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ABSTRACT 

This paper presents an approach for the calibration of an 

agent-based model for infectious diseases. The data of 

an epidemic season is given and the aim is to find a 

simulation output that reflects the given data. First of all 

the data has to be investigated. Then, the start and the 

end of the epidemic have to be detected in the data and 

each simulation run. Afterwards the detected epidemic 

is compared to the original data. A distance function 

assists to decide whether the simulation run is a good 

representation of the data or not. The smaller the value 

of the distance function, the better the data is 

represented. The parameter of the simulation with the 

lowest value of the distance function is used.  

  

Keywords: calibration, epidemic, detection, HTA 

 

1. INTRODUCTION 

One of the main tasks in modeling and simulation is to 

find reliable parameter values. Data representing the 

real system exist. This given data can be split into input 

data - parameters values for the model - and output data. 

Basically modeling is always a comparison between the 

“real system” and “modeled system”. The modeled 

system gets fed with the input parameters and the aim is 

to reproduce the output data.  

 These input parameter values can be found in 

studies or other literature, or they can be extracted from 

other databases. Sometimes values can not be found at 

all or have to be doubted. Then a task called calibration 

has to be performed, this is the attempt to fit a 

parameter value in a way that simulation output matches 

given data. An easy but inefficient way to do this would 

be a manual calibration of the parameters, where each 

simulation output has to be compared to the data 

subjectively. In this paper a more efficient approach is 

presented. 

 The approach described in this paper is part of a 

study where a simulation for epidemic diseases is 

developed. 

 

2. EPIDEMIC THEORY 

The data and the simulation output have to be 

represented in a way, so that they can be compared to 

each other. This papers focuses on epidemic diseases, 

that is why a theory has to be found, to determine what 

characterizes an epidemic. There is not a single 

definition for all epidemics, so this task has to be done 

individually for each simulation model. 

 In this section, some characteristics of epidemics 

are presented. They can support the definition of an 

epidemic. An epidemic generally arises when an 

infectious disease starts spreading. Basically an 

infectious disease can be measured by the number of 

people with certain attributes. The group of people with 

this attribute is observed. Beyond that this section 

describes a function that can support the decision 

whether two epidemic curves coincide satisfyingly well. 

 

2.1. Which people are observed? 

This is the group of people that get a certain attribute � 

per time step. � could be the attribute describing that a 

person gets infectious, evolves symptoms, stays at 

home, gets resistant per time step, or some other state 

change. Sometimes there is even more detailed 

information, e.g. people that evolve severe or mild 

symptoms per time step. It should be defined exactly 

and clearly which people are represented in the given 

data and simulation output. If the identification between 

data and simulation output is not performed correctly, 

calibration cannot be done successfully. The vector v�� 
may represent the number of persons that evolve the 

attribute � at time step t. 
 The approach in this paper is defined for one 

attribute, but could also be extended for several 

attributes A�, . . A
. 

 

2.2. Characterization of the epidemics 

It is not possible to give one definition that fits for all 

types of epidemics, because there are too many factors 

that have to be taken into account. This is a task that has 

to be done disease-dependent. The aim of this section is 

to give a procedure for formulation of these 

characteristics.  

 First of all a vector v�� is given. This vector has 

entries v�����, t = 1. . N that represent for each time step the 

number of people that get or have the attribute A. N is 

the number of time steps. An epidemic always has a 

start point t����� that has to be determined. Then, a time 

period of the length l is defined. It represents the 

epidemic in a way, so that it can be analyzed or 

compared to other vectors. In this time period the 

epidemic can have different characteristics given as the 

properties P�.	Theses properties could be the minimum, 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2013 
978-88-97999-26-3; Backfrieder, Bruzzone, Frascio, Longo, Novak Eds. 

109



maximum, or other functions. The end of the analyzed 

time period is defined as t�
� = t����� + l.  
  

2.3. Extraction of the epidemic vector 

The time steps from t�����	to t�
� are extracted into a 

new vector with length �. 
 v���: = �v���� �,v���� �!�, … , v�#$%&�, v�#$%'. (1) 

 

 The actual performance of the extraction must be 

defined individually and in respect to the properties that 

are obtained in 2.2 and the given vector v��. 
 

2.4. Distance Function 

Finding a way to compare two epidemics to each other 

is a crucial task. This is performed by a distance 

function that compares two epidemic vectors (������ and ()����� 
to each other and gives a value how good they coincide. 

