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Abstract—A novel analytical approach is proposed for the performance
analysis of AF relaying systems with MRC receiver in the destination.
We first derive PDF and CDF of equivalent SNR of the equivalent
S-R-D channel. However, both the PDF and CDF include modified
Bessel functions which are not easily tractable. In order to derive an
analytical statistical model for the PDF of the total SNR at the output
of MRC receiver, a novel approach is introduced to rewrite the modified
Bessel function of second kind in the form of infinite series using
simple elementary functions. By substituting novel series representation
of modified Bessel function in the PDF of equivalent S-R-D channel, the
performance of the overall system which includes MRC combining in the
destination is analytically studied and closed form expressions are derived
for the outage probability of the system. Interestingly, the infinite series
approaches its asymptotic result rather accurately with a few terms only.
Numerical simulations are provided to verify the accuracy of the novel
theoretical approach.

I. INTRODUCTION

Cooperative communication to enhance the transmission rate of a
communication system was first introduced in [1], and “distributed
spatial diversity” turns out to be a promising method that exploits
the antennas of several distributed user terminals to achieve transmit
diversity in space. In order to establish a cooperative network, several
users share resources, e.g. power or bandwidth, to communicate with
a common receiver or even different receivers; those schemes are
commonly subsumed under the term “relaying”.

Several relaying protocols have been proposed in the literature,
e.g. Amplify-and-Forward (AF), Decode-and-Forward (DF), Soft-DF,
and Compress-and-Forward (CF) (e.g. [2], [3]), where, depending on
the parameters of the network, each of them can be the method of
choice. There is currently a lot of interest in AF relaying because of
its simplicity in terms of analysis and its low complexity compared
to other relaying protocols; hence, AF is also the focus of this work.

For an analytical performance evaluation of a relaying scheme,
the statistical model of the Source-to-Relay-to-Destination (S-R-D)
link is most important. Several papers consider the problem: in [4]–
[6], an equivalent S-R-D channel model has been proposed in terms
of modified Bessel functions of the second kind, but it is assumed
that the direct Source-to-Destination (S-D) channel is in a deep fade,
so the effect of the S-D link can be ignored. Moreover, only the
high SNR regime is considered in [5] using the moment-generating
function.

In [7], the PDF of the S-R-D link-SNR in the high-SNR regime
is derived, and a relay selection scenario is investigated, based on
the knowledge of the Source-to-Relay (S-R) channel. In [2], the
outage behaviour of different relaying protocols, including AF, has
been studied at high SNR and moderate transmission rate, and in [8]
outage capacity of different protocols, including AF, is studied in the
low-SNR regime.

The complexity of performance analysis of AF relaying systems
is evident when considering a system model in which the destination
employs an MRC receiver in order to combine the signals which
correspond to the source and the relay transmissions. Indeed, although
a closed form expression is available for the PDF of S-R-D channel
SNR in the literature but, to the best of our knowledge, a closed
form expression for the PDF of the total SNR at the output of MRC
receiver is not yet available. This may be due to the modified Bessel
functions in the PDF of the SNR of the S-R-D link that make further

mathematical calculations a challenging task. In order to cope with
the problem, we use a novel equivalent series representation of the
modified Bessel functions. However, the choice of an appropriate
equivalent representation is crucial: even though a series represen-
tation of the modified Bessel function of the second kind, Kν(·),
is also available from [9, 8.446], this representation is much more
complicated than the Bessel function itself. In [10] an equivalent
representation for Kν(·) is also introduced, but this formulation again
is not helpful for the analysis of the outage behaviour of AF relaying.

Inspired by [10], we have derived an equivalent representation
of Kν(·). Using that, we have investigated the bit error probability
of an AF cooperative system in [11]. Outage probability of an AF
cooperative system with an MRC receiver in the destination will be
investigated in this paper.

The remainder of the paper is organized as follows: in Section II the
system model is introduced and a general equivalent channel model
is derived for the S-R-D link. In Section III the fractional-calculus
method is exploited to derive an equivalent series representation of
Kν(x) (the modified Bessel function of the second kind) and, based
on that, in Section IV novel closed form expressions are provided for
the outage behaviour of an AF relaying system.

