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Abstract

We take as a starting point an ODE model for the spreading of a disease in a homogeneous
population. We extend this model by introducing heterogeneities in the population, which
yields a model including a PDE or an infinite dimensional system of ODEs. We show
how these models can be reduced to a system of integro-differential equations and show a
comparison of this system to the original ODE model. Furthermore, we suggest a way to
deal with the practically unknown boundary conditions that arise in heterogeneous models.

1 Introduction

Differences between individuals in a population can be important when trying to study the
spread of an epidemic in that population. Many factors, e.g. social behaviour or strength of the
immune system, play a role in this process, for example by influencing the amount of contacts
between individuals or the likelihood that a contact between a susceptible and infected individual
leads to an infection. Consequently, epidemiological models that include heterogeneities in the
population have been studied (e.g. Couthino et al. [1], Dushoff [2], Novozhilov [9], and Veliov
[10]). In this context the study of dynamics of heterogeneous populations is important, as done
e.g. by Karev [6], [7].

Starting from a model for a homogeneous population, we introduce two different kinds of
heterogeneity. First we consider a time dependent heterogeneity, i.e. the parameter assigned to
a single individual undergoes changes as the system evolves. This turns the system of ordinary
differential equations (ODEs) describing the evolution of the disease in a homogeneous popu-
lation into a system containing partial differential equations (PDEs). Second, we consider a
semi-static heterogeneity, i.e. each individual is assigned a fixed parameter, which may change,
however, when the health status of the individual changes. This will yield an infinite dimensional
system of ODEs.

In both cases we face the problem that the initial and the boundary conditions require
distributed data that are not available in reality. Therefore, our main goal is to reduce these
systems to a finite dimensional systems with at most a few unknown parameters. These simpler
systems will turn out to consist of integro-differential equations.
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The starting point for our considerations is the usual SIS model in the general form considered
by Veliov in [10]. It models the spreading of a disease in a homogeneous population. The
dynamics is

Ṡ(t) = −σ I(t)

S(t) + I(t)
S(t) + λ(S, I)S(t) + γ(S, I)I(t), S(0) = S0,

İ(t) = σ
I(t)

S(t) + I(t)
S(t)− δ(S, I)I(t), I(0) = I0.

Here, S(t) and I(t) denote susceptible and infected individuals, respectively. The parameter
λ(S, I) is defined as the difference between the birth rate and mortality rate of susceptible
individuals while γ(S, I) denotes the inflow rate of susceptible individuals resulting from recovery
of the infected population. The parameter δ(S, I), on the other hand, denotes the net outflow
rate of infected individuals. Furthermore, σ represents the infectiousness (strength of infection).

This model is versatile, since we allow the demographic parameters to depend on S and I.
The evolution of a disease, however, depends on many more factors (variables). Clearly, every
additional variable introduces new complications into the dynamics of the system. We restrict
ourselves here to introducing a single new variable representing a specific heterogeneity in the
population.

The first heterogeneity we consider is the infection age, i.e. the time since an individual has
become infected. This heterogeneity obviously only applies to the infected part of the population.
Also, infection age is clearly a characteristic that changes with time. Models containing infection
age have been considered before (see for example Feichtinger et al. [3] or Inaba [4]).

Static heterogeneities have been considered in various interpretations, see e.g. Kretzschmar
[8], Novozhilov [9], and Veliov [10]. We will leave the interpretation of the heterogeneity open,
although our heterogeneous model is taken from Veliov [10], where it is interpreted behaviourally,
as habits or vulnerability to risks, rather then biologically.

The rest of this paper is split into two parts, one of which deals with time dependent, the second
one with static heterogeneities. Both parts are structured in the same way. After introducing
the heterogeneous model and its dynamics, we give, as much as possible, an analytical solution
to the equations. This in turn will be used to reduce the PDE system or infinite dimensional
ODE system to a finite dimensional system of integro-differential equations. Next we will study
how these system corresponds to the basic model introduced above. In particular we will see
that in absence of any heterogeneity these models do indeed coincide. Finally we will suggest
ways to deal with unknown initial data that is needed to fully determine the dynamics of the
model.

