DC Conversion Systems 2	240
TT01 3 - Multilevel Converters 3	241
TT13 7 - Energieinformatik 2013	241
IF 7 - Industry Forum - I FD Lighting "Advances and Applications in Today's Environmer	nt .
and Beyond"	.242
TT01 35 - Energy Storage, Batteries, Supercaps, Fuel Cells, Chargers - 1	.243
SS14 1 - Industrial Wireless Communication and its Applications	.244
TT06 20 - Sensorless control methods II	.245
TT07 18 - Signals & Estimation 2	.246
SS19 3 - New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids III	.246
SS28 5 - Advance motion control for novel industrial application	.247
SS07 2 - Fault tolerant wind energy generation	.248
TT02 10 - Power Electronics for Microarids	.249
SS69 1 - Nonlinear dynamics of power converters I	.250
SS51 1 - Intelligent Information Processing for the Smart Grid: Innovative Estimation.	
Control and Optimization Methods	.250

TT04 4 - Electronics System-on-Chips, Industrial and Security Applications	251
SS65 1 - Fault Tolerant Power Converters for Automotive Apllications	252
SS30 1 - Cognitive Architectures and Multi-Agent Systems	253
SS01 5 - Matrix Converters	254
TT06 11 - PM Drives III	255
SS38 2 - Photovoltaic energy conversion systems II	256
SS32 4 - Energy storage management and applications II	257
TT07 11 - Control in Power Electronics 2	258
ICELIE SS02 - New applications of ICT in Electrical and Electronic Engineering T	eaching 258
SS29 2 - Electric Traction Drives for Road Vehicles	259
SS43 4 - Power Converters, Control and Energy Management for Distributed Ge	eneration
ME - Journal Tutorial	
TT13 8 - Energieinformatik 2013	
1101 28 - Control lechniques for Power Converters 7	
1101 36 - Energy Storage, Batteries, Supercaps, Fuel Cells, Chargers - 2	
5514 2 - Industrial Wireless Communication and its Applications	
TTO1 29 - Lighting Applications	
FIUL 38 - Magnetics, Modeling & Converter Topology	
Distribution Grids IV	wer 264
SS08 1 - Intelligent Real-time Automation and Control Systems	
SS07 3 - Power electronics and advanced aspects of wind energy conversion sy	vstems. 266
TT02 11 - Power Ouality	
SS69 2 - Nonlinear dynamics of power converters II	
SS51 2 - Intelligent Information Processing for the Smart Grid: Innovative Estim	hation,
Control and Optimization Methods	268
Thursday 14th of November (IEEE IWIES 2013)	
IWIES - Opening Ceremony	
IWIES - Keynote Speech - Distributed Coalitions for Reliable and Stable Provision	on of
Frequency Response Reserve - An Agent-based Approach for Smart Distribution	n Grids270
IWIES Session 1 - Intelligent Components and Distributed Generators in Smart	Grids270
IWIES Session 2a - Advanced and Agent-based Control in Intelligent Energy Sys	stems271
IWIES Session 2b - Energy Management Systems	272
IWIES Session 3a - Power Grid and Demand Side Management	272
IWIES Session 3b - Computational Methods for Intelligent Energy Systems	273
IWIES Session 4 - Computational Intelligence and Methods for Smart Grids	274
IWIES - Closing Ceremony	275
Author Index	276
	-

Software Architecture for a Smart Grids Test Facility

IT Implementation for an Emulated Low Voltage Smart Grid

Alexander Wendt, Mario Faschang, Thomas Leber and Klaus Pollhammer Vienna University of Technology Gusshausstrasse 27-29 E384 A-1040 Vienna, Austria {wendt, faschang, leber, pollhammer}@ict.tuwien.ac.at

Abstract — in the joint smart grids application project "Intelligent low voltage grid" of SIEMENS and Vienna University of Technology, households are emulated with transformers representing photovoltaic facilities and current sinks representing the loads. The purpose is to test new control concepts in small scale before a field trial. One example is the use of smart meter measurement for controlling a local transformer's tap changer. For the interconnection and management of the emulation devices, a software infrastructure is needed. In this paper, the basic design of the software components and their interactions are presented. It is a flexible, extendable architecture which consists of a central server and multiple specialized clients. A communication service based on remote procedure calls was written, where Google Protobuf is used for the data exchange. In two applications, the realization of the concept is demonstrated.

