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Abstract. The structure of the scalar mesons has been a subject of debate for many decades. In
this work we look for ¯qq states among the physical resonances using an extended Linear Sigma
Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange
and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order
to ascertain whether the scalar ¯qq states are below or above 1 GeV. We find the scalar states above
1 GeV to be preferred as ¯qqstates.
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INTRODUCTION

Understanding the meson mass spectrum in the region below 2 GeV is one of the funda-
mental problems of QCD. While the quark model seems to work very well for many res-
onances, some fundamental questions, such as the constituent quark content of scalar and
axial-vector resonances, are still unanswered. The Particle Data Group (PDG) [1] sug-
gests in the region below 1.8 GeV the existence of fiveI(JPC) = 0(0++) states:f0(500),
f0(980), f0(1370), f0(1500), and f0(1710); two I = 1 states:a0(980) anda0(1450); and
two I = 1/2 states:K⋆

0(800) (or κ) andK⋆
0(1430). A description of all mentioned scalar

states as ¯qqstates is not possible, since the number of physical resonances is much larger
than the number of resonances that can be constructed withina q̄q picture of mesons,
e.g. in the isoscalar sector two states compared to five experimentally seen resonances.
The question is: which of the five states are (predominantly)quarkonia?

Understanding these issues is not only crucial for hadron vacuum spectroscopy but is
also important at nonzero temperatures and densities, because the correct identification
of the chiral partner of the pion and of theρ meson is necessary for a proper description
of the in-medium properties of hadrons [2]. The answers to this fundamental question is
in principle contained in the QCD Lagrangian. Unfortunately, QCD cannot be solved by
analytic means from first principles in the low-energy domain. For this reason, effective
theories have been developed which share some of the underlying symmetries of QCD.
The QCD Lagrangian exhibits, in addition to the localSU(3)c color symmetry and the
discreteCPT symmetry, a globalU(Nf )L ×U(Nf )R ≡ U(1)V ×U(1)A×SU(Nf )V ×
SU(Nf )A chiral symmetry which is broken in several ways: spontaneously [due to the
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chiral condensate〈q̄q〉 = 〈q̄RqL + q̄LqR〉 6= 0], explicitly (due to non-vanishing quark
masses), as well as at the quantum level [theU(1)A anomaly].

In the framework of effective theories the chiral symmetry of QCD can be realized
along two lines: linearly [3] and non-linearly [4]. In this contribution, we present a linear
sigma model containing scalar, pseudoscalar, vector, and axial-vector mesons with both
non-strange and strange quantum numbers. In view of the large number of the fields
involved, our model shall be referred to as the “extended Linear Sigma Model”, or
“eLSM”.

THE MODEL

The Lagrangian of our model [5] reads

L = Tr[(DµΦ)†(DµΦ)]−m2
0Tr(Φ†Φ)−λ1[Tr(Φ†Φ)]2−λ2Tr(Φ†Φ)2

−1
4

Tr(L2
µν +R2

µν)+Tr

[(

m2
1

2
+∆

)

(L2
µ +R2

µ)

]

+Tr[H(Φ+Φ†)]

+c1(detΦ−detΦ†)2+ i
g2

2
(Tr{Lµν [L

µ ,Lν ]}+Tr{Rµν [R
µ ,Rν ]})

+
h1

2
Tr(Φ†Φ)Tr(L2

µ +R2
µ)+h2Tr[(LµΦ)2+(ΦRµ)

2]+2h3Tr(LµΦRµΦ†).

