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Abstract. Modeling computer-interpretable clinical practice guidelines is a com-
plex and tedious task that has been of interest for several attempts to automate
parts of this process. When modeling guidelines one of the tasks is to specify
common actions in everyday’s practical medicine (e.g., drug prescription, obser-
vation) in order to link them with clinical information systems (e.g., an order-
entry system). In this paper we compare a rule-based and a machine-learning
method to classify activities according to the Clinical Actions Palette used in
the Hybrid-Asbru ontology. We use syntactic and semantic features, such as the
Semantic Types of the UMLS to classify the activities. Furthermore, we extend
our methods by using 2-step classification and combining machine learning and
rule-based approaches. Results show that machine learning performs better than
the rule-based method on the classification task. They also show that the 2-step
classification method improves the categorization of activities.

Keywords: Clinical Practice Guidelines, Hybrid-Asbru, Common Clinical Ac-
tions, Natural Language Processing, Classification

1 Introduction

Clinical practice guidelines (CGPs) are important means to provide state-of-the-
art medical care in diagnosis and treatment of patients and therefore improve
the quality in health care and reduce costs [9]. Computer-interpretable CPGs
(CIGs) have been shown to improve the adherence to these guidelines and sup-
port the medical personnel by providing patient-specific recommendations at
point of care [23]. In order to enable efficient linking of the CIGs on clini-
cal information systems (e.g., order-entry systems), it is necessary to explicitly
represent common clinical actions, such as drug prescriptions or physical exam-
inations. Several approaches have been made to classify such clinical actions,
for instance, the Unified Service Action Model (USAM) of HL7 RIM [24], the
Action Palette by Essaihi et al. [8], or the Clinical Actions Palette used in the
Hybrid-Asbru [27] CIG formalism.
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Modeling CIGs is a complex and tedious task that involves the cooperation
of both knowledge engineers and medical experts. Automating parts of the mod-
eling process reduces the workload and information extraction techniques are a
valuable means for that (e.g., [13]). In order to automatically model procedural
parts of the CPGs for a computerized execution, actions need to be specified
according to their highest level of detail.

We address the challenge of classifying clinical activities according to the
Clinical Actions Palette in a way that enables specification of actions in Hybrid-
Asbru. Our techniques can be used for supporting or to some extent replacing
extracting actions, which is currently accomplished manually by knowledge en-
gineers together with medical experts. Such an automatic classification can then
be integrated in a CIG authoring tool to reduce the workload of the modellers.
Automatically generated model fragments always need to be manually validated
by human experts. However, this validation should be less laborious than a man-
ual classification.

One difficulty we are faced with is to distinguish between two confusable
classes, such as drug-administration and drug-prescription by using sentence
elements. In some cases it is difficult even for a human annotator to assign the
correct class. Thus, we propose not only sole rule-based or machine learning
methods, but also a two-step classification approach, where these methods can
be combined.

This paper is organized as follows. In Section 2 we present the context of our
work and we make a brief overview of similar works and techniques. A descrip-
tion of the materials and methods is given in Section 3 and then in Section 4
an evaluation of the proposed methods is presented and discussed. Finally, in
Section 5 we present our conclusions.

2 Background and Related Work

Asbru [25] is a formalism that represents CIGs as a hierarchy of time-oriented
skeletal plans. However, it does not include explicit constructs for expressing
common clinical actions such as drug prescription or physical examination. Al-
though these actions are frequently used in everyday’s clinical practice the tex-
tual nature of the knowledge role can limit its interpretation by the execution
engine (e.g., to extract the precise dose of a drug in a drug-prescription action
or the name of the laboratory test in an observation).

