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Running through the modeling process, the choice of an 

appropriate modeling technique is one of the first and 

most fundamental questions. This crucial point might be 

responsible for success or failure. The right choice is 

almost never unique and depends strongly on the 

questions one wants to answer. This paper compares 

two modeling techniques coming from completely 

different point of views: ordinary differential equations 

and cellular automata. For comparison a simple 

epidemic spread is modeled and simulated with the two 

approaches and the results are investigated on both an 

experimental and analytical level. The idea is defining 

an underlying system that has to be modeled. This 

allows a standardized model parameterization and 

comparable representation of the results. It turns out 

that for many settings both models behave similarly and 

can be considered as describing the same system 

correctly. After reading this paper, one should be aware 

of the differences and similarities of both techniques 

especially when applied on epidemic spread and should 

know about the different model properties. 

 

1 Introduction 

This paper should carve out the connections and 

differences of two modelling techniques for simulation 

of infectious disease propagation. For this aim a well-

defined system is given which has to be simulated using 

differential equations and a cellular automaton [1]. The 

system describes a simple SIR-type epidemic, based on 

the ideas of Kermack and McKendrick [2]. The idea is 

to simulate the system with both approaches to find out 

differences and similarities. 

 

2 Definition of the System 

The system describes the spread of a SIR-type disease. 

Given is a population of N individuals. Each individual 

is in one of the states susceptible, infected and 

recovered. The population is constant for the whole 

simulation which means that no individuals can enter or 

leave the system. The system evolves by discrete time 

steps of unit one. 

Describing the system, the spread of the disease is given 

by contacts, transmissions and recoveries. Each 

individual has in average C contacts per time step; 

contacts always happen between two random 

individuals. Time steps cannot be split up by definition, 

hence the order of contacts within a time step is 

irrelevant. 

State changes of individuals happen after the contacts 

and apply for the following time unit. When an infected 

individual has a contact with a susceptible individual, 

the susceptible individual gets infected with probability 

α. This probability applies for each contact separately. 

Infected people recover at the end of each time unit with 

probability β. This strict procedure ensures that 

susceptible individuals cannot get infected and infect 

others within the same time unit. Recovered individuals 

remain in this state for the rest of the time. 

Together with the six system parameters in table 1, the 

system is completely defined. 

The task is simulating the system and track the number 

of susceptible, infected and recovered individuals in 

each time unit, given as time-dependent function S(t), 

I(t) and R(t). 

Table 1. The parameters of the system 

Parameter Description 

S0 number of susceptible 

individuals in time 0 

I0 number of infected 

individuals in time 0 

R0 number of recovered 

individuals in time 0 

C contacts 

α infection probability 

β recovery probability 

 

3 Modeling with differential equations 

The differential equations model generally follows the 

well-known SIR model which was proposed first by W. 

O. Kermack and A. G. McKendrick in 1926 [2]. It is 

shown in equation (1). 
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If every individual has C contacts in average, in the 

whole system 
   

 
 pairwise contacts happen. Division by 

2 is necessary because a pairwise contact always affects 

two individuals. The probability that a random pairwise 

contact happens between an infected and a susceptible 
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expected number of contacts between susceptible and 

infected individuals in one time unit is 
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 ( ) ( ) susceptible individuals 

expectedly get infected. Thus, we can identify γ with 

 
 

   
. δ is simply the fraction of infected individuals 

that recover and thus equals β. 

Table 2. The parameters of the ODE model 

Parameter Identification 

S(0) S0 

I(0) I0 

R(0) R0 

γ  
 

   
 

δ β 

 

4 Modelling with a Lattice Gas Cellular 

Automaton 

Cellular Automata (CA) are a time- and space-discrete 

modelling approach. A CA consists of cells which are 

placed on a regular grid and can hold different states 

[3]. Lattice Gas Cellular Automata (LGCA) are further 

developed CA where particles move around these cells 

[4]. With a hexagonal grid it can be used to simulate the 

movements of gas particles or fluids. Another possible 

extension is to let the particles be in different states and 

thus simulate the spread of an infectious disease [1] [5]. 

This technique will be used here. 