Keywords—smart grids, architecture, protobuf, implementation, service, datapoint, server, network, communication

I. INTRODUCTION

In order to make the nearing energy turnaround possible, several problems in the area of energy grids and in storage of energy have to be solved [2]. There is an increasing amount of renewable energy generators, which will replace conventional energy generators. One challenge for electrical grids is to stay within the voltage band limits as more distributed energy sources like photovoltaic facilities are connected [1]. The introduction of e-mobility represents another challenge because additional high loads are expected. However, smart grid concepts can minimize the need of extension of the electric grids or at least delay it. Many concepts have been developed to counter the mentioned problems, for instance to use smart meter data to efficiently control the tap changer in the power transformer between the low and middle voltage electric grid [6]. As the effort of testing in real electric grids is very high and risky, and pure software simulations cannot replace the real hardware, an emulation platform for testing concepts on hardware in small scale is needed.

This is the goal of the "Intelligent low voltage grid" project [1]. It emulates a three phase low voltage grid, which

Tobias Deutsch Siemens AG Österreich, CT RTC NEC INN-AT Siemensstraße 90, 1210 Wien tobias.deutsch@siemens.com

consists of four buildings, of which two use photovoltaic power generators. The devices are emulated with variable transformers, current sinks and resistances. Three grid topologies can be realized within the system: Two separate branches, a single long branch or a ring. Among others, the following concepts are being tested in the system: Controlling of the power transformer at the interface between the low and middle voltage grid based on smart meter data, analysis of asymmetric loads and resulting high neutral wire current flow, topology recognition, co-simulation of grid and its infrastructure as isolated operation mode. In order to implement such scenarios, a communication and control platform is needed [17]. In this paper, a software architecture is presented, which successfully fulfills the needs for extendibility, flexibility and simplicity for the operation in smart grid emulations. The implementation is demonstrated in two projects.

II. RELATED WORK

The purpose of this test facility is to test smart grid concepts in small scale before trying them in real electric grids. In Austria, there are many projects operating in the area of smart grids, which aim to solve the problems of high fluctuations in the electric grids, like in the projects "DG Demonet" [6] and "Smart Grid Modellregion Salzburg" [8]. Another concept, which can be tested within this facility for reducing the grid fluctuations, is to make use of load shifting in buildings. They are realized in the projects "Building to Grid" [10] and "BED – Balancing Energy Demand" [11].

In a related project, a test facility with the same purpose as the "Intelligent low voltage grid" is built in Italy. It emulates middle and low voltage grids [9]. However, this facility is built in a larger scale. Electrical and thermal load emulators are used in the middle voltage grid. Also a variable topology with different impedances can be applied through line emulators. The low voltage grid consists of multiple generators, real and emulated loads as well as storage systems. Different communication systems are tested, especially data exchange solutions, which are compliant to the IEC 61850 standard. "Intelligent low voltage grid" models only a low voltage grid in smaller scale, which makes it cheap and mobile. A customized control system is being developed adapted for the emulation needs of the facility.

A related software architecture to the one presented in this work is Reef [12]. It is an open source smart grid platform, which relies on a service-oriented architecture. It has many similarities with the architecture presented in this work, but is more extended and with a higher granularity. The communication relies on Google Protobuf [3] and services based on the REST framework. It consists of a bus, which manages the connected applications of the following types: human-machine-interfaces, bridges to communicate with other external systems, field protocol adapters, tools for calculations and automated control. The data exchange objects are represented in measurements, commands, events and alarms, which all passes the bus. The objects of the system are connected with relationships like "owns" or "uses" through a configurable semantic model. Similarly, in the Mosaic platform, which is a pure simulation platform for smart grids, devices are also configured within a semantic model [13]. Another common communication architecture, which is being introduced in the area of Smart Grid is the OPC UA [14].

III. CONCEPT OF A GENERAL ARCHITECTURE

For the design of the system, the use case of controlling a tap changer based on the measured values of the smart meters was taken as base. The given hardware and external software components provided the constraints for the software design of the *Datapoint Server* and other components.

