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A relevant difference between (9) and least squares formulations is that the former
can be used to prove k-explicit stability bounds on u, while the seconds requires
these bounds to be well-posed.

We note that, using an appropriate operator T : V → V , any well-posed for-
mulation in the form (2) can be translated in a sign-definite one: aT (u, v) :=
a(u, T v) = F (Tv) =: FT (v). However, the operator T is often not explicit or
its approximation by a Galerkin scheme requires some strict assumptions on the
discretisation (see [2]).

References

[1] A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the
Helmholtz equation, M2AN, Math. Model. Numer. Anal., 42 (2008), pp. 925–940.

[2] P. Ciarlet Jr., T -coercivity: Application to the discretization of Helmholtz-like problems,
Comput. Math. Appl., 64 (2012), pp. 22–34.

[3] P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acous-
tic and elastic Helmholtz equations, Math. Models Methods Appl. Sci., 16 (2006), pp. 139–
160.

[4] U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Commun. Math. Sci.,
5 (2007), pp. 665–678.

[5] R. Hiptmair, A. Moiola, and I. Perugia, Plane wave discontinuous Galerkin methods for
the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011),
pp. 264–284.

[6] J. M. Melenk, On Generalized Finite Element Methods, PhD thesis, University of Mary-
land, 1995.

[7] A. Moiola and E. A. Spence, Is the Helmholtz equation really sign indefinite?, Tech. Re-
port Preprint Series MPS-2012-23, Department of Mathematics and Statistics, University of
Reading, 2012. http://www.reading.ac.uk/maths-and-stats/research/maths-preprints.aspx

[8] C. S. Morawetz, Notes on time decay and scattering for some hyperbolic problems, Society
for Industrial and Applied Mathematics, Philadelphia, Pa., 1975.

[9] F. Rellich, Darstellung der Eigenwerte von ∆u + λu = 0 durch ein Randintegral, Math.
Z., 46 (1940), pp. 635–636.

[10] E.A. Spence, I.V. Kamotski, and V.P. Smyshlyaev, Coercivity of combined boundary
integral equations in high frequency scattering. In preparation, 2013.

[11] E. A. Spence, S. N. Chandler-Wilde, I. G. Graham, and V. P. Smyshlyaev, A new

frequency-uniform coercive boundary integral equation for acoustic scattering, Comm. Pure
Appl. Math., 64 (2011), pp. 1384–1415.

Hardy space method for exterior Maxwell problems

Lothar Nannen

(joint work with Thorsten Hohage, Achim Schädle, Joachim Schöberl)

We consider scattering and resonance problems on connected, unbounded domains
Ω ⊂ R3, which are complements of compact sets. Scattering or source problems
for the time-harmonic Maxwell’s equations consist in finding an outgoing electric
field u ∈ Hloc(curl;Ω) satisfying

(1)

∫

Ω

curl u · curl v − ω2εu · v dx = l(v) for all v ∈ Hc(curl;Ω).
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for a given frequency ω > 0, the local permittivity ε and a linear form l(v) =∫
Ω
g·v dx+

∫
∂Ω

g∂Ω ·v dx with a compactly supported source term g and boundary
data g∂Ω. Here Hc(curl;Ω) denotes the space of all vector fields v which are
compactly supported in Ω and are square integrable together with the curl curl v.
Hloc(curl;Ω) denotes the space of vector fields v, which are square integrable on
any compact subset K ⊂ Ω together with curl v.

The radiation condition defining the term ”outgoing” is typically formulated
as Silver-Müller radiation condition. Then it is well-known that problem (1) is
well-posed (see e.g. [1]). For ω > 0 there exist other radiation conditions, which
are equivalent for solutions u to (1):

(i) A series representation u in terms of Hankel functions of the first kind
(e.g. [1]),

(ii) a boundary integral representation of u (e.g. [1]),
(iii) the condition that a holomorphic extension of u with respect to the radial

variable (e.g. a complex scaling) is exponentially decreasing (e.g. [2, 3])
and

(iv) the so called pole condition, which characterizes outgoing solutions via
the singularities of their Laplace transformed functions ([4] for Helmholtz
problems and [5] for Maxwell problems).

Based on these radiation conditions there are several numerical methods to solve
(1), e.g. classical infinite element methods [6], non-reflecting boundary conditions
[7], boundary integral approaches [8], local high order approximations [9], complex
scaling methods (known as perfectly matched layer methods) [10, 11, 12, 3] and
Hardy space infinite elements [13, 14, 5].