II. SYSTEM AND CHANNEL MODEL

We consider a two-hop Amplify-and-Forward (AF) communication
system as illustrated by Fig. 1. The source (S) sends data to the
destination (D) by the help of an intermediate relay node (R). The
destination might “hear” both the source and the relay transmissions
and apply Maximal Ratio Combining (MRC) of the available infor-
mation in the destination, or it can only “hear” the relay transmission
(e.g. due to deep fading on the S-D channel) [5]: both the scenarios
are evaluated.

It is assumed that the relay operates in half-duplex mode, i.e. the
relay can not receive and transmit simultaneously. Moreover, the over-
all system is orthogonal in time, i.e. the transmission time is divided
into two periodically repeated slots: the wireless channel is allocated
for the source transmission during the first time slot and for the relay
transmission in the second time slot. Of course, the orthogonality
constraint induces the crucial need for full synchronization among
the nodes (which is assumed). The channels are subject to Rayleigh
fading and AWGN receiver noise. The signals corresponding to the
source transmission received at the destination (ysd) and the relay
(ysr) are

ysd =
√
Pshsd s + nd

ysr =
√
Pshsr s + nr (1)

where s is transmit signal vector. The parameter Ps is the source
power constraint, and hsd and hsr represent the channel coefficients
corresponding to the S-D and the S-R links, respectively. The channel
coefficients, which capture the effects of path-loss and fading, are
zero-mean, white complex Gaussian processes with variances σ2

sd and
σ2

sr. The coefficients are constant during every time slot (or transmit
block) and they vary independently from one block to another (block-
fading model). Additive receiver noise is modelled by nd and nr,
which are sample-vectors from zero-mean, white complex Gaussian
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Fig. 1. System Model

processes, for simplicity both with variance N0 = 1. For Amplify and
Forward (AF), the relay amplifies (without any further processing) the
signal received from the source such that it fulfils the relay’s power
constraint, Pr, and retransmits the signal towards the destination;
the channel coefficient hsr is assumed to be available to the relay.
The signal received at the destination corresponding to the relay
transmission is given by

yrd =

√
Pr

E(|ysr|2)
hrdysr + nd (2)

=

√
PrPs

Ps|hsr|2 + 1
hsrhrds +

√
Pr

Ps|hsr|2 + 1
hrdnr + nd

The R-D channel (Rayleigh fading with variance σ2
rd) and the noise

characteristics (N0 = 1) are similar to those of the S-D and the S-R
links. From inspection of (2) it is clear that the equivalent S-R-D
link can not be modelled as a Rayleigh fading channel. However,
due to the block-fading assumption, the equivalent noise at the
destination corresponding to the relay transmission (middle term in
the second line of (2)) is Gaussian per block and another Gaussian
receiver noise nd is added. Hence, a substitute additive Gaussian
noise model can be used, and the corresponding equivalent receiver-
output Signal-to-Noise Ratio (SNR) at the destination will be one
of the major parameters governing the performance of the overall
system, as this output SNR can directly be related to the capacity,
diversity, throughput, error rate and other performance measures of
the overall system. Therefore, the statistics of the equivalent S-R-D
SNR (SNRsrd) will be derived. Assuming Ps = Pr = P for simplicity,
the instantaneous SNRsrd using (2) is

SNRsrd =
P |hsr|2|hrd|2

|hsr|2 + |hrd|2 + σ
(3)

where N0 = 1 is assumed and σ .
= N0/P = 1/P . With the channel

coefficients known at the receivers (both at the relay and the destina-
tion) coherent detection can be used, and the squared magnitudes
|hij |2 of the Rayleigh-distributed channel coefficients that appear
in (3) are exponentially distributed with parameter λij

.
= 1/σ2

ij ,
i ∈ {s,r}, j ∈ {r,d}, i 6= j.

In the rest of this section the cumulated density function (CDF)
and the probability density function (PDF) of the random variable
(RV) |hsr|2|hrd|2

|hsr|2+|hrd|2+σ
are derived, negelecting the factor P in (3).