Fig. 1. System components and their communication interconnections

The system architecture depicted in Fig. 1 is derived from the following use case: the goal is to create a smart grid by using smart meter data from households for controlling a local transformer between a middle voltage grid and a low voltage grid [1]. The controlling of the grid is done in this way: In "Transformer STT800/Current Sink IS100", three transformer devices emulate the local low/middle voltage grid

transformers for each phase. The other transformers represent the photovoltaic generation in the households and the current sinks provide the loads (1). On each branch of the electric grid, there are smart meters "Smart Meter" connected, which measure the voltages and the currents (2). They are connected with a data concentrator "Data concentrator" via Power Line Communication and provide it with their measured values [6] (3). Eventually, those values are collected in a computer "Nanobox" via Ethernet (4). The "Nanobox" contains functionality for providing smart meter data as well as controlling the smart meters, e.g. with a power snapshot [7]. It is connected with the server computer "Server Computer", which receives and processes the smart meter data. The processing results in new commands for the devices, which are sent through USB. In that way, values (U, I, P, R) can be set and read (5).

The "Server Computer" hosts a central server component, the *Datapoint Server* and several independent clients. The "Server Computer" can consist of multiple physical devices. The clients register themselves in the *Datapoint Server*, in order to be operational. The clients can be categorized into four types:

- *Device Clients*, which are gateways to the hardware devices and are used as external interfaces.
- *Management Clients*, which allows the user to configure the server.
- *Processing Clients*, which are general clients used for the execution of algorithms or actions on hardware via a device client.
- Representation Clients, which provide humanmachine-interfaces for external representation of values and control by the user.

The clients communicate via *Datapoints*, which are managed in the *Datapoint Server*. Each *Datapoint* represents a value, which a client publishes. Other clients can subscribe datapoints, which are then pushed from the *Datapoint Server* to the subscribers. A component based approach was chosen, in order to lower system complexity as well as allowing each client to be run on other hardware and platforms. It is a centralized network architecture and it allows the usage of a push model. The push functionality is only implemented in the server, where the server notifies subscribers about updates. It can be compared to a multi agent system with one coordinator agent.

IV. IMPLEMENTATION

The software design will be explained in detail by describing the data model, the server, a general client and the low level communication service with help of an example.

Datapoint

The *Datapoint* consists of a logical address, a physical address and properties. The default property is the value, but other properties like time stamp or minimal and maximal values also exist. The client - which creates and writes a *Datapoint* - registers the datapoint's physical address in the

Datapoint Server. In the Datapoint Server, the Datapoint is mapped to a predefined logical address. This mapping is equivalent to the models used in [12] and [13]. However, the difference is that much of the modeling is decentralized into the different clients instead of being kept in a single semantic model. However, semantic models are not used yet, but may be a useful extension, in order to increase flexibility. Each client manages its own subscriptions and Datapoints. In the Datapoint Server only the ownership of a Datapoint is managed. For subscribers, only the logical address is available. The advantage of using logical and physical addresses is that the physical address is dependent on the client creating it and if devices are exchanged, the physical address is also exchanged, but the logical address remains constant. The Physical Datapoint address is created in the following way:

PH.[PhysicalAddress].[Entity].[Property]

where the address can be built like this: "1000.USBDevice1", where "1000" is the client id and "USBDevice1" is the device name. The entity may take physical values like U (voltage) or I (current). With the hierarchical structure of the address, it is possible to use a wildcard search to receive e.g. all datapoints written by a certain client, a certain device of a certain client, a certain device type of all clients or all entities of type voltage for all devices. The *Logical Datapoint* address is put together in an equivalent way:

S.[LogicalAddress].[Entity]

The logical address could look like this: "Branch2.Load.Phase1". The properties are then extracted from the entity and not explicitly addressed. Here, wildcard search are also available.

Datapoint Server

The *Datapoint Server* can be seen as a database and router with extended management capability. It offers three services for clients. Clients who belong to one of the four types, mentioned in the previous chapter, offer services as well. The following service pairs are defined:

- Service-pair for device clients, where *Device Clients* registers *Datapoints*, writes values from and to hardware devices and receives new *Datapoint* values from other clients.
- Service-pair for subscribers, where *Processing Clients* and *Representation Clients* are the consumers and providers of *Datapoint* values.
- Service-pair for manager clients, where *Management Clients* can receive and set server configurations.