2 A time dependent heterogeneity

We enhance the presented model by introducing a second variable α for infected individuals that
denotes the infection age, i.e. the time since the individual has become infected.

In order to incorporate this variable into our model, we decompose δ = µ(α)− (1− ε)η(S, I),
where µ(α) is the mortality of infected individuals dependent on age of infection and η is the
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fertility rate of infected individuals. By ε we denote the fraction of newborns that are susceptible.
So conversely, we set γ(S, I) = εη(S, I). Furthermore, we introduce a function i(α) that indicates
the infectivity of an individual with infection age α. This results in the following model:

Ṡ(t) = −σ J(t)

S(t) + I(t)
S(t) + λ(S, I)S(t) + εη(S, I)I(t),(

∂

∂t
+

∂

∂α

)
Ī(t, α) = −µ(α)Ī(t, α),

S(0) = S0,

Ī(0, α) = I0(α),

Ī(t, 0) = σ
J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t),

I(t) =

∞∫
0

Ī(t, α)dα,

J(t) =

∞∫
0

i(α)Ī(t, α)dα.

Note that except for µ(α) and i(α) we allow all parameters to be dependent on population sizes.

The biggest problem with this model is that we can not expect to know the boundary condi-
tion Ī0(α), so we are unable to compute a solution for this model. Furthermore, no information
about Ī(t, α) is available for any later time, which also makes data fitting more difficult.
Our goal is therefore to reduce this system to a solely time-dependent system for I, S, and J .

2.1 Reducing the heterogeneous model

We use the simple structure of the PDE for Ī(t, α) and solve it analytically using the method
of characteristics. The characteristic equations for Ī(t, α) are

dt(r, s)

dr
= 1,

dα(r, s)

dr
= 1,

dĪ(r, s)

dr
= −µ(α)Ī(r, s),

with the initial conditions

t(0, s) = s,

α(0, s) = 0,

Ī(0, s) = σ
J(s)

S(s) + I(s)
S(s) + (1− ε)η(S(s), I(s))I(s).
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This yields

Ī(t, α) = e−
∫ α
0 µ(a)da

(
σ

J(t− α)

S(t− α) + I(t− α)
S(t− α) + (1− ε)η̃(S(t− α), I(t− α))I(t− α)

)
.

This solution obviously only makes sense for t ≥ α. However, if we use the initial conditions

t(0, s) = 0,

α(0, s) = s,

Ī(0, s) = I0(s).

for the characteristic equations, we get

Ī(t, α) = e−
∫ α
α−t µ(a)daI0(α− t),

which makes sense for α ≥ t. We get

Ī(t, α) =

{
e−

∫ α
0 µ(a)da

(
σ J(t−α)
S(t−α)+I(t−α)S(t− α) + (1− ε)η(S(t− α), I(t− α))I(t− α)

)
t > α,

e−
∫ α
α−t µ(a)daI0(α− t) t ≤ α.

This function is continuous, provided that

I0(0) = σ
J(0)

S(0) + I(0)
S(0) + (1− ε)η(S(0), I(0))I(0).

We now can derive a formula for I(t) by integrating Ī(t, α) over the parameter α. We get

I(t) =

∞∫
0

Ī(t, α)dα =

t∫
0

e−
∫ α
0 µ(a)da

(
σ

J(t− α)

S(t− α) + I(t− α)
S(t− α) + (1− ε)η(S(t− α), I(t− α))I(t− α)

)
dα+

∞∫
t

e−
∫ α
α−t µ(a)daI0(α− t)dα =

t∫
0

e−
∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx+

∞∫
0

e−
∫ x+t
x µ(a)daI0(x)dx

by substitution. Using the formula

d

dt

∫ b(t)

a(t)
f(t, x)dx = f(t, b(t))b′(t)− f(t, a(t))a′(t) +

∫ b(t)

a(t)

∂

∂t
f(t, x)dx
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we get

d

dt
I(t) = σ

J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)−

t∫
0

µ(t− x)e−
∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx−

∞∫
0

µ(x+ t)e−
∫ x+t
x µ(a)daI0(x)dx.