Theorem 1. CDF of the RV X = X1X2
X1+X2+σ

Let X1 and X2 be two independent exponential RVs with the
PDFs fXi(xi) = λie

−λixi , xi ≥ 0, i ∈ {1, 2}, and the parameters
λ1, λ2 > 0, and let σ > 0 be a real constant. Then, the CDF of the
RV X = X1X2

X1+X2+σ
is given by

FX(x) = 1− 2e−(λ1+λ2)x
√
λ1λ2x(x+ σ)× (4)

K1

(
2
√
λ1λ2x(x+ σ)

)
with Kν(·) the modified Bessel function of the second kind and ν-th
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Fig. 2. The PDF of RV X , (8), for various values of σ when λ1 = λ2 = 1.

order.
Proof: Assuming FX(x) is the CDF of the RV X , we have by

the definition of the CDF

FX(x) = P (
X1X2

X1 +X2 + σ
< x)

=

∫ ∞
x1=0

∫ (x1+σ)x
(x1−x)

x2=0

λ2e
−λ2x2 · λ1e

−λ1x1dx2dx1

=

∫ ∞
x1=0

(
1− e−λ2

(x1+σ)x
(x1−x)

)
· λ1e

−λ1x1dx1

= 1− λ1

∫ ∞
x1=x

e
−λ2

(x1+σ)x
x1−x · e−λ1x1dx1

= 1− λ1

∫ ∞
u=0

e−λ2
(u+x+σ)x

u · e−λ1(u+x)du

= 1− λ1e
−(λ1+λ2)x

∫ ∞
u=0

e−λ2
(x+σ)x
u · e−λ1udu

= 1− 2e−(λ1+λ2)x
√
λ1λ2x(x+ σ)×

K1

(
2
√
λ1λ2x(x+ σ)

)
(6)

where the last equality is obtained from [9, 3.471.9] with∫ ∞
0

xν−1e−
β
x · e−γxdx = 2

(
β

γ

) ν
2

Kν

(
2
√
βγ
)
, (7)

where β, γ are positive real values and Kν(·) is the modified Bessel
function of the second kind and ν th order.

Corollary 1. PDF of the RV X = X1X2
X1+X2+σ

Let X1 and X2 be two independent exponential RVs with param-
eters λ1 and λ2, respectively, and σ > 0 be a real constant. Then,
the PDF of the RV X = X1X2

X1+X2+σ
is given by

fX(x) = 2e−λSx

[
λP(2x+ σ)K0(2

√
λPx(x+ σ)) (8)

+λS

√
λPx(x+ σ)K1(2

√
λPx(x+ σ))

]
where λP = λ1λ2 and λS = λ1 + λ2.

Proof: The PDF fX(x), (8), is obtained by taking the derivative
of FX(x), (4), with respect to x, using the calculation rules for
derivatives of the Bessel functions (e.g. [12, p. 439,10.1.23]).



Kν(βx) =

∞∑
n=0

n∑
i=0

i∑
j=0

√
π(−1)n+i+j(2β)i−νΓ( 1

2
+ n− ν)Γ(2ν) (1 + j − i− n)n

n! j! (i− j)! Γ( 1
2
− ν) Γ( 1

2
+ n+ ν)

· xi−νe−βx (5)
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Fig. 3. Kν(x) vs. finite series representation of Kν(x) with k = 2 in (20).

Fig. 2 illustrates fX(x) derived in (8) for various values of σ and
assuming that λ1 = λ2 = 1.

Although the results in (4) and (8) represent closed form solutions
for the CDF and PDF of the equivalent S-R-D channel-SNR, the
appearance of the modified Bessel functions in (4) and (8) makes
them hard to handle e.g. for outage analysis. For instance, integrations
including (4) and (8) will not have a closed form solution. Therefore,
in the following an equivalent representation of Kν(·) is derived
that is based on a series-representation involving simple mathematical
functions of the form xne−x. This novel equivalent representation of
Kν(·) paves the way for further theoretical analysis of AF relaying
systems.

III. EQUIVALENT REPRESENTATION OF MODIFIED BESSEL
FUNCTIONS OF SECOND KIND

The mathematical concept of integration and differentiation of ar-
bitrary (non-integer) order is called “fractional calculus”; foundations
of the theory are discussed e.g. in [13], [14]. It will be used below
to derive an equivalent representation of Kν(βx).