The time steps of these two vectors need to be given in 

the same step size (hours, days, weeks, …). If they have 

different step size, they have to be converted to the 

same step size. It is also very important, that these two 

vectors are of the same length � (in respect to the same 

step size). A simple approach is using the square 

distance function between (������ and ()����� .  
 

d+(������, ()�����, = -∑ +(�� − ()�,)0�12  (2) 

 

 For better results, an adaption of this distance 

function is presented by adding some individual weights 

for each time step. This is very helpful, if some time 

steps seem more “important” than others. The distance 

between v����� and v)����  is given as: 

 

d+(������, ()�����, = -∑ 34 ∗ +(�� − ()�,)0�12  (3) 

 

The weights ω� represent the weights for time step I and 

have to be set manually. Generally it is advised that 

time steps with lower confidence get lower weights and 

higher confidence means higher weight. 

 The distance function can be chosen individually 

and must be adapted to the given data points. Other 

significant data values could also be taken into account 

when given. 

 

3. THE APPROACH 

The aim of the simulation is to reproduce given data.  

The simulation is fed with input parameter values and 

the simulation produces an output.  

 Some of the input parameters can be found, others 

have to be calibrated. Hence, the first task is to 

determine the parameters which have to be calibrated. 

This could be either one or more parameters. Only 

unknown or unreliable parameters have to be calibrated.  

Before calibration it is very useful to do sensitivity 

analysis to get to know how the produced output 

depends on given input variables. 

Upon the theory presented in 2.1 and 2.2 the epidemic 

is extracted from the data (2.3) and stored in the vector d��. 
 Then, K simulation runs are executed. K is not 

specified and can be chosen as required. These 

simulation runs are started with different values for the 

parameters that have to be calibrated and give several 

output vectors. These output vectors may be identified 

by s8���, i = 1…K. In every simulation run the epidemic is 

extracted as described in section 2.3. The output of this 

process is stored in s8;���, i = 1. . K.  

 Each extracted simulation vector s8;��� is then 

compared to the data vector d�� using the distance 

function d�s8;���, d��' that was presented in 2.4. Then, the 

simulation vector s<������������ with the minimal distance 

function is chosen: 

 

 =>?@A����������, BCDℎ	F�=>?@AG����������, F�'= min41�..J F�=K;���, F�'  (4) 

 

 Calibration is an iterative task. If the simulation run s<������������ fits to the data subjectively good enough, 

calibration stops. If the distance is still too high, new 

simulation runs have to be started and the whole process 

starts all over again. 

 Finally, the parameter value of the simulation run s<������������ is used and calibration is finished. 

Here is a short overview of this procedure. 

 

(1) Definition of the epidemic. 

(2) Extract epidemics from data upon definition 

(3) Calibration 

a. Locate the parameters for calibration 

b. Run simulations with a small amount 

of start infections with different 

parameter values. 

c. Extract the epidemics from the 

simulations upon definition. 

d. Use the distance function to compare 

the extracted epidemic simulation 

results to the extracted data. Take the 

parameter value of the simulation run 

with minimal distance function. 

 

 After calibration, a plausibility check - also called 

face validation - should be performed to test whether 

the calibrated parameter values are reasonable. This is 

not part of this paper and should be evaluated by a 

medical expert. For detailed information see Klügl 

(2008) and Balci (1994). 

 

4. CALIBRATION OF THE AGENT-BASED 

INFLUENZA MODEL 

Each model and each epidemic has its own 

characteristics. Here the calibration approach is given 

for an agent-based model for epidemic spreading of the 

influenza virus. The main characteristic of agent-based 

models is, that complex behavior in the system arises 

from easy rules for each individual.  
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 The model is built on discrete time steps. Each time 

step represents one day. People are represented 

individually as so called agents. These agents have 

several attributes like gender, age, infection attributes 

(infected, vaccinated, mild symptoms, severe 

symptoms…), etc. At simulation start, each agent gets 

initialized being either infected with or without 

symptoms, susceptible, or vaccinated. In each time step 

agents have contact with other agents. If an agent has 

contact with an infected person, an infection happens 

with a certain infection probability. After some time 

steps people recover. People that are recovered, 

vaccinated or already infectious cannot be infected 

again. 