We also need an equation to determine J(t). As is to be suspected by its definition, these
equation is very similar to that for I(t) and can be derived analogically.

J(t) =

∞∫
0

i(α)Ī(t, α)dα =

t∫
0

i(t− x)e−
∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx+

∞∫
0

i(x+ t)e−
∫ x+t
x µ(a)daI0(x)dx

and

d

dt
J(t) = i(0)

(
σ

J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)

)
+∫ t

0
(i′(t− x)− i(t− x)µ(t− x))e−

∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx+∫ ∞

0
(i′(x+ t)− i(x+ t)µ(x+ t))e−

∫ x+t
x µ(a)daI0(x)dx.
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This yields the following system of integro-differential equations to determine S(t), I(t), and
J(t).

Ṡ(t) = −σ J(t)

S(t) + I(t)
S(t) + λ(S, I)S(t) + εη(S, I)I(t),

İ(t) = σ
J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)−∫ t

0
µ(t− x)e−

∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx−∫ ∞

0
µ(x+ t)e−

∫ x+t
x µ(a)daI0(x)dx,

J̇(t) = i(0)

(
σ

J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)

)
+∫ t

0
(i′(t− x)− i(t− x)µ(t− x))e−

∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx+∫ ∞

0
(i′(x+ t)− i(x+ t)µ(x+ t))e−

∫ x+t
x µ(a)daI0(x)dx.

2.2 Comparison between models

We now want to explore the connection between the system we just derived and the original one
a little bit closer. For this we assume, that µ and i are constants, independent of α. In that
case J(t) = iI(t). Since the constant i can be incorporated into σ, we assume without loss of
generality, that i = 1. The resulting systems looks like this

Ṡ(t) = −σ I(t)

S(t) + I(t)
S(t) + λ(S, I)S(t) + εη(S, I)I(t),

İ(t) = σ
I(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)−∫ t

0
µe−(t−x)µ

(
σ

I(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx−∫ ∞

0
µe−tµI0(x)dx,

which can be written as

Ṡ(t) = −σ I(t)

S(t) + I(t)
S(t) + λ(S, I)S(t) + εη(S, I)I(t),

İ(t) = σ
I(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)−

µe−tµ
(∫ t

0
exµ
(
σ

I(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx+ I(0)

)
.
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We can get rid of the integral in this equations by introducing an auxiliary variable H to get

Ṡ(t) = −σ I(t)

S(t) + I(t)
S(t) + λ(S, I)S(t) + εη(S, I)I(t),

İ(t) = σ
I(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)− µe−tµH(t),

Ḣ(t) = etµ
(
σ

I(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)

)
,

with H(0) = I(0).
If we consider f(t) = etµI(t)−H(t) we get

f ′(t) = (etµI(t)−H(t))′ = µetµI(t) + etµI ′(t)−H ′(t) = µetµI(t)− µH(t) = µf(t),

so

f(t) = cetµ.

Since

f(0) = e0µI(0)−H(0) = I(0)−H(0) = 0,

we get c = 0, i.e.

etµI(t)−H(t) = f(t) = 0etµ = 0,

and therefore

H(t) = etµI(t).

Putting this in our system yields

Ṡ(t) = −σ I(t)

S(t) + I(t)
S(t) + λ(S, I)S(t) + εη(S, I)I(t),

İ(t) = σ
I(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)− µI(t),

which is for our choice of δ(S, I) exactly the homogeneous model we took as our starting point.

