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Abstract

This paper studies stability properties of the solutions of optimal control problems
for linear systems. The analysis is based on an adapted concept of metric regularity, the
so-called strong bi-metric regularity, which is introduced and investigated in the paper.
It allows to give a more precise description of the effect of perturbations on the optimal
solutions in terms of a Hölder-type estimation, and to investigate the robustness of
this estimation. The Hölder exponent depends on a natural number k, which is known
as the controllability index of the reference solution. An inverse function theorem for
strongly bi-metrically regular mappings is obtained, which is used in the case k = 1 for
proving stability of the solution of the considered optimal control problem under small
non-linear perturbations. Moreover, a new stability result with respect to perturbations
in the matrices of the system is proved in the general case k ≥ 1.

Keywords: optimal control, linear control systems, metric regularity, inverse function
theorem
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1 Introduction

We investigate regularity and stability properties of the solution of the following optimal
control problem:

min g(x(T ))(1)

subject to the linear dynamics

ẋ(t) = A(t) x(t) + B(t) u(t) + d(t), x(0) = x0,(2)
u(t) ∈ U.(3)
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24125-N13, by the Commission of the European Communities under the 7-th Framework Programme Marie
Curie Initial Training Networks Project SADCO, FP7-PEOPLE-2010-ITN, No 264735, and by the French
National Research Agency ANR-10-BLAN 0112. The second author is supported by the Austrian Science
Foundation (FWF) under grant No I 476-N13. The paper was finalized during the visit of both authors at
Université des Antilles et de la Guyane, Feb., 2013.
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Here x ∈ Rn, u ∈ U ⊂ Rr, the time interval [0, T ] is fixed, g : Rn → R is smooth and
convex, A and B are smooth matrix functions with appropriate dimensions. The initial
state x0 is given. The control constraining set U ⊂ Rr is a convex compact polyhedron. As
usual, a dot above a symbol denoting a function of the time t means the time-derivative.

Optimal control problems for linear systems have been profoundly studied since the
early days of the optimal control theory but there are issues of interest that are recent
research topics or are still open. In particular, this concerns the stability analysis of the
optimal solution, which is burdened by the fact that the optimal control is discontinuous
(bang-bang). This may be the case also for optimal control problems that are non-linear,
but affine with respect the control. The “bang-bang” structure of the optimal control brings
a challenge also for numerical approximations. We refer to the recent papers [8, 9, 10] on
stability analyses and to [1, 2, 3, 15] about error analyses for problems with bang-bang
solutions.

We analyze the stability of the control problem (1)–(3) through the following neces-
sary optimality conditions (which are, in fact, sufficient under the suppositions made in
Section 3): any optimal pair (x̂, û) together with a corresponding absolutely continuous
function p̂ : [0, T ] → Rn satisfies the following (generalized) equations:

0 = ẋ(t)−A(t) x(t)−B(t) u(t)− d(t), x(0) = x0,(4)
0 = ṗ(t) + A>(t) p(t),(5)
0 ∈ B>(t) p(t) + NU (u(t)),(6)
0 = p(T )−∇g(x(T )),(7)

where NU (u) is the normal cone to U defined as

NU (u) =

{
∅ if u 6∈ U,

{l ∈ Rr : 〈l, v − u〉 ≤ 0 ∀ v ∈ U} if u ∈ U .

(Note that (6) is equivalent to u(t) ∈ Argmin
w∈U

〈B>(t) p(t), w〉.)
Then the following question is relevant for the stability of the solution of problem (1)–

(3): if the left-hand side of (4)–(7) is replaced with a vector y = (ξ, π, ρ, ν), does the
resulting perturbed version of (4)–(7) still have a solution (x, p, u), and how far is it from
the solution (x̂, p̂, û) of the original system (4)–(7).

The answer of the first question is apparently positive, while one of the main results in
this paper gives a Hölder estimation for the solution(s) (x, p, u) corresponding to disturbance
y in a neighborhood of zero:

dist ((x̂, p̂, û), (x, p, u)) ≤ c ‖y‖1/k.(8)

One of the aims of this paper is to correctly define the meaning of the “neighborhood”, the
norm ‖ · ‖, the metric “dist” (and the respective spaces), and the number k for which the
estimation (8) holds.

A related question is whether the estimation (8) is stable with respect to perturbations
itself. It turns out that in the context of system (4)–(7) the stability of estimation (8) is
valid for perturbations that are small in a substantially stronger norm, ‖ · ‖∼ ≥ ‖ · ‖, than
the one in the right-hand side of (8)1. We grasp this phenomenon in general, by defining

1 A similar situation is encountered also in [5].
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the so-called strong bi-metric Hölder regularity. An inverse function theorem is proved for
strongly bi-metrically regular mappings in the Lipschitz case k = 1.

For our particular system (4)–(7) we give a sufficient condition for strong bi-metric
Hölder regularity, where the natural number k is the so-called controllability index of the
solution (x̂, û) of the original problem (1)–(3). The metric “dist” in which we compare the
controls û and u, in particular, is defined (in view of the bang-bang structure of û) as the
measure of the set where u(t) 6= û(t). Using the proved inverse function theorem we obtain
that in the Lipschitz case k = 1 the strong metric bi-regularity of (4)–(7) is preserved under
sufficiently “small” perturbations that can be non-linear in x.

As a byproduct we obtain the (somewhat surprising) fact that the nonlinear optimal
control problem resulting from such perturbations has no ”singular arcs” (i.e. optimal arcs
which are not uniquely determined by the Pontryagin system).

In the general case k ≥ 1 we also provide a stability result of system (4)–(7) (and the
underlying problem (1)–(3)) with respect to perturbations in the matrices A and B which
are small in suitable norms.

We mention also that in this paper, the bi-metric regularity is only used in relation to
the stability of linear optimal control problem, which is the main purpose of the paper. The
authors intend to provide a exhaustive study and analysis of this notion in another paper.

The paper is organized as follows. Section 2 is devoted to preliminaries on strong metric
regularity and to the statement and the proof of the inverse function theorem for strongly
bi-metric regular mappings. Section 3 contains the main results of the paper concerning
stability and bi-metric regularity of optimal control problems for linear systems. Section 4
deals with a perturbation analysis with respect either to non-linear additive disturbances
(in the case k = 1), or to disturbances in the matrices of the linear system (and k ≥ 1).

2 Preliminaries on Metric Regularity

The concept of metric regularity developed in the past decades pays an important role in
the contemporary optimization theory. A comprehensive exposition is given in [6]. In the
present paper we need an extension of this concept that is presented below in this section

Let X and Y be two metric spaces with distances dX and dY , respectively. Denote
by BdX

(x; α) the closed ball with radius α > 0 centered at x ∈ X and by BdY
(y; α) the

respective closed ball in Y .

Definition 1 A set-valued map F : X ; Y is said to be strongly (Hölder) metrically
regular of order k ≥ 1 at (x̄, ȳ) ∈ GraphF if there exist numbers ς ≥ 0, a > 0 and b > 0
such that the mapping BdY

(ȳ; b) 3 y → F−1(y) ∩ BdX
(x̄, a) is single-valued and Hölder

continuous with exponent 1/k and constant ς:

dX

(
F−1(y) ∩ BdX

(x̄, a), F−1(y′) ∩ BdX
(x̄; a)

)
≤ ς dY (y, y′)1/k for all y, y′ ∈ BdY

(ȳ; b).

This definition is an extension of the standard one (see e.g. [6]) and is introduced in
[12]. A variational characterization of the Hölder metrically regularity is implied by the
results in [11].