 There is also another attribute called naturally 

immune that controls whether an agent can get infected. 

This attribute is set for persons, which cannot get 

infected due to an infection in a past season or due to a 

good immune system. The number of people that get 

this attribute is defined via a parameter and can be set 

only at simulation start.  

High model credibility is very important to 

perform a successful calibration. That is why supportive 

tasks called validation and verification have to be 

carried out. Since the model is built upon an object 

oriented approach with different modules, both tasks are 

quite time consuming. A wealth of methods that partly 

already are applied to this model can be found in Balci 

(1994) and Sargent (2010). A special validation strategy 

that is used for agent based models can be found in 

Klügl (2008). 

 

4.1. Definition of the influenza epidemic 

If vector v�� contains the number of people that evolve 

(severe) symptoms due to an infection with the 

influenza virus, then each entry v� represents the 

number of persons that evolve symptoms at time step t. 
The most important facts are that a constant c defines 

the official start and end of an epidemic season. The 

start point t����� is the first time step where v� > N. The 

last time step where v� > N	 is called the end of the 

epidemic (t�
�). We assume that v� ≫ c	for	all	t ∈	Ut�����, t�
�V. The constant c is important to define when 

an epidemic starts and ends according to the data.  

The length of the epidemic is identified as l = t�
� −t�����. One of the properties that can be found in the 

influenza season is that the epidemic peak is somewhere 

in the interval Ut����� , t�
�V. This is the maximum 

number of people that develop symptoms. The 

maximum and the length of the epidemic are important 

for the extraction of the epidemic in a simulation run. 

 Figure 1 shows the weekly number of people that 

consulted a physician due to influenza. Under an 

additional assumption we assume that this is the number 

of infected people that evolve severe symptoms per 

week. The 8th week has to be doubted, because there 

could not be any explanation found for the decreased 

number of cases. It is assumed, that this is an error in 

the data. In this example the task to find the start and 

the end of the influenza season does not have to be 

done, because the definition was made upon the given 

data and data was preprocessed in a way, that start and 

end is already given. 

 The main information that this figure gives, are: the 

influenza starts in the 3rd week of the year (t����� = 3, 
and reaches its maximum between the 7th and 9th week. 

The actual assumption is, that the maximum is exactly 

in week 8. The end is in the 13th week (t�
� = 13,. 
That’s a duration of l=11 weeks (77 days). 

 

 
Figure 1: Number of people that evolve severe 

symptoms per calendar week in influenza season 

2006/07 in Austria  

 

4.2. Extraction from the data 

The time steps from t�����	to t�
� are extracted into a 

new vector with the length l. 
 

dX��: = �v���� � ,v���� �!�, … , v�#$%&�, v�#$%'. (5) 

 

Here, no extraction is necessary because the data is 

already given in the correct format hence, dX�� = v��. 
 

4.3. Calibration procedure 
The aim of this section is to show how the calibration 

task can be done in an efficient way, but not to deliver 

the perfect calibration utility for this model.  

In literature many strategies for model calibration 

can be found that may be applied Schade W, Krail, M. 

(2006), Bohensky, Smajgl, Herr (2007) and Abbaspour 

(2005). Calibration always depends on how much 

information is available. 

 

4.3.1. Locate the calibration parameter 

Several epidemiological studies allow parameterization 

of the model except for the infection probability, which 

cannot be measured, hence it needs to be calibrated. The 

calibration results are shown in section 4.4. 

 Some parameters like population data or disease 

progression are highly reliable while others like the 

percentage of naturally immune people might be 

scrutinized. The calibration of the parameters infection 

probability and naturally immune is shown in 4.5. 

 

4.3.2. Run simulations 

In reality, spreading of the influenza virus starts with a 

small amount of infected people until the epidemic 

officially begins. This is why the simulation runs are 

initialized with a small number of infectious people. 
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 To make it more reliable, the simulation time 

should be longer than the actual epidemic. It should 

cover at least as many time steps so an extraction of the 

epidemics upon the definition in 4.1 is possible. 

 The vector s� represents the simulation output. Each 

entry s� represents the number of people that get severe 

symptoms at time step t according to simulation. 

 

4.3.3. Extraction 

Because of the distance function, which is applied in the 

next section, it is important that the finally extracted 

epidemics in the data and simulation output 

1. are of the same length and  

2. the time steps represent the same interval 

(daily, weekly, monthly).  