Hybrid-Asbru is an extension of Asbru which was expanded to include,
amongst others, the Clinical Actions Palette to explicitly express common clin-
ical actions such as drug prescriptions or physical examinations.
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Currently, the actions palette includes the following actions: (1) anamnesis –
used to specify querying patients for relevant history; (2) physical-examination
– used to specify the performance of various physical examinations to the patient
(e.g., measuring heart rate); (3) observation – used to specify an observation like
an order of a laboratory test (e.g., WBC count); (4) procedure – used to specify
some clinical procedure by a clinician; (5) drug-administration – used to specify
the administration of a drug and its details (e.g., route) to a patient by a care-
provider; (6) drug-prescription – used to specify a prescription of a drug and its
details (e.g., dose) to a patient by a clinician; (7) referral – indicates a referral
of a patient to a specialist in a particular medical domain (e.g., endocrinologist);
and (8) notification – used to specify advising or educating a patient.

We are focusing on labeling activities according to this Clinical Actions
Palette. We consider this task as a multi-class classification task where the aim
is to categorize a segment of a sentence that describes an action into one of the 8
classes. We work on the segment-level due to the fact that a sentence can contain
multiple activities of different types.

Some Natural Language Processing tasks are based on sentence classifica-
tion, such as text structuring, opinion mining, or sentiment analysis (see [22]
for a summary of systems developed for the i2b2 challenge 2011 on sentiment
analysis of suicide notes). Khoo et al. [16] evaluated the performance of three
classification algorithms (Naive Bayes, Decision Trees, and SVM) for sentence
classification in e-mails. By using bag-of-words features, they showed that SVM
outperforms the other classification algorithms. McKnight and Srinivasan [21]
structured MedLINE abstracts in Introduction, Method, Result, and Conclusion
sections. They chose SVM and linear classifiers using a large corpus with struc-
tured abstracts. There are also approaches using Conditional Random Fields
(CRF), as they enable sequential modeling (i.e., taking into account the labeling
of adjacent instances and features) [17, 5]. In most cases, the set of features con-
tains bag-of-words features, UMLS concepts or semantic types, features related
to the position of the sentence, and sequential features (features from adjacent
sentences). In our task there are no discourse dependencies between activities,
so the use of CRF is not relevant. To deal with close classes, Chung and Coiera
[5] proposed a two-step classification method. From five classes, two of them
were very close. In the first step, they gathered the two close classes and classi-
fied sentences in the resulting four classes. Using a SVM classifier they learned
then to distinguish between the two close classes. This two-step method ob-
tained better results than the initial 5-class classification.

Few works were done on sentence classification in CPGs, for example to
detect sentences that contain activities [14] or to classify some kind of activities
depending whether they contain a clinical rule, a treatment recommendation,
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etc. [26]. Bouffier and Poibeau [3] developed a set of rules to detect activity and
condition segments in French CPGs. To the best of our knowledge, there are no
works which aim to classify activities in CPGs.

3 Materials and Methods

Classifying activities involves representing them by semantic, lexical, syntactic,
etc. information in order to find similarities between activities and other activi-
ties already categorized. We present in this section our corpus, how we represent
information, and the methods employed for the classification.

3.1 Corpus

In order to be able to develop and test our method we built a corpus consist-
ing of eight CPGs. They cover different specialities, such as Cardiology (3),
Endocrinology (2), Oncology (2), Pulmonology (1), and were developed by six
different institutions (i.e., NICE1, ACOG2, CBO3, SIGN4, ADA5, AHA6). The
guidelines were selected to show whether we can develop a reliable method that
is applicable on different medical specialities having varied types of activities as
well as on similar guideline topics from different institutions to have a variation
in the document structure and language.

We work on activity classification and not on activity extraction, so we use
semi-structured texts as input, i.e., texts have been manually annotated with ac-
tivity markups. For the development and the evaluation of our methods, we man-
ually annotated activities in the eight guidelines and classified them according
to the Clinical Actions Palette. Our corpus contained 348 annotated activities.
In Table 1, we indicate the number of activities for each activity type.

In sentence (1) we give an example of a sentence containing an activity,
which is assigned the type drug-prescription. Sentence (2) shows an example of
a recommendation indicating that an action must not be activated. This kind of
activity has not been annotated because only the activities that can be executed
are interesting for the modeling of the CPGs.