Theorem 2. Equivalent representation of the modified Bessel func-
tion Kν(βx) of the second kind and ν th order

A modified Bessel function Kν(βx) of the second kind, ν th order,
can be represented by an infinite series as given in (5).

Proof: Let s be a real non-negative number, i.e. s > 0 and
s ∈ C. Let f(x) be continuous on x ∈ [0,∞) and integrable on
any finite subinterval of x > 0. Then the Riemann-Liouville operator
(e.g. [14]) of fractional integration is defined as

Is {f(x)} .= 1

Γ(s)

∫ x

0

(x− t)s−1f(t)dt . (9)

On the other hand, from [9, 3.471.4] we have∫ x

0

(x− t)s−1t−2se−β/tdt =
Γ(s)β

1
2
−s

√
πx

e
−β
2x Ks− 1

2
(
β

2x
) . (10)

Assuming f(t) = t−2se−β/t, the two integrals in (9) and (10) are
identical: this motivates the novel approach to derive an equivalent
expression for Kν(βx) by use of fractional integration.
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Fig. 4. Truncation error of K1(x) for various values of k.

It follows from (9) and (10) that

Is
{
x−2se−β/x

}
=
β

1
2
−s

√
πx

e
−β
2x Ks− 1

2
(
β

2x
) . (11)

The Leibniz rule for the Riemann-Liouville operator (see appendix
for a proof) is given by

Is {h(x)g(x)} =
∞∑
n=0

(−1)nΓ(n+ s)

n! Γ(s)
I(s+n) {h(x)}Dn {g(x)} (12)

where n is a non-negative integer, s+ n is a non-negative fractional
number and Dn .

= dn

dxn
. By solving I(s+n) {h(x)} for h(x) = x−2s

and Dn {g(x)} for g(x) = e−β/x, the equivalent Bessel model (5)
will be derived. Let h(x) = xp, then

Iαxp =
1

Γ(α)

∫ x

0

(x− t)α−1tpdt, (α > 0)

=
1

Γ(α)

∫ x

0

(1− t

x
)α−1xα−1tpdt

=
xα+p

Γ(α)

∫ 1

0

up(1− u)α−1du, (u =
t

x
)

=
Γ(1 + p)

Γ(1 + p+ α)
xp+α . (13)

Suppose that p = −2s and α = s+ n, then

I(s+n) {x−2s} =
Γ(1− 2s)

Γ(1− s+ n)
xn−s , (14)

and assuming g(x) = e−β/x in (12), Dn
{
e−β/x

}
can be computed

as

Dn
{
e−β/x

}
=

dn

dxn
e−β/x = (15)

x−ne−β/x
n∑
i=0

i∑
j=0

(−1)i+j (1 + j − i− n)n (β/x)i

j! (i− j)!
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Fig. 5. Outage probability vs. channel SNR

where (θ)n = Γ(θ+n)
Γ(θ)

is the Pochhammer symbol.
By substituting (14) and (15) into (11) and (12) it is straightforward

to obtain (18), at the top of next page. Changing the variable x→ 1
2x

,
assuming 1− 2s = 2ν, and exploiting K−ν = Kν , the result is the
infinite series

Kν(βx) =

∞∑
n=0

n∑
i=0

i∑
j=0

Λ · xi−νe−βx , (16)

where

Λ = (17)√
π(−1)n+i+j(2β)i−νΓ( 1

2
+ n− ν)Γ(2ν) (1 + j − i− n)n

n! j! (i− j)! Γ( 1
2
− ν) Γ( 1

2
+ n+ ν)

.

It should be made clear that the above representation of Kν(βx)
is not valid for ν =

{
0, 1

2
, 3

2
, · · ·

}
. That is because Γ(2ν) and

Γ( 1
2

+ n − ν) in (17) diverge to ±∞. However, one can compute
K0(βx) using the equivalent representation of K1(βx) and K2(βx)
by Kν(x) = Kν−2(x) + 2(ν−1)

x
Kν−1(x) that is obtained from [15,

10.38.4].
Finite Series Representation of Kν(βx): The equivalent rep-

resentation of Kν(βx) may significantly simplify computations in-
volving Kν(βx), as the series in (5) contains the variable x only
in the simple function-template xi−νe−βx that can, e.g., be easily
integrated. The series representation contains, however, an infinite
number of terms that can’t be computed in practical applications.