2.3 Eliminating the initial data

Turning back to the system dependent on α, our main problem remains that in order to calculate
a solution, we need to know the boundary condition I0(α). In order to deal with this, we

introduce a function g(t), yet to be defined, and replace the term
∫∞

0 µ(x+ t)e
∫ x+t
x µ(a)daI0(x)dx

with g(t)I(0). The resulting equation

İ(t) = σ
J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)− g(t)I(0)∫ t

0
µ(t− x)e−

∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx
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would yield the same result if g(t)I(0) =
∫∞

0 µ(x+t)e
∫ x+t
x µ(a)daI0(x)dx. We rewrite the difference

between these two terms as

g(t)I(0)−
∞∫

0

µ(x+ t)e
∫ x+t
x µ(a)daI0(x)dx = g(t)

∞∫
0

I0(x)dx−
∞∫

0

µ(x+ t)e
∫ x+t
x µ(a)daI0(x)dx =

∞∫
0

(
g(t)− µ(x+ t)e

∫ x+t
x µ(a)da

)
I0(x)dx =

〈
g(t)− µ(·+ t)e−

∫ ·+t
· µ(a)da, I0(·)

〉
L2[0,∞]

.

This suggests that a reasonable approximation to the correct solution might be found by choos-

ing g(t) as a minimizer of
∥∥∥g(t)− µ(·+ t)e−

∫ ·+t
· µ(a)da

∥∥∥
L2[0,∞]

. The obvious advantage of this

approach is that it is independent of the boundary condition I0(α) and thus can be calculated
without its knowledge.

We will however define g(t) as the minimizer of weighted L2 norm. One technical reason for
this is to ensure that the norm stays finite. But another one is also to allow for the possibility
to incorporate partial knowledge about I0(α) into the calculation.

For a non-negative function w(x) we define the weighed L2 norm of a function f(x) as

‖f(·)‖L2([0,∞],w(.)) =

√√√√√ ∞∫
0

f(x)2w(x)dx =
∥∥∥f(·)

√
w(·)

∥∥∥
L2[0,∞]

.

Since
∥∥∥(g(t)− µ(·+ t)e−

∫ ·+t
· µ(a)da

)√
w(·)

∥∥∥
L2[0,∞]

depends smoothly on g(t) we can identify

g(t) by setting

0 =
d

dg(t)

∥∥∥(g(t)− µ(·+ t)e−
∫ ·+t
· µ(a)da

)√
w(·)

∥∥∥2

L2[0,∞]
=

d

dg(t)

∞∫
0

((
g(t)− µ(x+ t)e−

∫ x+t
x µ(a)da

)√
w(x)

)2
dx =

∞∫
0

2
(
g(t)− µ(x+ t)e−

∫ x+t
x µ(a)da

)
w(x)dx =

2g(t)

∞∫
0

w(x)dx− 2

∞∫
0

µ(x+ t)e−
∫ x+t
x µ(a)daw(x)dx =

2g(t)
∥∥∥√w(·)

∥∥∥2

L2[0,∞]
− 2

〈
µ(·+ t)e−

∫ ·+t
· µ(a)da, w(·)

〉
L2[0,∞]

.
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Thus

g(t) =

〈
µ(·+ t)e−

∫ x+t
x µ(a)da, w(·)

〉
L2[0,∞]∥∥∥√w(·)

∥∥∥2

L2[0,∞]

=

∞∫
0

µ(x+ t)e−
∫ x+t
x µ(a)daw(x)dx

∞∫
0

w(x)dx

.

This allows to incorporate information about I0(x) into the calculation for g(t). If we know for
example the decay rate of I0(x) or, more generally, know that we can decompose I0(x) = w(x)l(x)
with known w(x) but unknown l(x), the weight can be chosen accordingly. In particular, if we
do know I0(x), choosing w(x) = I0(x) yields

g(t)I(0) = I(0)

∞∫
0

µ(x+ t)e−
∫ x+t
x µ(a)daI0(x)dx

∞∫
0

I0(x)dx

=

∞∫
0

µ(x+ t)e−
∫ x+t
x µ(a)daI0(x)dx

and will therefore produce the exact result.
To deal with the appearance of I0(α) in the equation for J̇(t), we employ exactly the same

line of reasoning to introduce a function h(t) by

h(t) =

〈
(i′(·+ t)− i(·+ t)µ(·+ t)) e−

∫ ·+t
· µ(a)da, w(·)

〉
L2[0,∞]∥∥∥√w(·)