(1)
⌥⌃ ⌅⇧COND In adult patients with ABPA ,

⌥⌃ ⌅⇧ACTa four month trial of itraconazole⇤⇥ ��should be considered .
1 National Institute for Health and Clinical Excellence; http://www.nice.org.uk
2 The American Congress of Obstetricians and Gynecologists; http://www.acog.org
3 Dutch Institute for Healthcare Improvement; http://www.cbo.nl
4 Scottish Intercollegiate Guidelines Network; http://www.sign.ac.uk
5 American Diabetes Association; http://www.diabetes.org
6 American Heart Association; http://www.heart.org
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Table 1: Number of activities of each type in the corpus.
Activity Type Number

anamnesis 6
drug-administration 42
drug-prescription 99
notification 46
observation 41
physical-examination 37
procedure 52
referral 25

total 348

(2)
⌥⌃ ⌅⇧COND In patients with decompensated HF and AF ,

⌥⌃ ⌅⇧ACT-NOTintravenous⌥⌃ ⌅⇧administration of a nondihydropyridine calcium channel antagonist↵
⌦

�
 

⌥⌃ ⌅⇧EFFECTmay exacerbate hemodynamic compromise and is not recommended .

3.2 Text Pre-processing

Before the classification task starts, we preprocess the text to obtain semantic
and syntactic information from sentences. We used GATE [7], an open source
free software for text processing, which provides a set of text engineering tools
from which we used the ANNIE tokenizer, sentence splitter, and gazetteer [6],
the openNLP7 POS tagger and chunker, and the MetaMap [2] plugin. In ad-
dition, we also developed some handwritten extraction rules and implemented
them with JAPE8. Figure 1 presents the architecture of the text pre-processing
system. The description of some of these modules is following.

GATE’s MetaMap plugin maps text with concepts of the UMLS Metathe-
saurus [19]. We extended it by detecting acronyms and annotating them with
their according UMLS concepts. Each UMLS concept is also assigned its se-
mantic group, a coarser classification of the semantic types, defined by [20].

We then analyzed two CPGs (Atrial Fibrillation [10] and Gestational Dia-
betes [1]) according to their activities and the classes they are assigned to. Spe-
cial emphasis was put on verbs and on other trigger words that could be used to
identify the type of activity. We used the ANNIE gazetteer to annotate the verbs
and the trigger words in the documents. A gazetteer consists of lists of entities

7 http://opennlp.apache.org
8 JAPE (Java Annotation Patterns Engine) provides finite state transduction over annotations

based on regular expressions
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Fig. 1: Pipeline for pre-processing CPGs.

(or more generally of words) which are used to find occurrences of these entities
in text. We choose that the matching is done on word lemmas 9.

We used VerbNet [18] to classify verbs according to the VerbNet classes.
There are 101 top-level classes and 270 first-level classes that include verbs that
are syntactically and semantically close. From the top-level classes we manu-
ally selected 15 classes that deemed relevant for identifying different classes of
activities according to our analysis (see Table 2 for examples). We have kept
verbs that express an activity in our domain, such as verbs of the “removing”
and “measure” classes. But we have also retained classes of verbs used to make
a recommendation, such as the “communication” class.

Table 2: Examples of verbs in relevant VerbNet classes (in the second column,
the first number is the number of the class, and the second one the number of
the sub-class).

Top-level classes First-level classes Verbs

Verbs of Assessment assessment-34.1 analyze, evaluate, review
estimate-34.2 approximate, count, assess

Indicate verbs indicate-78 imply, predict, expose

We also observed that there are common words in each kind of activity. For
example, in the notification activity there are words such as “advice”, “inform”,
etc. We built a list with these activity triggers and used a gazetteer to annotate
them in the corpus. These trigger words are categorized in four classes: trig-
ger inform, trigger treat, trigger examine, and trigger refer.