Fortunately, the series representation of Kν(βx) is rather accurate
for a finite number of terms as defined as follows:

Kν(βx) =

k∑
n=0

n∑
i=0

i∑
j=0

Λ · xi−νe−βx + ε (20)

with

ε =

∞∑
n=k+1

n∑
i=0

i∑
j=0

Λ · xi−νe−βx . (21)

The first term on the right-hand side of (20) represents the actual func-
tion to approximate Kν(βx), and ε represents the truncation error.
Fig. 3 illustrates numerical values of the finite series representation

with k = 2 (in (20)) of Kν(x) for various values of ν (dashed lines)
and also the theoretical fully accurate values of Kν(x) (solid lines).
It is clear from the figure that the finite series for Kν(x) with only
k = 2 produces only a rather small error.

Truncation Error: In the Appendix it is proved that the Leibniz
rule, (12), for the Riemann-Liouville operator is a direct result of
a Taylor-series expansion of some function, say h(t), at t = x.
Consequently, the equivalent infinite series representation of Kν(βx)
in (16) is also a result of some Taylor expanssion at point x. There-
fore, it is expected that the equivalent infinite series representation of
Kν(βx) can be truncated with high accuracy with only few terms.
Fig. 4 shows the absolute value of the truncation error, i.e. |ε|, for
k = 5, 10 and 20. It is obvious from Fig. 4 that the error is as low
as about 10−4 for k = 10 and as low as about 10−5 for k = 20.
The truncation error is about 10−3 when x→ 0, but considering that
Kν(x)→∞ as x→ 0, the truncation error of 10−3 is negligible. In
the remainder of the paper we assume k = 10, although even much
lower values of, e.g. k = 2, turn out to produce accurate results.

IV. OUTAGE PROBABILITY

Although the PDF and CDF of the equivalent S-R-D channel
derived in (8) and (4) are closed form solutions, both include modified
Bessel functions, which are difficult to work with, e.g., for analysis
of AF cooperative systems to derive BER or outage probabilities.
The problem was circumvented in [5] by assuming that the direct
S-D link is in a deep fade, so the effect of the S-D channel can be
neglected in the calculations.

In what follows, the general case including a non-faded S-D
channel is considered. Therefore, the signal received at the destination
is the sum of signals corresponding to the S-D and the S-R-D
channels. Hence, the receiver output SNR at the destination is

SNR = P (
|hsr|2|hrd|2

|hsr|2 + |hrd|2 + σ
+ |hsd|2 ) . (22)

The mutual information of the Rayleigh faded system illustrated in
Fig. 1 and assuming Gaussian transmit codebooks is

I =
1

2
log2

(
1 + SNR(|hsd|2 +

|hsr|2|hrd|2

|hsr|2 + |hrd|2 + σ
)

)
bps/Hz (23)

where for simplicity we assume that N0 = 1 and SNR = P
N0

= P .
The factor 1

2
reflects that the information is conveyed to the destina-

tion in two time slots. The outage probability is defined as

pout(R, SNR) = P

(
|hsr|2|hrd|2

|hsr|2 + |hrd|2 + σ︸ ︷︷ ︸
X

+ |hsd|2︸ ︷︷ ︸
Y

≤ 22R − 1

SNR

)
(24)

where the PDF of X has already been derived in (8) and the PDF of
Y is (by assumption of Rayleigh fading of hsd) λsde

−λsdx. Assuming
r = (22R − 1)/SNR the outage probability is found to equal

pout(R, SNR) = P (X + Y ≤ r)

=

∫ r

0

∫ r−x

0

fY (y) · fX(x)dydx

=

∫ r

0

(1− e−λsd(r−x)) · fX(x)dx

= FX(r)− e−λsdr

∫ r

0

eλsdx · fX(x)dx

= λsde
−λsdr

∫ r

0

eλsdx · FX(x)dx , (25)

where the last equality is obtained using integration by parts. For
simplicity we restrict calculations to the high-SNR regime. By
substituting (4) in (25), and assuming “high SNR”, i.e. σ → 0, (25)



∞∑
n=0

(−1)nΓ(n+ s)

n! Γ(s)

Γ(1− 2s)

Γ(1 + n− s)x
n−s · xne−β/x

n∑
i=0

i∑
j=0

(−1)j(−β/x)i (1 + j − n− i)n
j !(i− j) !