+g3[Tr(LµLνLµLν)+Tr(RµRνRµRν)]+g4[Tr
(

LµLµLνLν)+Tr
(

RµRµRνRν)]

+g5Tr
(

LµLµ) Tr(RνRν)+g6[Tr(LµLµ) Tr(LνLν)+Tr(RµRµ) Tr(RνRν)], (1)

where

DµΦ ≡ ∂ µ Φ− ig1(L
µΦ−ΦRµ)− ieAµ [T3,Φ] ,

Lµν ≡ ∂ µLν − ieAµ [T3,L
ν ]−{∂ νLµ − ieAν [T3,L

µ ]} ,

Rµν ≡ ∂ µRν − ieAµ [T3,R
ν ]−{∂ νRµ − ieAν [T3,R

µ ]} ,

The quantitiesΦ, Rµ , andLµ represent the scalar and vector nonet:

Φ =
8

∑
i=0

(Si + iPi)Ti =
1√
2









(σN+a0
0)+i(ηN+π0)√

2
a+0 + iπ+ K⋆+

0 + iK+

a−0 + iπ− (σN−a0
0)+i(ηN−π0)√

2
K⋆0

0 + iK0

K⋆−
0 + iK− K̄⋆0

0 + iK̄0 σS+ iηS









,

Lµ =
8

∑
i=0

(Vµ
i +Aµ

i )Ti =
1√
2









ωN+ρ0
√

2
+

f1N+a0
1√

2
ρ++a+1 K⋆++K+

1

ρ−+a−1
ωN−ρ0
√

2
+

f1N−a0
1√

2
K⋆0+K0

1

K⋆−+K−
1 K̄⋆0+ K̄0

1 ωS+ f1S









µ

,

Rµ =
8

∑
i=0

(Vµ
i −Aµ

i )Ti =
1√
2









ωN+ρ0
√

2
− f1N+a0

1√
2

ρ+−a+1 K⋆+−K+
1

ρ−−a−1
ωN−ρ0
√

2
− f1N−a0

1√
2

K⋆0−K0
1

K⋆−−K−
1 K̄⋆0− K̄0

1 ωS− f1S









µ

,



where the assignment to physical particles is shown as well1. Here,Ti (i = 0, . . . ,8)
denote the generators ofU(3), while Si represents the scalar,Pi the pseudoscalar,Vµ

i
the vector, andAµ

i the axial-vector meson fields, andAµ is the electromagnetic field. It
should be noted that here and below we use the so-called non strange – strange basis in
the(0−8) sector, defined as

ϕN =
1√
3

(√
2 ϕ0+ϕ8

)

, ϕS=
1√
3

(

ϕ0−
√

2 ϕ8

)

, ϕ ∈ (Si,Pi,V
µ
i ,Aµ

i ) , (2)

which is more suitable for our calculations. Moreover,H and∆ are constant external
fields defined as

H = H0T0+H8T8 =







h0N
2 0 0
0 h0N

2 0
0 0 h0S√

2






, (3)

∆ = ∆0T0+∆8T8 =









δ̃N
2 0 0

0 δ̃N
2 0

0 0 δ̃S√
2









≡





δN 0 0
0 δN 0
0 0 δS



 . (4)

Throughout this work we assume exact isospin symmetry foru andd quarks, such that
the first two diagonal elements in Eqs. (3) and (4) are identical.

All fields in our model represent ¯qqstates, as discussed in Ref. [6]. In the non-strange
sector, we assign the fields~π and ηN to the pion and the non-strange part of theη
andη ′ mesons,ηN ≡ (ūu+ d̄d)/

√
2. The fieldsωµ

N and~ρ µ represent theω(782) and
ρ(770) vector mesons, respectively, and the fieldsf µ

1N and~a µ
1 represent thef1(1285) and

a1(1260) mesons, respectively. In the strange sector, we assign theK fields to the kaons;
theηS field is the strange contribution to the physicalη andη ′ fields [ηS≡ s̄s]; the ωS,
f1S, K⋆, andK1 fields correspond to theφ(1020), f1(1420), K⋆(892), andK1(1270) [or
K1(1400)] mesons, respectively.