The analyses in the next section requires a more delicate notion which involves two distances
in the space Y : one defining the neighborhood in which F−1 is locally single-valued and
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Lipschitz, and another one, with respect to which we have the Lipschitz continuity. Namely,
let X be as above and Y be equipped with two distances, dY and d̃Y , with dY ≤ d̃Y . Denote
by Bd̃Y

(y; α) the ball in the metric d̃ with radius α > 0 centered at y ∈ Y .

Definition 2 A set-valued map F : X 7→ Y is strongly bi-metrically regular of order k ≥ 1
at (x̄, ȳ) ∈ GraphF if there exist numbers ς ≥ 0, a > 0 and b > 0 such that the mapping
Bd̃Y

(ȳ; b) 3 y → F−1(y) ∩ BdX
(x̄, a) is single-valued and Hölder continuous in the metric

dY with exponent 1/k and constant ς, that is

dX

(
F−1(y) ∩ BdX

(x̄, a), F−1(y′) ∩ BdX
(x̄; a)

)
≤ ς dY (y, y′)1/k for all y, y′ ∈ Bd̃Y

(ȳ; b).

Of course, the strong bi-metric regularity implies the usual strong metric regularity
with respect to the metric d̃Y in Y . However, the latter property may be essentially weaker
than the bi-metric one, as it is the case for the applications to linear control discussed in
this paper. On the other hand, using only the metric dY makes the regularity property too
strong in our context. We mention that a similar situation, where using two norms (in a
specific problem in linear spaces and with k = 1) is encountered also in [5].

The following inverse function theorem extends those in [6, Theorem 3G.3] and [7, Theorem
3]. The latter theorems apply to the usual (single-metric) strong regularity with k = 1.

Theorem 1 Let X be a complete metric space and let Y be a linear space equipped with
two metrics: dY and d̃Y , where dY ≤ d̃Y and both metrics are shift-invariant. Let the
set-valued map F : X ; Y be strongly bi-metrically regular of order k = 1 at (x̄, 0) with
constants ς, a, b. Let µ > 0 and ς ′ be such that ςµ < 1 and ς ′ < ς/(1− ςµ). Then for every
positive constants a′ and b′ satisfying

2a′ ≤ a, 3b′ + a′ µ ≤ b, b′ς ′ ≤ a′,

for every function f : X → Y , and every points x̃ ∈ BdX
(x̄; a′) and ỹ ∈ Bd̃Y

(0; b′) satisfying

ỹ ∈ f(x̃) + F (x̃), d̃Y (f(x̃), 0) ≤ b′,(9)

and
d̃Y (f(x), f(x′)) ≤ µ dX(x, x′) ∀x, x′ ∈ BdX

(x̄, a′),(10)

we have that the mapping y 7→ (f + F )−1(y) ∩ BdX
(x̃, a′) is single-valued and Lipschitz

continuous with constant ς ′ (in the metric dY in Y ) on Bd̃Y
(ỹ; b′), that is, f +F is strongly

bi-metrically regular at (x̃, ỹ) with constants ς ′, a′, b′.

The proof of this theorem follows, essentially, that of [7, Theorem 3]. However, numerous
small changes are necessary due to the more general spaces that we need in the present
paper and due to the bi-metric version of the strong regularity. Therefore we present a
detailed proof.

Proof of Theorem 1. Let us fix a′, b′ and ς ′ as in the theorem. Take an arbitrary
function f : X → Y and x̃ ∈ BdX

(x̄; a′), ỹ ∈ Bd̃Y
(0; b′) such that (9) and (10) are fulfilled.

By assumption y 7→ s(y) := F−1(y) ∩ BdX
(x̄; a) is a Lipschitz continuous function (in

the metric dY in Y ) on Bd̃Y
(ȳ; b) with constant ς. Then inclusion y ∈ f(x) + F (x) with
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x ∈ BdX
(x̃; a′) is equivalent to x = s(y − f(x)), provided that y − f(x) ∈ Bd̃Y

(0; b). Let us
take arbitrary x ∈ BdX

(x̃; a′), y ∈ Bd̃Y
(ỹ; b′). We have

dX(x, x̄) ≤ dX(x, x̃) + dX(x̃, x̄) ≤ a′ + a′ ≤ a,

thus x ∈ BdX
(x̄; a). Moreover,

d̃Y (y − f(x), 0) = d̃Y (y, f(x)) ≤ d̃Y (y, ỹ) + d̃Y (ỹ, 0) + d̃Y (0, f(x̃)) + d̃Y (f(x̃), f(x))
≤ b′ + b′ + b′ + µdX(x̃, x) ≤ 3b′ + µa′ ≤ b.

Thus for y ∈ Bd̃Y
(ỹ; b′) the inclusion x ∈ (f + F )−1(y) ∩ BdX

(x̃; a′) is equivalent to x =
s(y − f(x)).We shall prove that this equation has a unique solution in BdX

(x̃; a′).
For a fixed y ∈ Bd̃Y

(ỹ; b′) let us denote Z(x) := s(y − f(x)), x ∈ BdX
(x̃; a′). We have

dX(x̃, Z(x̃)) = dX(s(ỹ − f(x̃)), s(y − f(x̃))) ≤ ς dY (ỹ − f(x̃), y − f(x̃))
= ς dY (ỹ, y) ≤ ς d̃Y (ỹ, y) ≤ ςb′ ≤ ς ′b′ (1− ςµ).(11)

Moreover, for every x, x′ ∈ BdX
(x̃; a′)

dX(Z(x), Z(x′)) = dX(s(y − f(x)), s(y − f(x′))) ≤ ςdY (f(x), f(x′))
≤ ςd̃Y (f(x), f(x′)) ≤ ςµ dX(x, x′).(12)

Due to (11), (12) and ςµ < 1 we can apply the classical Banach fixed point theorem: the
mapping Z has a unique fixed point in BdX

(x̃; a′). Since it depends on the fixed y we denote
it by s̃(y). Thus for y ∈ Bd̃Y

(ỹ; b′) the set x ∈ (f +F )−1(y)∩BdX
(x̃; a′) consists of the single

point s̃(y). It remains to prove that s̃ is Lipschitz continuous with constant ς in Bd̃Y
(ỹ; b′)

(with respect to the metric d̃Y ). For y, y′ ∈ Bd̃Y
(ỹ; b′) we have

dX(s̃(y), s̃(y′)) = dX(Z(s̃(y)), Z(s̃(y′))) = dX(s(y − f(s̃(y))), s(y′ − f(s̃(y′))))
≤ ς dY (y − f(s̃(y)), y′ − f(s̃(y′))) ≤ ς dY (y, y′) + ς dY (f(s̃(y)), f(s̃(y′)))
≤ ς dY (y, y′) + ς d̃Y (f(s̃(y)), f(s̃(y′))) ≤ ς dY (y, y′) + ςµ dX(s̃(y), s̃(y′)).

Then (1− ςµ)dX(s̃(y), s̃(y′)) ≤ ς dY (y, y′), hence dX(s̃(y), s̃(y′)) ≤ ς ′ dY (y, y′). Q.E.D.

The above theorem has no clear counterpart for k > 1. However, the following is true.

Proposition 1 Let X be a complete metric space and let Y be a linear space equipped with
two metrics: dY and d̃Y , where dY ≤ d̃Y and both metrics are shift-invariant. Let the
set-valued map F : X ; Y be strongly bi-metrically regular of order k (a natural number)
at (x̄, 0) with constants ς, a. Then for every function f : X → Y and for every solution x̃
of the inclusion 0 ∈ f(x) + F (x) for which dX(x̃, x̄) ≤ a and d̃Y (f(x̃), 0) ≤ b it holds that

dX(x̃, x̄) ≤ ς dY (f(x̃), 0)1/k.