 The extraction procedure presented here takes care 

of these two points. The extraction of the simulation 

runs and the extraction of the data are two separate 

procedures. In this section the length of the epidemic 

and the entry of the simulation run with the highest 

number of people that newly develop severe symptoms 

is used for detection. 

 The duration of the epidemic is important for the 

detection of the epidemic in the simulation. The 

simulation has daily-sized time steps. This is why the 

detection of the epidemic is performed on days. 

According to the definition of the epidemic the duration 

of the influenza season as given in the data (Figure 1) is 

about 77 days (11 weeks), that is why 77 time steps are 

picked in the simulation run. Then, the sum of 7 time 

steps represents a week to be comparable to the original 

data. 

 That and the fact, that the simulation is started with 

a lower number of infected people inquires to take a 

longer simulation period for the detection of an 

epidemic. The detection of the epidemic has to be done 

for each simulation run that was started in 4.3.2. 

 

Example for the extraction 

To show how the extraction is performed a simulation 

run is executed, where s� represents the simulation 

output and N=170 is the simulation runtime (daily step 

size). The result of this run is shown in Figure 2. 

 

 
Figure 2: Simulation run with 150 time steps (daily). 

Occurrence of severe symptoms per day. 

 

 First of all, the maximum amount of severe 

symptoms per time step has to be detected. It is possible 

to use the maximum function for this detection. If we 

zoom in (Figure 3) it is obvious, that the maximum time 

step is at 92.  

 

 
Figure 3: Zoomed in simulation run (daily) 

 

 Agent based models underlie some variations, 

hence it makes hence to smoothen the results. Here, the 

smooth vector s̅� calculates by the mean value of three 

time steps (Figure 4).  

 

s̅� =
Z[\
[] ��!��!��^_` , if	t = 0
��b_!��!��^_` , if	t = 1. . N − 1

��b_!��!��^_` , if	t = N
 (5) 

 

 
Figure 4: Smoothed simulation run (zoomed in) 

 

Then the maximum of the vector s̅� is detected. In the 

example this is marked with the red line and is at time 

step Dcde = 93. It could be possible, that the maximum 

is very close to the beginning or the end of the 

simulation time. This could happen in three cases: 

1. There is no significant uprising of the number 

of people that evolves severe symptoms time 

step. No maximum can be found. 

2. The simulation run time is too short. Then the 

maximum is at the end. Simulation has to be 

restarted with a bigger N and re extracted. 

3. The percentage of start infections to high. 

Simulation has to be restarted with a lower 

percentage of start infections and re extracted. 

 After the time step of tg�h ≔ tjk�l  is detected, all 

s� with tϵ ntg�h − o 0)p	 , tg�h + o 0)p	q are extracted into a 

new vector. This vector is represented as   

 

s��: = rs�k�l&o stp, s�k�l&o stp!�, … , s�k�l!o stp&�, s�k�l!o stpu (1) 

  

All =A with Dv n92 − oxx) p , 92 + oxx) pq are stored in the 

vector s��. These are the red marked time steps shown in 

Figure 5. 
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Figure 5: Detected epidemics (daily) 

 

 The extracted epidemic is shown in Figure 6. This 

is a vector of the length l.  
 

 

Figure 6: Extracted epidemics (daily) 

 

 

Figure 7: Extracted epidemics per week 

Now each 7 time steps are summed up to get an output 

in the same step size as given in the data (Figure 7). 

 

4.3.4. Applying the distance function 

Use the distance function to compare the extracted 

epidemic simulation results to the extracted data. Take 

the parameter value of the simulation run with minimal 

distance function. 

 

4.4. Results of the calibration of one parameter 

For a correct calibration a wealth of simulation runs has 

to be executed. The data that is shown in Figure 1 refers 

to the population of 2007, these were about 8.300.000 

people. To run an agent-based model with this number 

of agents takes quite long, that is why for calibration the 

number of agents is reduced to 830.000 and the data is 

scaled to this amount of people. This has no impact on 

the calibration process, because the number of agents is 

still high enough to produce reliable results to work 

with. 

 As already mentioned the infection probability can 

not be measured so this is the parameter that is varied in 

the calibration process. 

 A series of simulation runs s8���, i = 1…K is started. 