9 The lemma of a word is its canonical form. For example, the lemma of a noun will correspond
to its singular form (the lemma of “symptoms” is “symptom”) and the lemma of a verb will
often correspond to its infinitive form (the lemma of “achieved” is “achieve”).
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Furthermore, we used plugins for tagging numbers and measurements as
well as quantitative and temporal concepts [11]. With the latter we are able to
identify concepts such as age, duration, frequency, and measurement.

3.3 Feature representation

Using lexical features means to be domain-dependent and to have a well-re-
presented training corpus. For example, in diabetes CPGs the UMLS concept
“hypoglycaemic therapy” will be a marker for a drug-prescription activity, but
not in oncology CPGs. We chose to use mainly semantic and syntactic features
to obtain a classification model more general and less guideline-dependent. We
defined the following features that are extracted from the activity sentence seg-
ment:

– Semantic types and semantic groups of UMLS concepts;
– VerbNet classes of verbs;
– The presence of a measurement indication;
– The main verb of the sentence, if it is in the activity sentence segment (i.e.,

the root node in the dependency graph);
– Triggers of the activity (word and class).

The features extracted, as described in the previous subsection, also contain
some noise or are even missing. For example, MetaMap does not recognize all
concepts in the text (e.g., because of their particular form, abbreviations, etc.)
or assigns wrong semantic types. Also POS tagging or chunking are sources of
errors. We did not evaluate the feature extraction process in general, but tried to
optimize its output [15] and chose to deal with noise and silence of features.

The features are binary-features that are set to either 0 or 1, depending on
whether they are present in the activity sentence segment or not. In total, there
are 157 features.

3.4 Rule-based method

We manually developed extraction rules for each of the eight classes. The rules
are based on the features described above. Thereby, features are combined and
can also be explicitly excluded for a certain activity type. Table 3 shows the
number of rules for each activity type and some examples. The example for
drug-administration means that if a UMLS concept of semantic type “Spatial
concept” (spco), a UMLS concept of semantic group “Chemicals and drugs”
(CHEM), and the trigger word “administration” appears in the activity clause, it
is assigned the “drug-administration” class.
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Table 3: Number of rules for each activity type and some examples. Weights of
the rules are indicated in brackets.
Activity type # rules Example

anamnesis 1
drug-administration 6 IF ST=spco and SG=CHEM and tg=administration (0.8)
drug-prescription 10
notification 3 IF tg class!=trigger refer and tg=advise (0.3)
observation 8 IF ST=lbtr and tg=check (0.6)
physical-examination 12
procedure 8
referral 5
Legend: ST=semantic type (w=0.3), SG=semantic group (w=0.2), tg=trigger word (w=0.3),
tg class=trigger class (w=0.2), lbtr= Laboratory or Test results

Each feature in the rule has a weight used to select the correct class in
case of multi-label instance. For example, an activity can be classified both
in “drug-administration” and “procedure” classes, the matched rule with the
higher weight (i.e., the sum of the weights of each feature) will be selected. The
features are weighted differently. For instance, the weight for a semantic type
feature will be 0.3 while the weight of a VerbNet feature will be set at 0.2. The
weights were adjusted by applying rules on the development corpus. The weight
for an absent feature (i.e. a feature included in the rule that must be absent of
the sentence segment) is null.

The rule base was developed using a molecular approach: we started with
developing a set of highly reliable rules and gradually extended our rule base
to cover also less frequent patterns. Here, we had also to take care to avoid
over-generation of rules by concurrently optimizing recall and precision. In this
way, completeness of the rules is not achieved, but the rule set is optimized with
regard to precision and recall to also work on new and unseen input.