Proof. If is enough to notice that x̃ solves the inclusion ỹ ∈ F (x) with ỹ = −f(x̃) and
apply Definition 2. Q.E.D.
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3 Hölder metric regularity of linear optimal control prob-
lems

The main issue of this paper is to investigate properties of regularity, as introduced in the
previous section, and stability of the solution(s) of optimal control problem (1)–(3).

We begin with some assumptions.

Assumption (A1): The functions A : [0, T ] → Rn×n and B : [0, T ] → Rn×r are k̄ times,
respectively k̄ + 1 times, continuously differentiable (for some natural number k̄); d ∈
L1(0, T ). Moreover, g : Rn → R is convex and differentiable with a locally Lipschitz
derivative.

Admissible control functions in the above problem are all measurable selections of U . De-
note the set of admissible controls by U . For u ∈ U equation (2) has a unique absolutely
continuous solution x[u](·) on [0, T ]. The reachable set R = {x[u](T ) : u ∈ U} is a convex
and compact subset of Rn, hence problem (1)–(3) has at least one solution (x̂, û).

Define the sequence of matrices

B0(t) = B(t), Bi+1(t) = −A(t)Bi(t) + Ḃi(t), i = 0, . . . , k̄ − 1.(13)

Moreover, denote by E the set of all (non-degenerate) edges of U , and by Ē – the set of all
vectors u2 − u1, where [u1, u2] ∈ E.

Assumption (A2): rank[B0(t) e, . . . , Bk̄(t) e] = n for every e ∈ Ē and t ∈ [0, T ]. Moreover,
∇g(x) 6= 0 for every x ∈ R (with ∇g(x) denoting the gradient of g at x).

The rank condition in the above assumption is the well-known general position hypotheses
[13], which is an extension of the Kalman condition to non-autonomous linear control
systems and a general polyhedral set U . The second part of the assumption makes the
problem meaningful, since it rules out the possibility of infinitely many solutions.

The Pontryagin maximum principle claims that any optimal pair (x̂, û) together with a
corresponding absolutely continuous function p̂ : [0, T ] → Rn satisfies the equations (4)–(7).

The following lemma is well-known (see e.g. [15]).

Lemma 1 Let the matrices A and B be measurable and essentially bounded g is differ-
entiable and convex. Then (x̂, û) is a solution of problem (1)–(3) if and only if the triple
(x̂, p̂, û) (with an absolutely continuous p̂) is a solution of system (4)–(7). If (A1) and (A2)
hold, then the solution (x̂, û) of (1)–(3) is unique, hence that of (4)–(7) is also unique.
Moreover, û(t) is a vertex of U for a.e. t ∈ [0, T ].

Let (x̂, p̂, û) be a solution of system (4)–(7) (and then (x̂, û) is a solution of (1)–(3)).

Definition 3 Controllability index of the solution (x̂, p̂, û) of system (4)–(7) is the minimal
number k such that for every t ∈ [0, T ] and for every e ∈ Ē at least one of the numbers〈
B>

i (t) p̂(t), e
〉
, i = 0, . . . , k, is not equal to zero.
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Clearly, if (A2) is fulfilled, then k ≤ k̄. Indeed, for every t we have p̂(t) 6= 0 (due to
∇g(x̂(T )) 6= 0). Then from (A2) at least one of the numbers 〈Bi(t) e, p̂(t)〉, i = 0, . . . , k̄, is
non-zero, thus k ≤ k̄.

If k is the controllability index of (x̂, p̂, û), then due to the continuity of Bi and p̂ there
exists a positive number m0 such that

k∑

i=0

∣∣∣
〈
B>

i (t) p̂(t), e
〉∣∣∣ ≥ m0 ∀ e ∈ Ē, ∀ t ∈ [0, T ].(14)

This inequality, with some m0 > 0, is the key property to be used in the theorems below.

Remark 1 Inequality (14) simplifies in the special case of a box-like set U . Namely, if
U = [−1, 1]r, then (14) reads in the following way: for every component [B>

i (t) p̂(t)]j ,
j = 1, . . . , r, of the vector B>

i (t) p̂(t) it holds that

k∑

i=0

∣∣∣∣
[
B>

i (t) p̂(t)
]
j

∣∣∣∣ ≥ m0 ∀ t ∈ [0, T ].

We mention that the function [B>(t) p̂(t)]j is known in the literature as switching function
for the j-th control component (cf. [8]). Clearly, [B>

i (t) p̂(t)]j is the i-th derivative of the
j-th switching function.

The generalized equations (4)–(7) can be written in the form 0 ∈ F (x, p, u), where

F (x, p, u) :=




ẋ−Ax−B u− d
ṗ + A> p

B> p + NU (u)
p(T )−∇g(x(T ))


 .(15)

Thus the inclusion 0 ∈ F (x, p, u) is equivalent to our original problem (1)–(3). The main
goal in this section is to investigate the stability of the solutions of this inclusion with
respect to perturbations, and the metric regularity of the mapping F : Xk → Yk, where the
spaces Xk and Yk are introduced in the next paragraphs.

The norms in L1(0, T ) and L∞(0, T ) are denoted by ‖ · ‖1 and ‖ · ‖∞, respectively. The
notation Wm,∞ = Wm,∞([0, T ];Rm) (or Wm,1) is used for the space of all functions x :
[0, T ] → Rn with absolutely continuous (m−1)-st derivative and with the m-th derivative
belonging to L∞(0, T ) (or to L1(0, T ), respectively). The norm is ‖x‖m,∞ :=

∑m
i=0 ‖x(i)‖∞,

where x(0) = x and x(i) is the i-th derivative of x. The notations ‖A‖k+1,∞ and ‖B‖k,∞
have the same meaning with the operator norm of the involved matrices.

The set of admissible controls U is viewed as a subset of L∞(0, T ) equipped with the
metric

d#(u1, u2) = meas {t ∈ [0, T ] : u1(t) 6= u2(t)},
where “meas” stands for the Lebesgue measure in [0, T ]. This metric is shift-invariant and
we shall shorten d#(u1, u2) = d#(u1 − u2, 0) =: d#(u1 − u2).

Then the triple (x, p, u) is considered as an element of the (affine) space

Xk = W 1,1
x0
×W k+1,∞ × U ,
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where W 1,1
x0

= {x ∈ W 1,1 : x(0) = x0}. We endow Xk with the (shift-invariant) metric

dX (x, p, u) = ‖x‖1,1 + ‖p‖k+1,∞ + d#(u).

The image space Yk, k ≥ 1, will be

Yk = L1 ×W k,∞ ×W k+1,∞ ×Rn,

where we shall use the following two norms

‖y‖ = ‖(ξ, π, ρ, ν)‖ := ‖ξ‖1 + ‖π‖∞ + ‖ρ‖∞ + |ν|,
‖y‖∼ = ‖(ξ, π, ρ, ν)‖∼ := ‖ξ‖1 + ‖π‖k,∞ + ‖ρ‖k+1,∞ + |ν|.

generating the metrics dY and d̃Y , respectively. Also we define the space Y0 = L1 × L∞ ×
L∞ ×Rn with the above norm ‖ · ‖.

Notice that due to (A1) we have that (x̂, p̂, û) ∈ Xk. In order to ensure that F maps Xk

into Yk we need to interpret the set NU (u) in (15) as {ξ ∈ W k+1,∞ : ξ(t) ∈ NU (u(t)) ∀ t ∈
[0, T ]} (strictly speaking, we should use the notation NU (u) instead of the point-wise NU (u),
but the overload of the latter would not lead to confusions).

The main results in this section follow.