Unfortunately, the assignment of the scalar fields is substantially less clear. Exper-
imental data suggest existence of five scalar-isoscalar states below 1.8 GeV: f0(500),
f0(980), f0(1370), f0(1500), and f0(1710), all of which could, in principle, be candi-
dates forf L

0 and f H
0 . Similarly, the isospin triplet~a0 can be assigned to different physi-

cal resonances – although, in this case, there are only two candidate states:a0(980) and
a0(1450). An analogous statement holds for the scalar kaonK⋆

0 that can be assigned to
the resonancesK⋆

0(800) or K⋆
0(1430).

In the Lagrangian (1) there are two terms which break the original U(3)L ×U(3)R
[= U(3)A×U(3)V] symmetry, namely the determinant term, which breaks theU(1)A
symmetry, and the explicit symmetry breaking terms of Eqs. (3) and (4), which break
U(3)A, if H0,∆0 6= 0 andU(3)V → SU(2)V ×U(1)V, if in additionH8,∆8 6= 0 [for more
details see, e.g. Ref. [7]]. Besides this explicit symmetrybreaking the chiral symmetry

1 With the exception of the(0−8) sector where particle mixing takes place.



is also broken spontaneously. If isospin symmetry is exact,only theσN andσS scalar
fields, carrying the same quantum numbers as the vacuum, can have nonzero vacuum
expectation values (vev’s)2. Moreover, the parameterc1 describes the axial anomaly,
i.e., theU(1)A symmetry is explicitly broken by this term.

After spontaneous symmetry breaking, the fields with nonzero vev’s are shifted by
their expectation values, namely,σN/S→σN/S+φN/S, where we have introducedφN/S≡
〈σN/S〉. After substituting the shifted fields into the Lagrangian (1), one obtains the tree-
level masses by selecting all terms quadratic in the fields. The (square) mass matrices
are in general non-diagonal due to the mixing among particles sitting in the center of
a given nonet. Besides the mixing inside the nonets there areother terms which mix
different nonets because of the vacuum expectation values of the σ fields. The mass
matrices can be diagonalized by appropriate orthogonal transformations. In order to
retain the canonical normalization for the fields, one has tointroduce wavefunction
renormalization constants, too.

From the Lagrangian one can also derive several decay widths. The mass and decay-
width formulas can be found in Ref. [5].

RESULTS

We perform a global fit of the parameters of the Lagrangian (1)to experimentally
known quantities (decay constants, masses, and decay widths as well as amplitudes),
for details see Ref. [5]. We do not include the scalar-isoscalar states into the fit,
but we testa posteriori their assignment and phenomenology. We do, however, in-
clude the isotriplet and isodoublet quark-antiquark scalar states and we test all four
combinationsa0(1450) / K⋆

0(1430), a0(980) / K⋆
0(800), a0(980) / K⋆

0(1430), and
a0(1450) / K⋆

0(800). Quite remarkably, the outcome of the fit is univocal: only the pair
a0(1450) / K⋆

0(1430) yields a good fit, while the other combinations do not. We thus
conclude that theI = 1 andI = 1/2 quark-antiquark scalar resonances lie above 1 GeV.
In fact, the quality of our fit is surprisingly good. As one cansee in Fig. 1 we describe
all experimental quantities with an average error of 5%, andmost of them even to much
better precision.

We then study the two isoscalar mesons of the model. Setting the (large-Nc sup-
pressed) parametersλ1 andh1 in the Lagrangian (1) to zero, these masses turn out to
be about 1.36 GeV and 1.53 GeV, respectively. Our results forf L

0 are in agreement
with the experimental decay widths off0(1370). Our theoretical value forf H

0 → KK
turns out to be too large, whilef H

0 → ππ vanishes, becausef H
0 ≡ σS is a pure ¯ssstate.