Except for the two latter these methods depend non-linearly on the frequency
ω, since this is the case for the radiation conditions (i) and (ii) on which they are
based. This is a severe drawback for resonance problems, where we are looking for
eigenpairs (u, ω2) consisting of an outgoing resonance function u ∈ Hloc(curl;Ω)\
{0} and the square of a resonance ω ∈ C such that

(2)

∫

Ω

curl u · curl v =

∫

Ω

ω2εu · v dx for all v ∈ Hc(curl;Ω).

The radiation conditions (iii) and (iv) are independent of the frequency ω.
Therefore methods based on these radiation conditions, namely complex scaling
methods and the Hardy space infinite element method, can be constructed such
that they lead to a generalized matrix eigenvalue problem of the form

(3) Su = ω2Mεu

with complex symmetric, non-hermitian matrices S and Mε. This problem can be
solved by a standard shift-and-invert Arnoldi method. Although it is possible to
solve the non-linear eigenvalue problem resulting e.g. from a boundary element
method ([15]), it is desirable to avoid it.

Therefore, currently complex scaling methods based on (iii) are the standard
methods for solving resonance problems (see e.g. [16, 17]). Usually, due to the
resulting exponential decay of the solution, the unbounded domain is truncated
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to a bounded domain consisting of the computational domain and a perfectly
matched layer with the artificial, anisotropic damping. The method can be easily
implemented in standard finite element codes, since only the bilinear forms have
to be changed.

Unfortunately, these methods give rise to spurious resonance modes. It is shown
in [17], that the spurious resonance modes arise from a discretization of an essential
spectrum. Moreover, several parameter of the complex scaling method like the type
of scaling, the thickness of the layer and the underlying finite element method have
to be optimized for each specific problem.

The Hardy space infinite element method also leads to spurious resonance
modes, but less parameters have to be chosen by hand. Moreover, numerical
tests indicate a super-algebraic convergence with respect to the number of degrees
of freedom in radial direction. On the other hand, the method is a tensor prod-
uct method of standard finite element basis functions with special infinite basis
functions in the Hardy space of the complex unit disk. Therefore, a non-standard
infinite element has to be included in a finite element code.

The numerical tests in [5] for Maxwell problems were made with the open source
finite element package Netgen/NGSolve from Joachim Schöberl together with the
open source module ngs-waves containing the routines for the infinite elements.
Numerical tests comparing a complex scaling method with the Hardy space infinite
element method can be found for Helmholtz problems in [14]. They indicate, that
the Hardy space infinite element method needs less computational effort than the
complex scaling method.
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A parallel space-time multigrid method

Martin Neumüller

(joint work with Olaf Steinbach)

As a model problem we consider the heat equation in a bounded domain Ω ⊂
Rd, d = 1, 2, 3 with boundary Γ := ∂Ω and a simulation interval [0, T ],

(1)

∂t u(x, t)−∆u(x, t) = f(x, t) for (x, t) ∈ Q := Ω × (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := Γ × (0, T ),

u(x, 0) = u0(x) for (x, t) ∈ Σ0 := Ω × {0}.
Subdividing the simulation interval [0, T ] in subintervals

0 = t0 < t1 < . . . < tN−1 < tN = T, with tn = n τ and τ =
T

N
,

and using a standard finite element discretization in space and a discontinuous
Galerkin approximation in time, this leads to the linear algebraic equations

[Kτ ⊗Mh +Mτ ⊗Kh]u
n+1 = fn+1 +Nτ ⊗Mhu

n.(2)

Here, Mh is the standard mass matrix and Kh is the standard stiffness matrix

Mh[i, j] :=

∫

Ω

ϕj(x)ϕi(x)dx, Kh[i, j] :=

∫

Ω

∇ϕj(x) · ∇ϕi(x)dx

for i, j = 1, . . . , Nx. The matrices with respect to the time discretization, where a
discontinuous Galerkin approximation is used, are given by

Kτ [k, ℓ] := −
∫ τ

0

ψℓ(t)∂tψk(t)dt+ ψℓ(τ)ψk(τ),

Mτ [k, ℓ] :=

∫ τ

0

ψℓ(t)ψk(t)dt, Nτ [k, ℓ] := ψℓ(τ)ψk(0)

for k, ℓ = 1, . . . , Nt. Moreover, the right hand side is given by

fn+1[ℓNx + j] :=

∫ tn+1

tn

∫

Ω

f(x, t)ϕj(x)ψℓ(t)dxdt