This architecture only allows connections of clients with the server and not the clients with other clients. Unlike service oriented architectures, there is no real service discovery or yellow pages in the system. Processing clients have to know, which *Logical Datapoints* they need to subscribe. This is set in the configuration of the clients. A future possibility could be to add semantic descriptions to the *Datapoints* and to use a match algorithm to retrieve them like in the project ORCHESTRA [4], but for a small scale system, there is no need of it at this time.

For the integration of components (server with client), the integration style "remote procedure invocation" is implemented. A remote procedure call is used as a normal method, where the *Datapoint Server* offers implemented service methods. The client implements a stub of those service methods. By executing the stub methods, the parameters are transported via Google Protobuf to the implementation, where the method is executed.

Fig. 2. Datapoint server processing structure

In Fig. 2, the server architecture is explained with an example how a subscriber is registered in the server and how it receives the subscribed Datapoint values. The ServerDevice starts a ClientAcceptor thread (the "T" in the figures) (1). As soon as a client connects to the socket (2) a new RPC Driver is created for each new socket (3). The RPC Driver is a client manager, which initializes services for the client on connect and manages the connected client in the server. The RPC Driver initializes the communication service JRPCService, which handles all communication in the system (4). In a later chapter, the JRPCService is explained in detail. It initializes the correct service pair (subscription service - notify service) for the client. At the same time, a ClientHandler is started (5). There are three different types of ClientHandler, one for each service-pair. It implements the service stub of the connected client. In this example, the connected client is a subscriber and the ClientHandler is added to a list of subscribers in the ServerDevice (6). Therefore, the main role of this type of ClientHandler is to manage the subscriptions of each client. Then, the next step is to subscribe Datapoints. An incoming message "subscribe" (7) is received from the client, which contains the logical addresses of the Datapoints, which shall be subscribed. The JPRCService calls the service method "subscribe" (8) in the service SUBSCRIPTION_SERVICE_SERVER. This service adds the addresses to the ClientHandler (9). Now, a Datapoint is subscribed. The sending of acknowledgement messages is excluded in this explanation, in order to keep the overview. In the next step, the value of this Datapoint is updated. An incoming message "writeDatapoints" with new Datapoint values is received in the JRPCService (10). The corresponding method "writeDatapoint" is called in the service (11). The Datapoint values are updated in the ServerDevice, which keeps all Datapoint values (12).

Afterwards, all subscribers are notified (the treads are woke up) and if the *Datapoint* address matches the subscribed *Datapoint* address, the new value is sent to the subscribing client through the client service stub (14) (15). As the service SUBSCRIPTION_SERVICE_AT_SERVER also allows reading *Datapoints* from the server, this architecture allows both push and pull models.

Clients

In the following general client architecture is presented on which most of the Processing Clients rely. The architecture is described in Fig. 3 of how a client starts, subscribes a Datapoint, receives a new Datapoint value and reacts on it. The Client starts the Communicator (1), which is a common communication interface for the Processing Clients. The Communicator initializes the service for the Datapoint Server, the NOTIFY SERVICE CLIENT (2) and starts the JRPCService in an own thread (3). The service is set in the JRPCService (4). Then, the Controller is started in an own thread (5). Its purpose is to react on commands from other clients. Therefore, it is implemented as a blocking queue, in order only to change state if incoming Datapoints requires it. Two examples will demonstrate the functionality. The client subscribes a Datapoint with the commands "START" and "STOP". If the "START" command is set, the Controller executes some actions until the "STOP" command is given. In another case the client shall only react on the change of some subscribed Datapoint values and the controller always waits between the notify messages. Further, the Controller starts the Manager (6), which is the executor of all actions of the client. As soon as all components are started, the Client sends the Logical Datapoint addresses to the server, which shall be subscribed (7)(8)(9).

Fig. 3. General processing structure in clients

As the subscribed *Datapoint* value changes, the *Datapoint Server* sends a message "notify" with the new value (10). The method "notify" is called in the service (11). The new values are passed through the Client (12) to trigger some behavior of the Controller (13). If a defined behavior is triggered, the Manager is executed, which processes subscribed *Datapoints* or calculates new values to be set (14). The new values are sent to the *Datapoint Server* (15) (16) (17), where another client may be notified about these changes.

Intercomponent Communication

For this platform a TCP/IP based asynchronous RPC service based on the service concept of Google Protobuf and it uses only one socket. Google Protobuf is "a way of encoding structured data in an efficient yet extensible format" [3].