=
β

1
2
−s

√
πx

e−
β
2xKs− 1

2
(
β

2x
) (18)

pout(R, SNR) = 1−

(
1 + 2λsd

√
λsrλrd

∞∑
n=0

n∑
i=0

i∑
j=0

Λ · Γ(i+ 1)− Γ(i+ 1, λr)

λi+1

)
e−λsdr (19)

will be further simplified to

pout(R, SNR) = 1− e−λsdr − 2λsd

√
λsrλrde

−λsdr × (26)∫ r

0

xe−(λsr+λrd−λsd)xK1(2
√
λsrλrdx)dx .

The integral in (26) is non-trivial and does not seem to have closed-
form solution. However, the integral can be rewritten as follows

η
.
=

∫ r

0

xe−(λsr+λrd−λsd)xK1( 2
√
λsrλrd︸ ︷︷ ︸
β

x)dx

=

∞∑
n=0

n∑
i=0

i∑
j=0

∫ r

0

Λ · xie−(β+λsr+λrd−λsd)xdx

=

∞∑
n=0

n∑
i=0

i∑
j=0

Λ · Γ(i+ 1)− Γ(i+ 1, λr)

λi+1
(27)

where the second equality is obtained by using the series repre-
sentation of Kν(βx) derived in (16), with β = 2

√
λsrλrd, λ =

β + λsr + λrd − λsd and Γ(α, x) is the incomplete gamma function
that is defined as follows

Γ(α, x) = (α− 1)! e−x
α−1∑
c=0

xc

c!
. (28)

Consequently, by substituting (27) in (26), the high-SNR outage
probability will have the closed-form solution given in (19). Fig. 5
shows the outage probability plotted using the closed-form expression
derived in (19) with the summation over n truncated at k = 10. In
order to prove the validity of the results, monte carlo simulations are
provided as well. A comparison of the monte carlo simulations with
the theoretical results proves the accuracy of the proposed method in
this paper. Note that the truncation over n at k = 10 was assumed
throughout the paper, but, lower truncations as low as k = 3 or 4
produce accurate results as well.

V. CONCLUSIONS

Based on fractional calculus, a novel series representation of the
modified Bessel functions of the second kind and ν-th order has
been presented. The series representation allows for outage analy-
sis of Amplify-and-Forward relaying, providing novel closed-form
solutions for the outage probability. The truncated series provides
numerically accurate results, particulary for high transmit SNR;
nevertheless, according to the simulation results, the high transmit
SNR results are valid in low SNR region with high accuracy.

APPENDIX
PROOF OF THE LEIBNIZ RULE FOR THE RIEMMAN-LIOUVILLE

INTEGRATION OPERATOR

Let s > 0. The Riemman-Liouville intagration operator is defined
as Is {h(x)g(x)} = 1

Γ(s)

∫ x
0

(x − t)s−1h(t)g(t)dt. It is straight-
forward to derive the Leibniz rule by performing a Taylor series

expansion of h(t) at t = x, i.e. h(t) =
∞∑
n=0

(−1)n

n!
(x−t)nDn {h(x)}.

We obtain

Is {h(x)g(x)}

=
1

Γ(s)

∫ x

0

(x− t)s−1h(t)g(t)dt

=
1

Γ(s)

∫ x

0

(x− t)s−1
∞∑
n=0

(−1)n

n!
(x− t)nDn {h(x)} g(t)dt

=
1

Γ(s)

∞∑
n=0

(−1)n

n!
Dn {h(x)}

∫ x

0

(x− t)n+s−1g(t)dt

=
∞∑
n=0

(−1)nΓ(n+ s)

n!Γ(s)
In+s {g(x)}Dn {h(x)} (29)

where Dn {h(x)} = dn

dxn
h(x).
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