3.5 Machine-learning method

Next, we used a supervised machine learning approach which uses the features
described in subsection 3.3. Supervised machine learning is a technique that
automatically learns a model to classify data from a reference corpus in which
data has already been classified. The model can then be applied on new data.
We have tested different classifiers through the WEKA suite [12], and obtained
the best results with a SVM (Support Vector Machine) based classifier called
LibSVM [4]. Moreover, SVM-based classifiers are often used for classification



9

tasks in Natural Language Processing domain and is given good results. The
SVM method uses an input vectorial representation of data and functions for
finding the optimal separation among data. It supports multi-class classification
and uses a “one-against-one” approach, i.e., a model is built for each pair of
classes and a vote on decision values allows one to obtain one label for each
instance. We used LibSVM with a linear kernel and the default parameters.

3.6 Combination of classifiers and rules

In order to improve our “single-step” methods we proposed further methods
using combinations of the methods mentioned above (see Figure 2 for the alter-
native approaches). During our experiments we observed that some classes are
confusable. We proposed 2-step methods to improve the classification in these
confusable classes: first instances are classified in upper-level classes and then
for each upper-level class, they are classified in sub-classes. By combining close
classes together, we are able to minimize classification errors in the first step and
specialize our classification in the subsequent step.

For example, we observed that the “drug-prescription” (see sentence (3) for
an example) and “drug-administration” (see sentence (4)) classes are confusable
(e.g. they share semantic properties, such as the words used for expressing an
action or the semantic types of the main concepts).

(3) A single oral bolus dose of propafenone or flecainide (“pill-in-the-pocket”)

can be administered to terminate persistent AF outside the hospital [...]

(4) Unfractionated heparin may be administered either by continuous in-

travenous infusion in a dose sufficient [...]

Thus, we combined the close classes together into 3 upper-level classes
treatment or procedure (“drug-administration”, “drug-prescription”, and “pro-
cedure”), examination (“observation” and “physical-examination”), and other
activities (“referral”, “anamnesis”, and “notification”). So in a first step, activi-
ties are classified in these upper-level classes and in a second step, they are then
classified in the final activity class. We developed two different methods for this
two-step classification:

SVM-SVM classification. We used a SVM classifier to learn to classify activi-
ties in the 3 upper-level classes. Then three classifiers were trained to distinguish
the sub-classes. The different classifiers use different features. For example, fea-
tures which represent verbs are more useful for the class “referral” and “notifi-
cation” than for classes “drug-administration” and “drug-prescription”, and the
measurement features are useful for the upper-level classification rather than for
distinguishing between “drug-administration” and “drug-prescription”.
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Fig. 2: Classification approaches. After extracting features we applied a rule-
based approach (see top) or a SVM-based machine learning approach (below)
for classifying activities in one step. At the bottom the 2-step approaches are
represented with the SVM-based coarse classification in the first step and then
either a rule-based classification or three different SVM-based classifiers.

SVM-rule-based classification. This method uses the same classifier for the
upper-level classes than the previous method. For distinguishing among the sub-
classes, the rule-based method is used. Rules described in subsection 3.4 are
applied on the instances classified in the upper-level classes. For example, on
the instances classified in the examination upper-level class we apply rules of
the “observation” and “physical-examination” sub-classes. Thus, in the second
step less rules need to be applied on one activity, which reduces the error rate.

4 Evaluation

For the evaluation of our method, we chose a cross-learning evaluation, i.e., the
classifier is trained with 5 CPGs and the two CPGs used for the development
and tested on the remaining CPG. By this way we evaluated the system on 6
CPGs using a different training set each time. For the evaluation we employ
the classic measures: recall (1), precision (2), F-measure (3), and accuracy (4).
The upper-bound of these 4 measures is 1.00. An F-measure of 1.00 means
that all the instances which must be classified are classified and that all the
instances classified are correctly classified. A perfect accuracy means that the
system has correctly classified all the positive instances. The F-measure takes
into account positive and negative instances, whereas the accuracy evaluates
only the classification of positive instances.
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Recall =

number of activities correctly classified

number of activities to classify

(1)

Precision =

number of activities correctly classified

number of classified activities

(2)

F -measure =

2 · (precision · recall)
(precision + recall)

(3)

Accuracy =

total number of activities correctly classified

total number of activities

(4)

We also use macro-recall, macro-precision, and macro-F-measure, which
correspond to the average of recall, precision, and F-measure respectively of
each class.