Originally, it was supposed to use ZeroMQ [5] with Protobuf, but as it was not possible to use both a publisher-subscriber and a request-response pattern on a single socket, which is realized in the JRPCService.

The architecture of the JRPCService is described in Fig. 4 and Fig. 5. It is explained with the example of the subscription service. The service-pair consists of the SUBSCRIPTION_SERVICE_SERVER and the NOTIFY_SERVICE_CLIENT. All data types, services and their methods are defined within Protobuf [3].

The JRPCService manages all communication and additionally allows the replacement of services. At the connection with a client, the server does not know which type of client is requesting and therefore services have to be set first, see steps 1-6 in Fig. 4. As explained before, in the server, a client manager, the RPC Driver is defined. It implements a JRPCServiceCallbacks interface, which demands the implementation of the method "NewServiceRequest". In that way, services can be changed by putting a new "connect" request with a service identifier. If the request "connect" with the service name "SUBSCRIPTION_SERVICE_SERVER" is received from a client (1), the RPC driver starts the JRPCService (2) in a separate thread (marked with "T" in the figure). In that way, each accepted socket (client) has an own independent JRPCService available. On "connect", the method "NewServiceRequest" is executed in the RPC driver (3). The service SUBSCRIPTION SERVICE SERVER is started (4) and it is Additionally, JRPCService (5). set in the а ClientHandler is started, which is adapted to the connecting client (6), in this type a subscriber.

incoming For each request, an IncomingWorkingPackage is started in an own thread (7). It creates a predefined empty response message as a thread, the RPC Response CallBack (8). This message is passed to the service in the method call "connect" (9). At the end of the method execution in the service, the message thread is started; it builds itself with the content of the service method and independently executes the send function from the JRPCService (10). In case of the message "connect", only an acknowledgement is returned. The message "acknowledge" is then sent to the client via the JRPCService (11). For incoming messages, like messages to execute the method "subscribeDatapoints", the steps 1 and 7-10 in Fig. 4 are executed.

Fig. 4. JRPCService processing for incoming requests

In step 6 in Fig. 4, a ClientHandler was initialized for the client. In this example, the client handler is used to update the

client with subscribed *Datapoint* values. In Fig. 5, this process is illustrated. First, a remote method is executed at the client (1), e.g. to notify a subscriber. The remote method of the stub rpc.NOTIFY_SERVICE_CLIENT.BlockingInterfa ce is called (2) and the executing party waits for response during the function call. The stub-method then calls method "CallBlockingMethod" (3), which is demanded by Protobuf and implemented within the JRPCService. It sends the request to the client (4) and additionally creates a BlockingQueue (5). There, the BlockingQueue waits until the response is received (6) or a timeout is exceeded. The response is the trigger to wake the BlockingQueue (7), which is woken up (8). Finally, the response is returned (9) from the stub-function to the caller.

Fig. 5. JRPCService processing for outgoing requests

Security Aspects

Since Google Protobuf does not implement a client server authentication, messages within the system are unencrypted and readable for all devices within the network. However, since the communication relies on TCP/IP a SSH/VPN tunnel can be used to harden the information exchange between the substations and the server.

V. EXISTING IMPLEMENTATIONS

The general communication architecture is being realized within two projects, which are presented in the following.

Intelligent Low Voltage Grid

This project is the realization of the defined use case shown in Fig. 1. The Datapoint Server is implemented as described above. Most of the following clients are implemented based on the general client architecture. Device and Smart Meter Clients are the gateways for other clients to access the devices STT800 and IS100 for write and read. The Device Client communicates through USB and the Smart Meter Client through Ethernet. The Smart Meter Client provides two ways of reading from the smart meters: continuous independent reading of voltage values from the smart meters and power snapshot [7], where all connected smart meters are read with the same time stamp. Different to the Device Clients above, Algorithm is a Processing Client, which subscribes Datapoints from the Device Clients, which represent the voltage values of the loads (IS100) and the photovoltaic power generators (STT800). Based on the voltage limit violations of the Datapoints, the new tap position is calculated. The tap position is a discrete percentage value of a default position, e.g. tap position 1 is 230V * 1.02. Five tap positions are available. It is used to control the local transformers (STT800). The Tap Changer subscribes the tap position, which was provided by the Algorithm. Based on the given tap position, it writes new transformer values, which are set by the Device Client. The Profile Client generates the emulation values for all devices in the system. Default load and generator profiles of households are downscaled for this application. It writes the currents to the devices. 24h profiles are used, but are run through within 2 min. Consequently, the *Profile Client* also provides the system time. In order to know when to start and stop, it subscribes a *Datapoint* with the commands "START", "PAUSE" and "STOP" from the *User Interface Client*. The *User Interface Client* provides the human-machine-interface of the system. Unlike all other software, it was implemented in National Instruments LabVIEW and the corresponding communication driver (JRPCService) was implemented in Visual C++. Finally, the *Manager Client* is used for configuring the *Datapoint Server*, i.e. the mapping between the *Physical* and *Logical Datapoints* and to discover mapping error of devices.