Theorem 2 Let assumptions (A1) and (A2) be fulfilled, let (x̂, p̂, û) be a solution of the
generalized equation 0 ∈ F (x, p, u) (with F given in (15)) and let k be its controllability
index. Then for every number b > 0 there exists a number c such that for every s ∈
{0, . . . , k} and every y = (ξ, π, ρ, ν) ∈ Ys with ‖y‖ ≤ b there exists (x, p, u) such that
y ∈ F (x, p, u) and

‖x− x̂‖1,1 + ‖p− p̂‖s+1,∞ + d#(u− û) ≤ c ‖y‖ 1
k .(16)

Moreover, for every solution of y ∈ F (x, p, u) it holds that

‖x− x̂‖1,1 + ‖p− p̂‖s+1,∞ + ‖u− û‖1 ≤ c ‖y‖ 1
k .(17)

As formulated, the above theorem applies only to individual problems of the type (1)–
(3), as far as the constant c may be specific for each problem. It turns out that the constant
c depends on the data of the problem only through certain norms and therefore is the same
for large well-defined families of problems. This result may be useful in the error analysis
of discrete approximations, but the main reason for formulating and proving it in the next
proposition is that it will be substantially used in the proof of Theorem 3 below.

For a function g : Rn → R which is differentiable with a locally Lipschitz derivative
denote

Γ[∇g](α) = inf{γ : |∇g(x)| ≤ γ and ∇g is Lipschitz continuous
with constant γ in the ball |x| ≤ α }.

Clearly, the function Γ[∇g](·) is finite and monotone increasing.
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Proposition 2 Let the natural numbers n, r, k̄ and k ≤ k̄, and the compact convex poly-
hedral set U ⊂ Rr be fixed. Then for every triple of positive numbers K, b and µ and
a function γ : [0,∞) → R there exists a number c = c(K, b, µ, γ(·)) with the following
property.

Let the time-horizon T satisfies T ≤ K. Let the (n×n)-matrix function A(t), the (n×r)-
matrix function B(t), both defined on [0, T ], and g : Rn → R be such that assumptions (A1)
and (A2) be fulfilled and

|x0|, ‖A‖k,∞, ‖B‖k+1,∞, ‖d‖1 ≤ K, Γ[∇g](α) ≤ γ(α), ∀α > 0.(18)

Let (x̂, p̂, û) be a solution of the generalized equation 0 ∈ F (x, p, u) (with F given in (15))
and let (14) be fulfilled with m0 ≥ µ.

Then for every s ∈ {0, . . . , k} and every y = (ξ, π, ρ, ν) ∈ Ys with ‖y‖ ≤ b the inclusion
y ∈ F (x, p, u) has a solution such that (16) holds. Moreover, for every solution of y ∈
F (x, p, u) the estimation (17) holds.

Theorem 3 Let assumptions (A1) and (A2) be fulfilled, let (x̂, p̂, û) be a solution of the
generalized equation 0 ∈ F (x, p, u) (with F given in (15)) and let k be its controllability
index. Then the mapping F is strongly bi-metrically regular of order k at ((x̂, p̂, û), 0) with
respect to the metric dX in Xk and the metrics dY and d̃Y in Yk. Moreover, the number
a in the definition of strong bi-metrically regularity (Definition 2) can be taken to be +∞,
that is, F−1 is Hölder continuous in the metric dY in some d̃Y -neighborhood of the origin.

Remark 2 Theorem 2 reveals a certain stability property of the system of necessary opti-
mality conditions (4)–(7), which is equivalent to problem (1)–(3): if the left-hand side of the
inclusion 0 ∈ F (x, p, u) is disturbed by a “small” (in the metric dY ) perturbation y, then a
solution of y ∈ F (x, p, u) still exists and estimations of order ‖y‖1/k hold for appropriate
distances of such solutions to (x̂, p̂, û). On the other hand, this stability property can be
destroyed by an arbitrarily small (in the metric dY ) perturbation y, as simple examples
show. In contrast, Theorem 3 implies that perturbations y which are sufficiently small in
the metric d̃Y do not destroy the stability and preserve the uniqueness.

We start the proofs with two lemmas. Denote by V the set of all vertices of U .

Lemma 2 Let N be the number of vertices of U and δ be the maximal length of an edge.
Then for every z ∈ Rr, u ∈ V ∩ Argmin

w∈U
〈z, w〉 and v ∈ U there exists v′ ∈ V such that

[v′, u] ∈ Ē and

〈z, v − u〉 ≥ 1
Nδ

|v − u| |〈z, v′ − u〉|.

Proof. Let {vi}i=1,...,s ⊂ V be the set of all neighboring to u vertices. Since u ∈ V , it is
a routine task to prove that the cone generated by the vectors {vi − u} contains U − u. In
particular we have

v − u =
s∑

i=1

αi
vi − u

|vi − u| ,

9



where αi ≥ 0. Then |v − u| ≤ ∑s
i=1 αi, hence there exists j such that

αj ≥ 1
s
|v − u| ≥ 1

N
|v − u|.

Set v′ = vj . Using that u ∈ V ∩Argmin
w∈U

〈z, w〉 we have

〈z, v − u〉 =
s∑

i=1

αi

〈
z,

vi − u

|vi − u|
〉

=
s∑

i=1

αi

∣∣∣∣
〈

z,
vi − u

|vi − u|
〉∣∣∣∣

≥ αj

∣∣∣∣∣

〈
z,

vj − u

|vj − u|

〉∣∣∣∣∣ ≥
1

N |v′ − u| |v − u| ∣∣〈z, v′ − u
〉∣∣

≥ 1
Nδ

|v − u| ∣∣〈z, v′ − u
〉∣∣ .

Q.E.D.

For a natural number k ≥ 0 and reals L, m ≥ 0 let us define the class of functions

Fk(M, m) :=

{
l ∈ W k+1,∞([0, T ];R) : ‖l‖k+1,∞ ≤ M,

k∑

i=0

|l(i)(t)| ≥ m ∀ t ∈ [0, T ]

}
.

The following lemma is a particular cases of [14, Corollary 2.2] (somewhat reformulated).

Lemma 3 For every pair of positive numbers K and µ and a natural number k there
exists a constant c0 = c0(K, µ, k) such that whatever are the numbers T, C, M ∈ (0,K] and
m ≥ µ, the inequality ∫ T

0
|l(t)| |ϕ(t)|dt ≥ c0 ‖ϕ‖k+1

1

holds for every l ∈ Fk(M, m) and every measurable function ϕ : [0, T ] → R satisfying
|ϕ(t)| ≤ C for a.e. t.

Proof of Proposition 2 and Theorem 2.
We shall prove Proposition 2. Then also Theorem 2 will be true, since as explained

above, assumption (A2) implies (14) with some m0 > 0.
Let us fix arbitrarily the positive numbers K, b, µ and a function γ[0,∞) → R. The

number c in Proposition 2 will be specified later in the proof. Let x0, A, B, d and g be as
in the formulation of the theorem. Let (x̂, p̂, û) be a solution of 0 ∈ F (x, p, u), that is, of
(4)–(7). Since (A1) and (A2) are fulfilled for the chosen configuration of data, according
to Lemma 1 this solution is unique, (x̂, û) is the unique solution of problem (1)–(3), and
û(t) ∈ V for a.e. t ∈ [0, T ].