In Table 4 the results obtained from both the machine learning method and
the rule-based method are presented. In the first part, the F-measure obtained
for each class is shown for both methods. Then macro-recall, macro-precision,
macro-F-measure, and accuracy is given for both methods on the 6 corpora.
Bold numbers in macro-F-measure and accuracy indicate the better performing
method comparing machine learning and rule-based methods.

Table 4: Results of the 8-class classification with machine learning (ML) and
rule based (RB) methods.

Diabetes
type II
(ADA)

Pre-
eclampsia
(ACOG)

Asthma
(SIGN)

Breast Can-
cer (CBO)

Chronic HF
(NICE)

Breast Can-
cer (NICE)

# activities 33 24 42 7 42 47

F-measure

ML RB ML RB ML RB ML RB ML RB ML RB

observation 0.29 0.40 0.40 0.00 0.67 0.75 - - 0.33 0.00 0.22 0.00
physical-examination 0.60 0.67 0.75 0.67 - - - - 0.75 0.36 - -
referral 0.00 0.00 - - 1.00 1.00 - - 0.17 0.53 0.67 0.00
anamnesis - - - - 0.00 0.00 - - - - 0.00 0.00
notification 0.33 0.40 - - 0.00 0.00 0.80 0.00 0.18 0.00 0.63 0.00
drug-administration - - 0.00 0.67 0.00 0.00 1.00 1.00 - - 0.00 0.00
drug-prescription 0.50 0.00 0.94 0.57 0.78 0.72 1.00 0.67 0.87 0.75 0.31 0.15
procedure 0.38 0.14 0.55 0.60 0.00 0.44 1.00 0.50 0.20 0.31 0.48 0.30

Macro-recall 0.45 0.41 0.58 0.48 0.39 0.54 0.92 0.50 0.52 0.31 0.47 0.05
Macro-precision 0.40 0.24 0.50 0.58 0.43 0.45 1.00 0.63 0.48 0.40 0.43 0.20
Macro-F-measure 0.35 0.27 0.53 0.50 0.41 0.49 0.95 0.54 0.36 0.28 0.33 0.06
Accuracy 0.39 0.33 0.67 0.54 0.60 0.62 0.86 0.43 0.50 0.48 0.36 0.11

The machine learning method performs better for the classification of activ-
ities in 5 of the 6 CPGs. In most cases the classification in the drug-prescription
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and physical-examination is good whereas for the other classes the results de-
pend on the corpus. No activities are categorized in the anamnesis class neither
by the classifier nor by the rules because there are not enough examples of this
class in the training corpus (six instances overall). The overall accuracy10 on the
6 corpora by using the machine learning method is 0.50 and 0.40 with the rule
based method. So with the machine learning method half of the activities are
correctly classified.

Table 5 shows the results of the 2-step classification methods. In the upper
part F-measures of the first step for each of the 3 upper-level classes are given,
whereas in the lower part we present the final results obtained after the second
classification by using machine learning (ML) or rules (RB). Bold numbers in
macro F-measure and accuracy show for which corpus and with which method
the performance are better with the 2-step classification compared to the 1-step
classification (Table 4).

Table 5: Results of the 2-step classification. In bold the improvements of the
2-step method in comparison to the 1-step method are presented.

Diabetes
type II
(ADA)

Pre-
eclampsia
(ACOG)

Asthma
(SIGN)

Breast Can-
cer (CBO)

Chronic HF
(NICE)

Breast Can-
cer (NICE)

First-step F-measure

Treatment/procedure 0.76 0.90 0.88 1.00 0.81 0.81
Examination 0.80 0.82 0.73 - 0.76 0.67
Other activities 0.60 - 0.80 1.00 0.85 0.67
Macro-F-measure 0.72 0.86 0.80 1.00 0.81 0.71