Smart Heating Control

Another realization of the general communication architecture is a building automation application for controlling home heating systems. This "Smart Heating Control" system has been developed at Vienna University of Technology on base of the communication architecture described in this paper. The main goal was the development of a flexible, extensible and cheap state-of-the-art building automation system for controlling private households.

Fig. 6. Overview of home automation application relying on the datapoint communication architecture

In Fig. 6 a structural overview of the smart heating system is shown. It consists of a *Datapoint Server* and two *Device Clients*. One is used as a driver for a local I2C temperature sensor and the other is used as a driver for a mono stable relay to switch the heating system. They were implemented on a Raspberry Pi single-board-computer operating an ARM1176JZF-S processor [15]. Beside the *Datapoint Server* and the *Device Clients*, this credit-card size low cost computer hosts a *Processing Client* for the temperature control algorithm.

Additionally to the previous project, a data persistence extension in the *Datapoint Server* has been made. It uses a MySQL server to persist the historical data of the different sensors. The added persistence functionality is a crucial element for the heating control system, as its algorithm is meant to also use historical data for forecasting and decision making. Further, the *Device Clients* had to be adapted for proper system operation: The first one connected to an RFID reader unit (OMNIKEY ® 5553 Reader Board) operated by a

Device Client implementation. This unit acts a presence recognition unit, which is located at the key rack and reads RFID tags connected to the residents' keys. When detecting a newly added or removed key it updates the corresponding *Datapoint* in the *Datapoint Server*. This information is then forwarded to all subscribing clients. The second *Device Client* implementation operates a wireless 2.4 GHz ZigBee transceiver (Atmel AVR Raven [16]), which acts as a communication host towards some wireless temperature sensors.

For the implementation, temperature measurement was possible only through the wired transceiver. In further development stages, room thermostats should be connected wirelessly as well, which would provide the possibility not only to control the central house heating system, but every room individually.

VI. RESULTS AND CONCLUSION

A smart grid in small scale is emulated by transformers and current sinks. For the realization, a service concept, the "JRPCService" was introduced based on Google Protobuf. As the communication layer is hardly a cause of errors, it can be seen as very robust and flexible. The complexity of the Datapoint Server could possibly be reduced, if the usage of Physical Datapoints would be removed. Actually, only the clients have to know the physical addresses of their devices. For all levels above, only Logical Datapoints are needed. Hence, Physical Datapoints assure that only one client can "own" a Datapoint, due to the predefined mapping. In "Smart Heating Control", one drawback was the non-persistence of data in the Datapoint Server as no historical data can be subscribed and obtained by any client. Therefore, an extension of the Datapoint Server had to be made. New clients can easily be created from the common client architecture. The push model worked well for all clients except the User Interface Client. Here, problems with message flooding from the server emerged in the interface of the tow used programming languages. A pull model was chosen where the client has all control over the data flow. Originally, the purpose was to implement business logic within the User Interface Client. It showed up to be very faulty, which made it necessary to split the system functionality in many independent components, such as the Profile Client. In general, one of the major challenges was to create a well working system that integrated different types of hardware and software. The selected counter measure was to reduce the systems overall complexity and to use several, simple built, independent components or clients.

This software architecture was successfully implemented in two projects. Although, related software architectures provide proper frameworks, this architecture allows complete customization of the concepts needed for this application and as this test facility is still small, the need for scalability is limited. In the project "Intelligent Low Voltage Grid", the system will be extended with a building automation agent and e-mobility, where the demand for extending the platform with other types of clients rises.