Take an arbitrary y = (ξ, π, ρ, ν) ∈ Y0 with ‖y‖ ≤ b and consider the following “dis-
turbed” system for (x, p, u):

0 = ẋ(t)−A(t) x(t)−B(t) u(t)− d(t)− ξ(t),(19)
0 = ṗ(t) + A>(t) p(t)− π(t),(20)
0 ∈ B>(t) p(t)− ρ(t) + NU (u(t)),(21)
0 = p(T )−∇g(x(T ))− ν.(22)

10



Notice that the above system is a necessary and sufficient optimality condition for the
problem

min

{
g(x(T )) + 〈ν, x(T )〉 −

∫ T

0
[〈π(t), x(t)〉+ 〈ρ(t), u(t)〉] dt

}
(23)

subject to

ẋ(t) = A(t)x(t) + B(t) u(t) + d(t) + ξ(t), x(0) = x0,(24)
u(t) ∈ U.(25)

This follows from the first part of Lemma 1 after reformulation of the last problem as a
terminal problem for a (n + 1)-dimensional linear system (this standard reformulation will
be used later in the proof of Theorem 3). Moreover, problem (23)–(25) has a solution, than
(19)–(22) has a solution, too, and let (x̃, p̃, ũ) be an arbitrary solution. Denote

q(t) =
∫ t

0
Φ(t, s) ξ(s) ds,(26)

where Φ(t, τ) is the fundamental matrix solution of the linear system ẋ(t) = A(t) x(t)
normalized at t = τ . Then from the Cauchy formula for (2) and (24) we see that x̂(t)+ q(t)
is the solution of (24) for control û. Since (x̃, ũ) is an optimal solution of (23)–(25), we
have

0 ≥ g(x̃(T )) + 〈ν, x̃(T )〉 −
∫ T

0
[〈π(t), x̃(t)〉+ 〈ρ(t), ũ(t)〉] dt

− g(x̂(T ) + q(T ))− 〈ν, x̂(T ) + q(T )〉+
∫ T

0
[〈π(t), x̂(t) + q(t)〉+ 〈ρ(t), û(t)〉] dt.

Moreover, x̄(t) := x̃(t)−q(t) is the solution of (2) with control ũ. Then the above inequality
becomes

0 ≥ g(x̄(T ) + q(T ))− g(x̂(T ) + q(T )) + 〈ν, x̄(T )− x̂(T )〉
−

∫ T

0
[〈π(t), x̄(t)− x̂(t)〉+ 〈ρ(t), ũ(t)− û(t)〉] dt,

and since g is convex and differentiable

0 ≥ 〈∇g(x̂(T ) + q(T )) + ν, x̄(T )− x̂(T )〉 −
∫ T

0
[〈π(t), x̄(t)− x̂(t)〉+ 〈ρ(t), ũ(t)− û(t)〉] dt.

Obviously one can estimate |q(T )| ≤ c1‖ξ‖1, where (due to (18)) c1 depends only on K.
Moreover, due to (18) again, x̂(T ) is contained in a sufficiently large ball at zero with radius
β depending only on K. Then γ := γ(β + c1b) is an upper estimate of both ∇g and its
Lipschitz constant in the ball |x| ≤ β + c1b, which depends only on K and b. Then we may
rewrite the above inequality as

0 ≥ 〈∇g(x̂(T )) + ζ, x̄(T )− x̂(T )〉 −
∫ T

0
[π(t)(x̄(t)− x̂(t)) + ρ(t)(ũ(t)− û(t))] dt,(27)

where
|ζ| ≤ γc1‖ξ‖1 + |ν| ≤ c2(‖ξ‖1 + |ν|) ≤ c2 b,

11



and c2 depends only on K, b and the function γ(·). Using the Cauchy formula for (2) and
the expression p̂(t) = Φ>(T, t)∇g(x̂(T ))) (which follows from (5) and (7)) we obtain the
following relation and estimations:

〈∇g(x̂(T )), x̄(T )− x̂(T )〉 =
∫ T

0
〈σ̂(t), ũ(t)− û(t)〉dt,(28)

|x̄(T )− x̂(T )| ≤ c3‖ũ− û‖1,

∫ T

0
|x̄(t)− x̂(t)|dt ≤ c3‖ũ− û‖1,(29)

where
σ̂(t) = B>(t) p̂(t)

and c3 is a constant, which in view of (18) may be taken as depending only on K. Using
(28) in (27) we obtain that

0 ≥
∫ T

0
〈σ̂(t), ũ(t)−û(t)〉dt+〈ζ, x̄(T )− x̂(T )〉−

∫ T

0
[〈π(t), x̄(t)−x̂(t)〉+〈ρ(t), ũ(t)−û(t)〉] dt.

Since due to (6) û(t) ∈ Argmin
w∈U

〈σ̂(t), w〉 for a.e. t, the first term is non-negative. Then

∣∣∣∣∣〈ζ, x̄(T )− x̂(T )〉 −
∫ T

0
[〈π(t), x̄(t)− x̂(t)〉+ 〈ρ(t), ũ(t)− û(t)〉] dt

∣∣∣∣∣ ≥
∫ T

0
〈σ̂(t), ũ(t)−û(t)〉dt.

Using (29) and the estimation for |ζ| we obtain

c4‖y‖ ‖ũ− û‖1 ≥
∫ T

0
〈σ̂(t), ũ(t)− û(t)〉dt,(30)

with another constant c4 depending only on K, b and γ(·).
Since we know that û(t) ∈ V almost everywhere, according to Lemma 2 and û(t) ∈

Argmin〈σ̂(t), w〉 we have that the set

W (t) :=
{

v′ ∈ V : v′ − û(t) ∈ Ē, 〈σ̂(t), ũ(t)− û(u)〉 ≥ 1
Nδ

|ũ(t)− û(t)| |〈σ̂(t), v′ − û(t)〉|
}

is non-empty for a.e. t. Since V is a finite set, the mapping t 7→ W (t) is closed-valued
and Theorem 8.2.9 in [4] implies that it is measurable. Then it has a measurable selection
u∗(t) ∈ W (t). From (30)

1
Nδ

∫ T

0
|ũ(t)− û(t)|〈σ̂(t), u∗(t)− û(t)〉dt ≤ c4‖y‖ ‖ũ− û‖1.(31)

Since e(t) := u∗(t) − û(t) ∈ Ē and the last set is finite, one can split [0, T ] into a finite
number of measurable sets ∆j such that e(t) = ej is constant for t ∈ ∆j . Denote ϕj(t) =
χj(t)|ũ(t)− û(t)|, where χj is the characteristic function of ∆j .

One can directly verify that

di

( dt)i
(B>(t) p̂(t)) = B>

i (t) p̂(t), i = 0, . . . , k̄,
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Thus σ̂(i)(t) = B>
i (t) p̂(t). Denote lj(t) = 〈σ̂(t), ej〉. Then (A1) and (14) imply that

lj ∈ Fk(M,m0), where M is an appropriate constant depending only on ‖A‖W k,∞(0,T ),
‖B‖W k+1,∞(0,T ) and |∇g(x̂(T ))|, hence M depends only on K and γ(·). Then Lemma 3
(with C = diam(U)) implies the inequality

∫ T

0
|lj(t)| |ϕj(t)| dt ≥ c0‖ϕj‖k+1

1 ,

where c0 > 0 is the constant in Lemma 3, depending only on k, K, b and µ. Thus

∫ T

0
|ũ(t)− û(t)| 〈σ̂(t), u∗(t)− û(t)〉dt =

N∑

j=1

∫ T

0
|lj(t)| |ϕj(t)| dt ≥ c0

N∑

j=1

‖ϕj‖k+1
1

Then using the Hölder inequality we obtain that

∫ T

0
|ũ(t)−û(t)| 〈σ̂(t), u∗(t)−û(t)〉dt ≥ c0

N∑

j=1

‖ϕj‖k+1
1 ≥ c0

Nk




N∑

j=1

‖ϕj‖1




k+1

=
c0

Nk
‖ũ−û‖k+1

1 .