The LGCA consist of cells which are placed on a 2-

dimensional hexagonal grid and can hold at most six 

individuals. Individuals are in one of the three states 

susceptible, infected and resistant. Contacts happen 

pairwise between all individuals which are in the same 

cell in a discrete time step. To simulate a mixture of the 

individuals, they move around the cells as defined by 

the FHP-I rules [4]: The position of the individuals in 

the cells, define the direction in which the individuals 

move (figure 1). After this movement phase there is the 

collision phase (figure 2). The FHP-I variant only 

allows two and three individual collisions. When two 

individuals collide as in image 2, they are reflected 

clockwise or counterclockwise with probability 0.5. 

When three particles collide then they are reflected 

clockwise. 

When a susceptible individual meets an infected 

individual, it becomes infected with probability αc at the 

end of the time unit. An infected individual recovers 

with probability βc. 

The size of the LGCA plays an important role because it 

affects the density of particles and thus the number of 

contacts. To keep it simple, only square LGCAs with 

width=length=n are used here. Hence, such an LGCA 

consists of n² cells with six places each. Table 3 shows 

the parameters of the model with appropriate 

parameterization. Having a given number of individuals, 

the number of contacts depends on the size of the 

LGCA. 

 

Figure 1: Movement of particles in the FHP-I model 

 

Figure 2: Collisions of particles in an FHP-I model 

The correct identification for n is crucial. It follows a 

simple calculation: Assuming equally distributed 

individuals, each place in a cell is occupied with the 

same probability. A given individual is in a cell with 5 

other places, thus (N-1) individuals and (6n ²-1) places 

are remaining, hence the individual has an average of  

 

     
   

     
 (2) 

 

contacts within this cell. Adjusting n, which has to be an 

integer, to meet a given number of contacts leads to the 

term in table 3. 

Table 3. The parameters of the LGCA model 

Parameter Identification 

S(0) S0 

I(0) I0 

R(0) R0 

αc α 

βc β 

 

n [√
  (   )   

   
] 
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5 Analytical comparison  

Infections 

There is a strong analytical relation between both 

models. The following calculation aims to estimate the 

number of new infections in a time step in the LGCA. 

Consider a susceptible individual in a cell because only 

susceptible individuals can get infected. Then there are 

(     ) remaining places in the LGCA, 5 remaining 

places in the cell and I infected individuals. Define the 

probability of   places in the cell being taken by infected 

individuals as   . Under the assumption that the 

individuals are uniformly distributed, the number of 

infected individuals in this cell follows a 

hypergeometric distribution. It calculates by choosing   
out of I infected individuals on 5 out of (     ) 

places: 
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The expected value   of this hypergeometric 

distribution is 
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Using the shown identity (2), the expected value can be 

rewritten as 

 

    
 

   
 (5) 

 

With these preparations the actual infection probability 

of the susceptible individual can be calculated. If the 

cell is occupied by   infected individuals the probability 

for an infection of the susceptible individual is   
(   ) . Hence the expected probability for an 

infection is ∑   (  (   ) ) 
     Considering the first 

two terms of Taylor series expansion for    , we get 

an approximation for this probability. This 

approximation can be rewritten using the identity (5). 
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Multiplying this with the total amount of susceptible 

individuals leads to     
 

   
 as an approximation for the 

expected total number of new infections for one time 

unit in the LGCA. 

It turns out that this factor is already used in the 

differential equation (1) as    ( )   ( ), where   is 

identified with  
 

   
. 

Recoveries 

One infected individual in the LGCA recovers with 

probability β, hence the expected amount of infected 

individuals who regenerate in one time unit is   . This 

factor also occurs in the differential equation. 

 

6 Results 

In the part of the analytical comparison, some implicit 

and explicit assumptions have been made to analytically 

compare both models. One can ask whether these 

assumptions are sufficient to justify these analyses or 

under which circumstances the analyses are not valid. 

We will investigate these questions in the following 

section by comparing both methods on an experimental 

level. Looking at figure 3 to observe the difference 

under special parameter settings, we find out that they 

are partly small and partly enormous. 

Figure 3: Comparison of the ODE model and the LGCA 

There are two 'meta' reasons and the two more relevant 

structural reasons contributing to this difference. 

Meta contributions: 

A) One has to be aware that the ODE System is by 

definition a continuous model and the LGCA model is 

discrete. The continuity in the number of persons seems 

to be no problem, but the continuity in time is one. In 

figure 4 one can observe that the discretized ODE-

model (explicit Euler method) with time unit 1 has a 

significantly different quantitative behavior compared to 

the continuous one (Runge-Kutta-4/5). 