Second-step ML RB ML RB ML RB ML RB ML RB ML RB

Macro-recall 0.49 0.27 0.61 0.52 0.40 0.53 0.92 0.88 0.55 0.31 0.50 0.05
Macro-precision 0.41 0.17 0.53 0.58 0.43 0.42 1.00 0.83 0.49 0.33 0.41 0.22
Macro-F-measure 0.39 0.18 0.56 0.51 0.41 0.45 0.95 0.79 0.40 0.29 0.38 0.08
Accuracy 0.45 0.24 0.71 0.54 0.60 0.60 0.86 0.71 0.52 0.45 0.40 0.13

The results for the first-step classification are quite promising. We have an
overall F-measure11 of about 0.82 and an overall accuracy of 0.80 (so 80% of the
activities are correctly classified). For the second step we obtain slightly better
results than for the 1-step methods of about 0.54 and 0.39 accuracy for the SVM
classifier and the rule-based method, respectively. By using rules in the second

10 The overall accuracy is the sum of all the activities correctly classified through the 6 corpora
divided by the number of activities.

11 The overall F-measure is the average of F-measures obtained from each corpus.



13

step the classification is still lower than by using only the SVM classifier (in the
1-step method or the 2-step one).

Errors analysis. Analyzing our results we observed different types of errors:

– Features representing an activity were not present in the training corpus:
in sentence (5), the verb discuss has not been learned from the corpus.

– Wrong or imprecise UMLS semantic type:
in example (6), intramuscular is linked to the general semantic type Func-
tional Concept (rather than to Spatial Concept).

– External knowledge is needed to distinguish between two close classes, such
as drug-prescription and drug-administration, e.g., to know if a drug must
allways be administered by a physician or could be prescribed.

– Activity annotations may also include other knowledge roles, such as condi-
tions (see sentence (7)), other activities, effects, intentions, etc. This results
in a lot of noise in the extracted features.

(5)
⌥⌃ ⌅⇧Their risks and benefits should be discussed with the patient and their side-
effects carefully monitored.

(6)
⌥⌃ ⌅⇧Consider whether intramuscular (IM) hydrocortisone is required .

(7) [...]
⌥⌃ ⌅⇧consider referring patients with inadequately controlled asthma,⌥⌃ ⌅⇧especially children, to specialist care .

To resolve these errors improvements have to be made. First we must in-
crease the size of the training corpus to have a better representation of activity
expressions. Then the completion of the trigger list by adding more synonyms
could be beneficial to offset the size of the training corpus. Moreover, relating
our system to external knowledge like a domain-ontology can enable the system
to distinguish between close classes. Finally, a normalization of the sentence to
have only information relevant for the activity represented might be beneficial.

5 Conclusion

We have presented a comparison of methods to categorize activities in CPGs
according to the Clinical Actions Palette. We show that a 2-step method using
SVM classifiers is better than a 1-step classification approach using rules or ma-
chine learning. Our aim was to deal with a small training corpus by using mainly
non-lexical features and also to find a way to classify in confusable classes. For
the second issue, involving external resources will be necessary, because the use
of rules or a 2-step classification method is not sufficient.
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Such a classification of clinical activities can be integrated into a CIG au-
thoring system, but still requires manual validation by human experts. However,
an automatic classification will reduce the workload and its validation will still
be less burden than a completely manual modeling. Furthermore, in a next step
elements and attributes specifying the activity and required for the modeling
can be automatically extracted and larger guideline fragments can be generated
automatically.

In the future, we plan to extract relevant information from activity segments
(e.g., removing some adverbials). We will also work on the detection of relations
between activities (e.g., to identify that a drug-prescription activity “Inhaled
steroids should be considered for patients with ...” is linked to an adjustment of
dose “... and increase the dose of inhaled steroid to 800 mcg/day (adults) ...”.
And finally, it will be interesting to work on the detection of abort and complete
conditions, because these might be formulated similar to activities (“If there is
no response to inhaled long-acting beta2 agonist, stop the LABA ...”).
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