Combining this with (31) we obtain

‖ũ− û‖k
1 ≤

c4

c0
δNk+1‖y‖ =: c‖y‖.(32)

Thus we obtain for ‖ũ − û‖1 the estimation in the second claim of Proposition 2. Notice
that the constant c depends only on K, b, µ, and the function γ (besides the fixed n, r, k
and U).

The estimation for ‖x̃− x̂‖1 and ‖p̃− p̂‖s+1,∞, follows from (32) in an obvious way using
the corresponding equations in (4)–(7) and (19)–(22).

By a standard argument, among the solutions of problem (23)–(25) there is at least one,
(x̃, ũ), for which the values of ũ are for a.e. t vertices of U . Let (x̃, p̃, ũ) be the corresponding
solution of (19)–(22). Then (32) holds. Since ũ(t), û(t) ∈ V we have |ũ(t) − û(t)| ≥ η
whenever ũ(t) 6= û(t), where η > 0 is the minimal distance between different vertices of U .
Then

η d#(ũ− û) ≤
∫ T

0
|ũ(t)− û(t)| dt ≤ c ‖y‖ 1

k ,

This proves the first claim of Proposition 2. Q.E.D.

Proof of Theorem 3. According to Definition 2 (applied with a = +∞) it is enough to
prove that there exist positive numbers β and ς such that F−1(y) is single-valued and

dX (F−1(y), F−1(y′)) ≤ ς dY(y′, y)
1
k(33)

for all y, y′ ∈ Yk for which d̃Y(y) ≤ β and d̃Y(y′) ≤ β. The numbers β > 0 and ς will be
fixed later in the proof.

We shall make use of Proposition 2 with s = k. For that we take b = 1, µ = m0/2,
γ(α) := Γ[∇g](α) + 2, and a number K so large that

|x0|, ‖A‖k,∞, ‖B‖k+1,∞, ‖d‖1 ≤ K − 1.
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Let c be the constant in Proposition 2 corresponding to the natural numbers n + 1, r, k̄
and k, and the above constants K, b, µ, and function γ(·).

Let us take an arbitrary y ∈ Yk with ‖y‖∼ ≤ β, where β ≤ b will be defined in the next
paragraphs. Let (x̃, p̃, ũ) be a solution of the disturbed system (19)–(22). We can rewrite
this system in an equivalent form as

0 = ẋ0(t) + 〈π(t), x(t)〉+ 〈ρ(t), u(t)〉, x0(0) = 0,
0 = ẋ(t)−A(t) x(t)−B(t) u(t)− d(t)− ξ(t),
0 = ṗ0(t),
0 = ṗ(t) + A>(t) p(t)− π(t) p0(t),
0 ∈ B>(t) p(t)− ρ(t) p0(t) + NU (u(t)),
0 = p0(t)− 1,

0 = p(T )−∇g(x(T ))− ν.

The above system is exactly in the form of (4)–(7) with A, B, d and g replaced with

Ã(t) =

(
0 −π>(t)
0 A(t)

)
, B̃(t) =

(
−ρ>(t)
B(t)

)
, d̃(t) =

(
0

d(t) + ξ(t)

)

and
g̃(x0, x) = g(x) + 〈ν, x〉+ x0,

respectively. That is, (x, p, u) is a solution of (19)–(22) if and only if the triple

x∗(t) =

(
− ∫ t

0 [〈π(s), x(s)〉+ 〈ρ(s), u(s)〉] ds
x(t)

)
, p∗(t) =

(
1

p(t)

)
, u(t)

is a solution of the system

0 = ẋ∗(t)− Ã(t) x∗(t)− B̃(t)u(t)− d̃(t),(34)
0 = ṗ∗(t) + Ã>(t) p∗(t),(35)
0 ∈ B̃>(t) p∗(t) + NU (u(t)),(36)
0 = p∗(T )−∇g̃(x∗(T ))(37)

in a space Xk defined as above, but the dimension of the functions x∗ and p∗ is n + 1 and
the additional initial condition x0(0) = 0 has to be included into the definition of the space.

Obviously assumptions (A1) are fulfilled for the above Ã, B̃, d̃ and g̃ with k̄ = k. We
shall verify that also (14) is fulfilled for the solution (x̃∗, p̃∗, ũ) of (34)–(37) corresponding
to (x̃, p̃, ũ).

The matrices B̃i corresponding to Ã, B̃, d̃ (see (13)) have the form

B̃i(t) =

(
ζ>i (t)
Bi(t)

)
, i = 0, . . . , k − 1,

where
|ζi(t)| ≤ C1 ‖y‖∼, i = 0, . . . , k − 1,
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and the number C1 depends on the norms ‖A‖W k−1,∞ and ‖B‖W k,∞ , but not on y. Then
taking β > 0 small enough we may ensure that whenever ‖y‖∼ ≤ β, inequality (14) is
fulfilled with m0/2 (instead of m0) for the matrices Ã, B̃. This implies, in particular, that
(x̃∗, p̃∗, ũ) is the unique solution of system (34)–(37) (see Lemma 1).

Similarly as above one can estimate

‖Ã‖k,∞ ≤ ‖A‖k,∞ + C2‖y‖∼, ‖B̃‖k,∞ ≤ ‖B‖k,∞ + C2‖y‖∼, ‖d‖1 ≤ ‖d‖1 + C2‖y‖∼ ,

where C2 is independent of y. Then we require additionally for β > 0 that C2β < 1 so that
we have

‖Ã‖k+1,∞, ‖B̃‖k,∞, ‖d̃‖1 ≤ K for every y ∈ Yk, for which ‖y‖∼ ≤ β.

Obviously we have also that |(0, x0)| ≤ K. Moreover, we have

Γ[∇g̃](α) ≤ sup
|x|≤α

∇g(x) + |ν|+ 1 ≤ Γ[∇g](α) + 2 ≤ γ(α).

In addition we require that β satisfies 2β ≤ b.
Now we can apply Proposition 2 (with s = k) for the system (34)–(37). For every

y′ ∈ Yk for which d̃Y(y′) ≤ β we have by the above argument (since y above was arbitrary
with d̃Y(y) ≤ β) that the solution of the inclusion y′ ∈ F (x, p, u) is unique in Xk, call it
(x′, p′, u′).

We can rewrite the inclusion y′ ∈ F (x, p, u) as y′ − y ∈ F (x, p, u) − y. Then the
solution (x′, p′, u′) will be a solution of system (34)–(37) with perturbed left-hand side
((0, ξ′ − ξ), ( 0, π′ − π), ρ′ − ρ, (0, ν ′ − ν)). Since d̃Y(y′ − y) ≤ 2β ≤ b we can apply the last
statement of Proposition 2 to obtain the estimation (33) with ς = c. Notice that the range
of (x′, p′, u′) is not restricted, which justifies the last statement of the theorem. The proof
is complete. Q.E.D.

4 Perturbations in linear optimal control problems

Let assumption (A1) be fulfilled for the problem (1)–(3) and let us introduce non-linear
disturbances in this problem. Namely, we consider the perturbed problem

min g(x(T )) + γ(x(T ))(38)

subject to

ẋ(t) = A(t) x(t) + h(t, x(t)) + (B(t) + H(t))u(t) + d(t), x(0) = x0,(39)
u(t) ∈ U,(40)

where γ : Rn → R, h : [0, T ] × Rn → Rn, H : [0, T ] → Rn×r are sufficiently times
differentiable functions, as specified below. The disturbances h and H are presumably
“small” in a sense that will be clarified below, therefore we assume that all trajectories of
(39) generated by admissible controls are contained in a compact set D ⊂ Rn whenever h
and H are bounded by some constant ε0

0 > 0.
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Due to the convexity of the set of admissible velocities the reachable set of system
(39), (40) is compact, hence problem (38)–(40) has a solution (x∗, u∗). The Pontryagin
maximum principle asserts that the following system is fulfilled by (x∗, u∗) and an absolutely
continuous function p∗ : [0, T ] → Rn:

0 = ẋ(t)−A(t) x(t)− h(t, x(t))− (B(t) + H(t))u(t)− d(t), x(0) = x0,(41)
0 = ṗ(t) + (A(t) + hx(t, x(t)))> p(t),(42)
0 ∈ (B(t) + H(t))> p(t) + NU (u(t)),(43)
0 = p(T )−∇g(x(T ))−∇γ(x(T )),(44)

where hx is derivative of h with respect to x.