 

Figure 4: Descrete and continuous model. 

B) One has to take into account that the LGCA model is 

probabilistic, so the results vary between simulations. 

For large populations the effect of probabilistic 
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variations is negligible. If the probabilistic behavior for 

small populations is not favored, one could take the 

average over a number of simulations. 

Structural contributions: 

C) The ODE-System satisfies the requirement of mixing 

the three groups of the population completely 

homogenous. In section 5 we assumed the same 

behavior for the LGCA, but this assumption is not 

always sufficiently fulfilled. In figure 5, a simulation of 

the above defined LGCA (CA-I(N)) and a modified 

LGCA (CA-I(M)) is performed with the parameters 

below. The modified LGCA redistributes the 

individuals in each time step uniformly on the grid. One 

can observe a big difference between both models. This 

is due to the small number of initially infected 

individuals. The normal LGCA is not able to spread the 

infected individuals fast enough, so after some time 

areas of high density of infected individuals occur in the 

LGCA. In the modified LGCA a homogenous mixing of 

the population is enforced so the infection spreads much 

faster. If the number of infected individuals initially is 

large enough this problem is almost not relevant 

because the LGCA is able to conserve the homogenous 

distribution. 

 

Figure 5: Normal :LGCA and mixing LGCA. 

D) Another contribution to the difference is that the 

approximation in (6) is good for small values of the 

infection rate. Moreover, the value of both, the contact 

number C and the infection probability α is relevant in 

the LGCA whereas in the ODE-model only the product 

of the quantities count. The effect of this relation can be 

seen in figure 6. In curve CA-I(N) the parameters for α 

and C are α = 0.3 and C = 1 so that the product of them 

remains the same. 

 

7 Discussion 

Definition of an underlying, simplified system is a 

promising approach for comparison of two models. 

Here, it allows setup and parameterization of two 

structurally different models. Comparison is only 

possible for results, hence it is a crucial question 

whether the results are representing the same situation. 

 

 

Figure 6 visualizes the different contributions to the ‘error’. 

The green curve is the ODE-model and the red one is the 

LGCA-model. The pink curve is the discretisized ODE-model 

considered in A, the dark blue curve is the modified LGCA 

from C. The light blue curve is explained in D. For large 

populations, sufficiently large infected individuals initially and 

small infection probability the models are not only 

qualitatively but also quantitatively the same. 

The task was comparing a time-continuous non-spatial 

model with a time-discrete spatial model for epidemic 

simulation. They are two incompatibilities by definition. 

However, the question is whether these approaches are 

able to simulate the same epidemics answering the same 

questions. This comparison is part of the validation 

process for epidemic models and helps to understand the 

impact of those diverging modelling methods. 

The comparison shows that results of both models are 

similar in many cases. This means that the spatial 

structure in the LGCA and the homogeneous time in the 

ODE have a minor impact on the results for many 

settings. This compliance is also expectable by the 

analytical comparison. However, divergence is obvious 

whenever the approximation in equation (6) is bad. 

Hence, the approximation gives a hint for getting an 

idea when similar and diverging results can be expected. 

 

Literature 

[1] Fukś, H., and A.T. Lawniczak. “Individual-based Lattice 

Model for Spatial Spread of Epidemics” no. 6. Discrete 

Dynamics in Nature and Society (2001): 191–200. 

[2] Kermack, W. O., and A. G. McKendrick. “A Contribution 

to the Mathematical Theory of Epidemics.” Proceedings 

of the Royal Society A: Mathematical, Physical and 

Engineering Sciences 115, no. 772 (1927): 700–721. 

[3] Wolfram, Stephen. A New Kind of Science. Champaign, 

IL: Wolfram Media, 2002. 

[4] Wolf-Gladrow, Dieter A. Lattice-Gas Cellular Automata 

and Lattice Boltzmann Models: An Introduction. 1st ed. 

Lecture Notes in Math. 1725. Berlin: Springer, 2000. 

[5] Yakowitz, S., J. Gani, and R. Hayes. “Cellular Automaton 

Modeling of Epidemics.” Applied Mathematics and 

Computation 40, no. 1 (November 1990): 41–54. 