Nevertheless, our model predicts the existence of a scalar-isoscalar state which decays
predominantly into kaons; this is indeed the decay pattern shown by f0(1710). For these
reasons we identify our statef H

0 as (predominantly)f0(1710). It should be stressed that
a quantitative study of the scalar-isoscalar system cannotbe performed at present be-
cause our model does not contain the glueball state, the massof which is around 1.5
GeV and which mixes with the two ¯qqscalar-isoscalar states, forming the three physical

2 In case of isospin breaking, alsoσ3 would have a nonzero vev.
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FIGURE 1. Fits to masses and decay widths. Shown is the difference of the theoretical and experimental
values divided by the experimental errors. The errorbars correspond to the theoretical errors as emerging
from our fit.

states in the 1.3–1.7 GeV energy region.

CONCLUSIONS

We have presented a linear sigma model with three flavors and global chiralU(3)L ×
U(3)R symmetry. The model implements the symmetries of QCD, the discreteCPT
symmetry, the globalU(Nf )L×U(Nf )R chiral symmetry, and the breaking mechanisms
of the latter symmetry.

The model includes meson states up to energies of∼ 1.7 GeV. This energy region ex-
hibits numerous resonances, related by scattering reactions and decays. For this reason,
a realistic model of QCD degrees of freedom in the mentioned energy region should de-
scribe as many of the resonances as possible. Thus, we have constructed a linear sigma
model that contains scalar (two isoscalars,f L

0 and f H
0 , as well as an isotriplet,~a0, and

two isodoublets,K⋆
0), pseudoscalar (π , K, η, η ′), vector (ρ , ω, K⋆, φ ), and axial-vector

[a1, K1, f1(1285), f1(1420)] degrees of freedom.
The model, dubbed extended Linear Sigma Model (eLSM), has allowed us to study

the overall phenomenology of mesons and, in particular, to explore the nature of scalar
and axial-vector resonances. In order to test our model we have performed a global fit
to 21 experimental quantities involving both the (pseudo)scalar and the (axial-)vector
masses and decays. Due to mixing with the scalar glueball (not included here), we did
not include the scalar-isoscalar resonances in the fit. Similarly, we have omitted the
axial-vector resonanceK1, due to the fact that in reality a large mixing of two kaonic
fields from the 1++ and 1+− nonets takes place.

One of the central questions of our discussions has been the assignment of the scalar
states: to this end we have tested the possible scenarios forthe isotriplet and isodoublet
scalar states by assigning our scalar fields~a0 to a0(980) or a0(1450) andK⋆

0 to K⋆
0(800)

or K⋆
0(1430). The outcome is univocal: the global fit works well only if thestates



a0(1450) andK⋆
0(1430) are interpreted as quark-antiquark states. On the contrary, the

other combinations deliver large and unacceptable values of χ2. We thus conclude that
the scalarI = 1 andI = 1/2 states have to be identified with the resonancesa0(1450)
andK⋆

0(1430). Moreover, the overall phenomenology described by the fit is very good,
see Ref. [5]. The good agreement with data also shows that theaxial-vector mesons can
be interpreted, just as their vector chiral partners, as quark-antiquark states.

We have then studied the consequences of our fit. We have primarily concentrated
on the scalar-isoscalar sector which was not included in thefit. In the largeNc limit
it is possible to make clear predictions for the two statesf L

0 and f H
0 . Their masses lie

above 1 GeV and their decay patterns have led us to identifyf L
0 with (predominantly)

f0(1370) and f H
0 with (predominantly)f0(1710). The theoretical decay rates off L

0 are in
agreement with experiment;f H

0 decays only into kaons, but turns out to be too wide. At
a qualitative level, this large-Nc result clearly shows that also the scalar-isoscalar quark-
antiquark states lie above 1 GeV. However, in this system theinclusion of an additional
glueball state would be necessary for a full quantitative study. Mixing phenomena are
known to be large here and affect both the masses and decays. The study of a genuine
three-state system is mandatory: starting fromσN =

√

1/2(ūu+ d̄d), G=ggandσS= s̄s
to describe properlyf0(1370), f0(1500), and f0(1710).
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