The next theorem investigates the effect of the disturbance (h,H, γ) if the non-disturbed
system is strongly bi-metrically regular with k = 1. In the case k = 1 we use the same
metrics in the spaces X1 and Y1 as in the previous section, namely

dX (x, p, u) = ‖x‖1,1 + ‖p‖2,∞ + d#(u),

in X1 and

‖y‖ = ‖(ξ, π, ρ, ν)‖ := ‖ξ‖1 + ‖π‖∞ + ‖ρ‖∞ + |ν|,
‖y‖∼ = ‖(ξ, π, ρ, ν)‖∼ := ‖ξ‖1 + ‖π‖1,∞ + ‖ρ‖2,∞ + |ν|.

in Y1.

Theorem 4 Assume that (A1) is fulfilled with k̄ = 1 for the non-perturbed system (4)–(7)
and that this system is strongly bi-metrically regular with k = 1 at ((x̂, p̂, û), 0). Then there
exist numbers ε0 > 0, δ > 0 and c with the following property.

Let γ, h, H be (componentwise) twice continuously differentiable and these functions
and all the derivatives up to second order (with respect to (t, x)), as well as the Lipschitz
constant with respect to x of the second derivatives of h, are bounded by a number ε ≤ ε0

in C(D), C([0, T ]×D) or C([0, T ]), respectively. Then
(i) system (41)–(44) has a unique solution (x∗, p∗, u∗) in the δ-neighborhood of (x̂, p̂, û) in
X1 and

dX (x∗ − x̂, p∗ − p̂, u∗ − û) ≤ c ε;

(ii) system (41)–(44) is strongly bi-metrically regular with k = 1 at ((x∗, p∗, u∗), 0) with
respect to the metric dX in X1 and the metrics dY and d̃Y in Y1.

Proof. First we notice that system (41)–(44) can be written in the form

0 ∈ f(x, p, u) + F (x, p, u),

where F (corresponding to the non–perturbed system) is given by (15) and

f(x, p, u) =




−h(t, x)−H(t)u
hx(t, x)>p
H(t)>p

−∇γ(x(T ))


 .
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Let ς, a, b be the numbers in the definition of strong bi-metric regularity of F at
((x̂, p̂, û), 0), and let µ, ς ′, a′, b′ be the the numbers in Theorem 1. Below we shall de-
fine a constant c̄ depending only on the data of the problem (1)–(3). With the help of these
constants we define ε0 > 0, α > 0 and c as any numbers satisfying the relations

ε0 ≤ ε0
0, c̄ ε0 ≤ b′, c̄ ε0 ≤ µ, δ = a′, c = c̄ ς ′, cε0 ≤ a′.(45)

Now we shall prove the claims of the theorem with the so-defined constants.
We shall apply Theorem 1 for a points (x̃, p̃, ũ) ∈ X1 and ỹ = (ξ̃, π̃, ρ̃, ν̃) ∈ Y1 such that

ỹ ∈ f(x̃, p̃, ũ) + F (x̃, p̃, ũ), dX (x̃− x̂, p̃− p̂, ũ− û) ≤ a′ and d̃Y(ỹ) ≤ b′.(46)

Let us check the inequality in (9), which in our case reads as

d̃Y(f(x̃, p̃, ũ), 0) = ‖h(·, x̃(·))‖1+‖hx(·, x̃(·))‖1,∞+‖H(·)>p̃(·)‖2,∞+|∇γ(x̃(T ))| ≤ b′.(47)

Since ε0 ≤ ε0
0 we have x̃(t) ∈ D. Using also that ‖p̃‖2,∞ + ‖ũ‖1 ≤ dX (x̂, p̂, û) + a′, one can

estimate the left-hand side of the desired inequality by the derivatives up to second order
of h and H in [0, T ]×D. That is, with an appropriate constant c̄ we estimate the left-hand
side by c̄ε ≤ c̄ ε0 ≤ b′. For later use it is important to notice that in proving (47) we do not
use the last inequality in (46).

Now let us verify (10). This is also a routine task since the Lipschitz constant of f
is proportional to ε, say c̄ ε and can be chosen smaller than µ. We skip these simple
but cumbersome calculation, in which the second derivatives of h and H appear, since for
evaluation of d̃Y(f(x, p, u), f(x′, p′, u′)) we have to involve the second derivatives of h and
H (remember we have that k = 1). Therefore we need also the Lipschitz constant with
respect to x of the second derivatives of h to be smaller than ε.

Thus we can apply Theorem 1, which claims that f +F is strongly bi-metrically regular
at ((x̃, p̃, ũ), ỹ) with constants ς ′, a′, b′ whenever (46) is satisfied.

We apply this result with (x̃, p̃, ũ) = (x̂, p̂, û) and ỹ = f(x̂, p̂, û), which obviously satisfies
the first two requirements in (46). The last inequality in (46) is a consequence of (47),
applied with (x̃, p̃, ũ) = (x̂, p̂, û), which was proved without using that d̃Y(ỹ) ≤ b′, as it was
noticed there. (We proved even that d̃Y(f(x̂, p̂, û)) ≤ c̄ ε, which will be used below.) Thus
f + F is strongly bi-metrically regular at ((x̂, p̂, û), f(x̂, p̂, û)) with constants ς ′, a′, b′.

Now we consider the inclusion 0 ∈ f + F . Due to the last statement and the inequality
d̃Y(f(x̂, p̂, û)) ≤ b′, we obtain that there is a unique solution (x∗, p∗, u∗) of 0 ∈ f +F in the
neighborhood of radius a′ = δ and

dX (x∗ − x̂, p∗ − p̂, u∗ − û) ≤ ς ′dY(f(x̂, p̂, û)) ≤ ς ′ c̄ ε = c ε.(48)

This proves the first claim of the theorem.
To prove that f +F is strongly bi-metrically regular at ((x∗, p∗, u∗), 0) we have to verify

only the second inequality in (46). It reads as dX (x∗− x̂, p∗− p̂, u∗− û) ≤ a′ and is implied
by (48) and the last inequality in (45). Q.E.D.

Remark 3 The question arises if Theorem 4 remains true if the disturbance H in the
control matrix depends on x. Our proof does not work in this case and the question is
open.
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As a consequence of Theorem 4 we obtain the following result for the non-linearly
“disturbed” optimal control problem (38)–(40).

Proposition 3 Let the assumptions of Theorem 4 be fulfilled. Then there exist numbers
ε′0 > 0, α′ > 0 and c′ such that if the size of the disturbance (h,H, γ) does not exceed a
number ε ≤ ε′0 in the sense of Theorem 4, then problem (38)–(40) has a unique solution
(x∗, u∗) in the α′-neighborhood of (x̂, û) in the space X1 (projected on p = 0) and

‖x̂− x∗‖1,1 + d#(û− u∗) ≤ c′ ε.

Moreover, u∗(t) is a vertex of U for a.e. t ∈ [0, T ].