All simulations are executed with a low amount of 

initial infections and different values for the infection 

probability. In each run the epidemic is detected and 

stored in s8;���, i = 1. . K. The simulation runs are then 

compared to the original data and the distance function 

is evaluated. 

 Some expressive simulation runs are shown in 

Figure 8. The given data is the red line. The other 

simulation runs are the detected epidemics for each 

parameter value. Of course not all simulation runs can 

be shown here, so this is only a sample set of all runs. 

 

 
Figure 8: Calibration of infection probability 

 

 The weighted distance function as given in section 

2 is used. It is supposed, that the data point of the 6
th

 

week is wrong or insufficient. That is why these weeks 

get a lower weight. 

 

Table 1: Weights per time step 

week 1 2 3 4 5 6 7 8 9 10 11 

 weight 1 4 8 16 42 4 42 16 8 4 1 

  

 Then the distance function is applied. Each 

simulation run is executed and the distance to the data is 

given in the following table. 

 

Table 2: Distance to given data 

infection 

probability 

distance 

 

1.3 % 3 905.98 

1.4 % 3 813.02 

1.5 % 2 333.31 

1.6 % 6 273.50 

1.7 % 11 248.15 

 

 Now the simulation run with the minimal distance 

is chosen. This is the one with an infection probability 

of 1.5 % and is stored in =>?@A����������.  
 Still, the calibration results are not satisfying. The 

main problem is that far too many people evolve severe 

symptoms at the beginning and at the end in every 

simulation. Another point of view is that the model 
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produces too long epidemics using the fixed parameters. 

Variation of the infection probability does not help to 

overcome this issue.  

 

4.5. Calibration of two parameters 

Now, the same procedure is performed by varying two 

parameters, the infection probability and the number of 

naturally immune people. 

 The simulation runs in Figure 8 show that a higher 

value for the infection probability leads into an increase 

of people with severe symptoms at all and a higher 

value of the maximum of people that evolve severe 

symptoms. 

 The number of naturally immune people controls 

what percentage of the population gets the attribute to 

be naturally immune at initialization. These people 

cannot get infected at all. Sensitivity analysis of this 

parameter shows that a higher amount of naturally 

immune people in the beginning leads to less infections, 

less people that evolve severe symptoms and a shorter 

duration of the epidemic in the simulation. The results 

of the sensitivity analysis are not presented here. 

 Another series of totally 10 000 simulation runs s8���, i = 1…K is executed, and the epidemics are detected 

and stored in s8;���. 
 The infection probability is varied between 0.6 % 

and 8.80 % and the percentage of people that are 

naturally immune is varied between 50% and 90%. Due 

to lack of space not all results can be shown here. In 

Figure 9 an extract of simulation runs is shown to 

provide a little insight how close the results of 

simulation runs with different parameter values are.  

 

 
Figure 9: Variation of infection probability (I) and 

percentage of people with natural immunity (NATI) 

 

In the Table 3 the distance of the extracted simulation 

runs to the data is shown. The distance function (section 

2) uses the same weights as given in Table 1.  

 

Table 3: Distance to given data 

infection  

probability 

percentage of 

natural 

immune people 

distance 

 

 

8.6 % 78 % 9.800.55 

8.6 % 79 % 4 659.97 

8.6 % 80 % 7 661.01 

8.7 % 78 % 11 658.65 

8.7 % 79 % 5 022.45 

8.7 % 80 % 6 877.16 

 

 The best simulation s<������������ has an infection 

probability of 8.6 % and a percentage of start infections 

of 79 %. 

 It would be very difficult to choose one of these 

runs manually because of the large number of runs and 

a small variation of parameter values results in very 

similar output as shown in Figure 9. Of course it is not 

possible to say objectively, that this simulation is really 

the best representation of the real data, but it helps to 

decide whether parameter values can be found, that 

represent the data in a good way or not. 

 Based on the results, experts have to assess the 

found parameter values for a final decision of a reliable 

simulation which represents the data satisfyingly well. 

 

CONCLUSION 

Calibration is a crucial task when building a model. It 

helps to determine whether a model is able to represent 

the original in a reliable way. The calibration method 

and especially the examples of the calibration process 

that are presented here can help to reconsider 

assumptions that were made in the model, or to start 

investigations concerning the correctness of the data. If 

calibration of a parameter can be done with a 

subjectively good result it will result in even more 

confidence for the model. 
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