VII. ACKNOWLEDGMENT

The development of the system in this work was supported by Siemens AG Austria.

VIII. REFERENCES

- T. Deutsch, T. Leber, F. Kupzog, Ö. Karacan, A. Einfalt, "Versuchsanlage Intelligentes Niederspannungsnetz", in proceedings of the 8. Internationale Energiewirtschaftstagung IEWT 2013, Austria, 2013.
- [2] J. P. Barton, D. G. Infield, "Energy Storage and Its Use With Intermittent Renewable Energy". In *IEEE Transactions on Energy Conversion 19*, p. 441–448, 2004.
- [3] Google Protocol Buffers, https://code.google.com/p/protobuf, accessed on April 17th 2013.
- [4] U. Bügel, D. Hilbring, "Application of Semantic Services in ORCHESTRA", in the proceedings of the *International Symposium on Environmental Software Systems ISSES 2007*; Prague, Czech Republic, May 22-25, 2007.
- [5] ZeroMQ, http://www.zeromq.org, accessed on April 17th 2013.
- [6] A. Einfalt, F. Kupzog, H. Brunner, A. Lugmaier, "Control strategies for smart low voltage grids - the Project DG DemoNet - Smart LV Grid", in proceedings of *CIRED 2012 Workshop*: Integration of Renewables into the Distribution Grid, page 238, 2012
- [7] A. Abart, D. Burnier, B. Bletterie, A. Lugmaier, A. Schenk, M. Stifter, H. Brunner, "Power snapshot analysis: a new method for analyzing low voltage grids using a smart metering system", in proceedings of 21st *International Conference on Electricity Distribution*, Germany, 6-9 June 2011, Paper 1083, 2011.
- [8] G. Zucker, F. Kupzog, D. Reiter, "Smart grids strategy for salzburg, austria", in proceedings of 21st International Conference on Electricity Distribution, Germany, 6-9 June 2011, Paper 0787, 2011.
- [9] S. Scalari, G. Valtorta, R. Giglioli, F. Pilo, R. Caldon, S. Massucco, C. A. Nucci, A. Testa, "An Italian facility to test distributed energy resources management for SmartGrids", in *SmartGrids for Distribution*, *IET-CIRED*. CIRED Seminar, 23-24 June 2008, p. 1-4, 2008
- [10] A. Wendt, K. Pollhammer, "Turning Buildings into Active Participants of a Smart Grid". In proceedings of the *ComForEn 2012*, 5th September 2012 (Tagungsband ComForEn 2012), p. 74-80, Eigenverlag des Österreichischen Verband für Elektrotechnik, ISBN: 978-3-85133-072-4, Austria, 2012
- [11] K. Pollhammer, A. Wendt, "BED Balancing Energy Demand with Buildings". In proceedings of the *ComForEn 2012*, 5th September 2012 (Tagungsband ComForEn 2012), p. 110-115, Eigenverlag des Österreichischen Verband für Elektrotechnik, ISBN: 978-3-85133-072-4, Austria, 2012
- [12] Green Energy Corp, "Reef Reference Documentation", http://docs.plymouthsystems.com/0.4.7/reef-docs-single/Overview.html, accessed on April 18th 2013
- [13] S. Schütte, S. Scherfke, M. Sonnenschein, "mosaik Smart Grid Simulation API". In Proceedings of SMARTGREENS 2012 -International Conference on Smart Grids and Green IT Systems, edited by B. Donnellan, J. P. Lopes, J. Martins, and J. Filipe, 14-24: SciTePress, 2012.
- [14] S. Rohjans, D. Fensel, A. Fensel, "OPC UA goes Semantics: Integrated Communications in Smart Grids", in Proceedings of the IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA), E-ISBN: 978-1-4577-0016-3, 2011
- [15] Raspberry Pi Foundation; "Raspberry Pi | An ARM GNU/Linux box for \$25. Take a byte!"; http://www.raspberrypi.org, accessed on April 23th 2013
- [16] Atmel Corporation; "AVR Raven"; http://www.atmel.com/tools/avrraven.aspx, accessed on April 23th 2013
- [17] T. Deutsch, F. Kupzog, T. Leber, A. Einfalt, "Pilot System "Intelligent Low Voltage Grid", in proceedings of the " CIRED 2013: International Conference on Electricity Distribution", to be published.