Proof. Due to Pontryagin’s maximum principle the triple (x∗, p∗, u∗) (with some absolutely
continuous p∗) satisfies (41)–(44). Since (x∗, u∗) is in the α′-neighborhood of (x̂, û) one can
ensure that (x∗, p∗, u∗) belongs to α-neighborhood of (x̂, p̂, û) (in the notation of Theorem 4)
by choosing α′ sufficiently small. This is due to equations (42) and (44), where x∗ appears
only in the boundary condition (44). Then the first statement of the proposition follows
from the first claim of Theorem 4.

Now let us prove the last statement of the proposition. We have that the solution (x∗, u∗)
together with some p∗ satisfies system (41)–(44) and claim (ii) of Theorem 4 holds for
(x∗, p∗, u∗). That is, system (41)–(44) is strongly bi-metrically regular with k = 1 at
((x∗, p∗, u∗), 0). Let ς, a and b be the constants in Definition 2. If a perturbation y =
(ξ, π, ρ, ν) has ‖y‖∼ ≤ b then the solution (x̃, p̃, ũ) of the so-disturbed version of (41)–(44)
is locally unique and satisfies, in particular,

d#(ũ− u∗) ≤ ς ‖(ξ, π, ρ, ν)‖.
We shall disturb system (41)–(44) by a perturbation (ξ, π, ρ, ν) = (0, 0, ρ, 0) with ‖ρ‖2,∞ ≤
b. Then the above inequality becomes

d#(ũ− u∗) ≤ ς ‖ρ‖∞.(49)

Now let us assume that u∗(t) is not a vertex of U on a set of positive measure. Then
for a.e. such t there exists a face of U containing u∗(t) in its relative interior. Since the
faces are finitely many, there is at least one containing u∗(t) in its relative interior on a set
of positive measure, ∆0. Let E0 be the set of edges belonging to this face and let Ē0 be
the set of vectors e = v2 − v1 with [v1, v2] ∈ E0. Due to (43) we have

〈
(B(t) + H(t))> p∗(t), e

〉
= 0 ∀ e ∈ Ē0, t ∈ ∆0.

Let us fix one e ∈ Ē0.
Let ρ be any function with ‖ρ‖2,∞ ≤ b. The corresponding p̃ satisfies the same equa-

tion (42) as p∗, only with possibly different end-point condition. Then the functions〈
(B(t) + H(t))> p̃(t), e

〉
that may result from various ρ satisfying ‖ρ‖2,∞ ≤ b is an (at

most) n-dimensional affine subspace of W 2,∞. Therefore, one can choose ρ with an arbi-
trarily small norm ‖ρ‖2,∞ such that for the corresponding p̃ we have

〈
(B(t) + H(t))> p̃(t), e

〉
− 〈ρ(t), e〉 6= 0 for almost all t ∈ ∆0.
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This implies that ũ(t) 6= u∗(t) for a.e. t ∈ ∆0, since u∗(t) is not a minimizer of〈
(B(t) + H(t))> p̃(t), v

〉
on v ∈ U . Hence, d#(ũ − u∗) ≥ meas(∆0). This contradicts (49)

and completes the proof. Q.E.D.

Remark 4 The claim that the values of the optimal control u∗ of the non-linear control
problem (38)–(40) are almost everywhere vertices of U deserves a comment. In fact, the
proof of the proposition just shows that with the (unique) adjoint functions p∗ the mini-
mization condition (43) in the Pontryagin principle determines u∗ uniquely. Thus “singular
arcs” (that is, sets of positive measure where the minimization condition in the maximum
principle does not uniquely determine the control) do not appear in problem (38)–(40).

It is an open question if an arbitrarily small (in the sense of Theorem 4) non-linear
perturbation of a strongly bi-metrically regular linear system can lead to a singular solution
if k > 1. We have some reasons to think that this is possible, but we have no example for
that.

So far in this section we discussed state- and control-dependent perturbations to a linear
system which is strongly bi-metrically regular with Hölder exponent k = 1. This analyses
was facilitated by the inverse function Theorem 1, which has no known extension for k > 1.
Nevertheless, it turns out that under assumptions (A1) and (A2) the solution of problem
(1)–(3) exhibits a certain stability with respect to perturbations in the matrices A and B.
Notice that such perturbations are state- and control-dependent, however, the dependence
is linear.

Theorem 5 Let assumptions (A1) and (A2) be fulfilled for the system (4)–(7) and let k be
the associated controllability index of the solution (x̂, p̂, û). Then there exist numbers δ > 0
and c such that for every pair of matrices Ã ∈ W k̄,∞, B̃ ∈ W k̄+1,∞ with ‖Ã − A‖k,∞ +
‖B̃ −B‖k+1,∞ ≤ δ the following is true:
(i) system (4)–(7) for matrices Ã and B̃ (instead of A and B) has a unique solution
(x̃, p̃, ũ) ∈ Xk and

dX (x̃− x̂, p̃− p̂, ũ− û) ≤ c
(
‖Ã−A‖1 + ‖B̃ −B‖∞

)
;(50)

(ii) the mapping in the right-hand side of system (4)–(7) for matrices Ã and B̃ is strongly
bi-metrically regular of order k at ((x̃, p̃, ũ), 0) with respect to the metric dX in Xk and the
metrics dY and d̃Y in Yk.

Proof. First of all we notice that if δ > 0 is chosen sufficiently small then (A1) and (A2)
are fulfilled for Ã and B̃. Then according to Lemma 1 system (4)–(7) for matrices Ã and
B̃ has a unique solution (x̃, p̃, ũ), and it obviously belongs to the space Xk.

Similarly as in the proof of Theorem 4, system (4)–(7) for matrices Ã and B̃ can be
written in the form

0 ∈ f(x, p, u) + F (x, p, u) =: F̃ (x, p, u),
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where F (corresponding to matrices A and B) is given by (15) and

f(x, p, u) =




(Ã−A)x + (B̃ −B)u
(Ã−A)>p

(B̃ −B)>p
0


 .

We are going to apply Proposition 1. First, the mapping F is strongly bi-metrically regular
with some constants ς, a = +∞ and b > 0, according to Theorem 3. We need to verify that
the inequalities dX (x̃− x̂, p̃− p̂, ũ− û) ≤ a and d̃Y(f(x̃, p̃, ũ)) ≤ b take place if δ is chosen
sufficiently small. The first inequality is automatic, the second one is straightforward, since
Ã − A and B̃ − B are δ-small just in the suitable norms. Then claim (i) of the theorem
follows from Proposition 1.

To prove claim (ii) we observe that due to (50) if δ is chosen sufficiently small, then
‖p̃ − p̂‖k,∞ will be small enough, so that the controllability index of of (x̃, p̃, ũ) does not
exceed k. Then the strong bi-metrically regularity of order k of F̃ (x, p, u) at ((x̃, p̃, ũ), 0)
follows from Theorem 3. Q.E.D.

Remark 5 In view of Lemma 1 the above theorem can be easily translated in terms of the
solutions (x̂, û) and (x̃, ũ) of problem (1)–(3) with matrices (A, B) and (Ã, B̃).

We need that the disturbances in the differential equation (2) are linear in order to
ensure that the resulting disturbance ỹ in the proof belongs to the space Yk (in order to
apply Proposition 1) with k > 1. For k = 1 the linearity can be relaxed, as in Theorem 4,
but in this case the result in this theorem is stronger than that of Theorem 5, anyway.

We mention that a result in the same spirit as Theorem 5 is proved in [8] in the case
k = 1 and with U = [−1, 1]r. It concerns the stronger notion of structural stability and the
proof relays on an inverse function theorem for the switching points of the optimal control,
which has no counterpart in the case k > 1. Notice that in the case k = 1 the statement of
the above theorem is much weaker than that of Theorem 4.
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