∥∥∥2

L2[0,∞]

=

∞∫
0

(i′(x+ t)− i(x+ t)µ(x+ t)) e−
∫ x+t
x µ(a)daw(x)

∞∫
0

w(x)dx

.
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The resulting system is

Ṡ(t) = −σ J(t)

S(t) + I(t)
S(t) + λ(S, I)S(t) + εη(S, I)I(t),

İ(t) = σ
J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)−∫ t

0
µ(t− x)e−

∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx−

I(0)∫∞
0 w(x)dx

∞∫
0

µ(x+ t)e−
∫ x+t
x µ(a)daw(x)dx,

J̇(t) = i(0)

(
σ

J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)

)
+∫ t

0
(i′(t− x)− i(t− x)µ(t− x))e−

∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx+

I(0)∫∞
0 w(x)dx

∞∫
0

(i′(x+ t)− i(x+ t)µ(x+ t))e−
∫ x+t
x µ(a)daw(x)dx.

If we scale w(x) such that
∫∞

0 w(x)dx = I(0) this reduces to simply replacing I0(x) with w(x).
The above considerations show that this obvious step is in a certain sense also the best possible
action to take.

A seemingly different way of defining g(t) can also be derived from the above considera-
tions. It is reasonable to assume that I0(x) has bounded support, i.e. I0(x) = 0 for x ≥ T .
If we know T (or treat is as a parameter to be found), the term we want to minimize is∥∥∥g(t)− µ(·+ t)e−

∫ ·+t
· µ(a)da

∥∥∥
L2[0,T ]

. As the above equations show, this is achieved by defining

g(t) as the root of f(s) =
∫ T

0 s− µ(x+ t)e−
∫ x+t
x µ(a)dadx. This gives

g(t) =
1

T

T∫
0

µ(x+ t)e−
∫ x+t
x µ(a)dadx,
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which yields the system

Ṡ(t) = −σ J(t)

S(t) + I(t)
S(t) + λ(S, I)S(t) + εη(S, I)I(t),

İ(t) = σ
J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)−∫ t

0
µ(t− x)e−

∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx−

I(0)

T

T∫
0

µ(x+ t)e−
∫ x+t
x µ(a)dadx,

J̇(t) = i(0)

(
σ

J(t)

S(t) + I(t)
S(t) + (1− ε)η(S, I)I(t)

)
+∫ t

0
(i′(t− x)− i(t− x)µ(t− x))e−

∫ t−x
0 µ(a)da

(
σ

J(x)

S(x) + I(x)
S(x) + (1− ε)η(S, I)I(x)

)
dx+

I(0)

T

T∫
0

(i′(x+ t)− i(x+ t)µ(x+ t))e−
∫ x+t
x µ(a)dadx.

This coincides with the previous system and the choice of w(x) = χ[0,T ](x), where χ[0,T ](x)
denotes the characteristic function of the set [0, T ].

3 A static heterogeneity

A different way of introducing heterogeneity into the original system is to divide the population
according to some traits like genetic markers, natural resistance towards a disease, or social
behaviour that influences the spreading of disease.

We assume that every individual has a trait ω ∈ Ω that influences the risk of an individual by
a factor p(ω) or q(ω) for susceptible or infected individuals respectively. This turns the original
model into (see again [10])

˙̄S(t, ω) = −σp(ω)
J(t)

R(t) + J(t)
S̄(t, ω) + λ(S, I)S̄(t, ω) + γ(S, I)

I(t)

S(t)
S̄(t, ω), S̄(0, ω) = S0(ω),

˙̄I(t, ω) = σp(ω)
J(t)

R(t) + J(t)
S̄(t, ω)− δ(S, I)Ī(t, ω), Ī(0, ω) = I0(ω),
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where

S(t) =

∫
Ω
S̄(t, ω)dω,

I(t) =

∫
Ω
Ī(t, ω)dω,

R(t) =

∫
Ω
p(ω)S̄(t, ω)dω,

J(t) =

∫
Ω
q(ω)Ī(t, ω)dω.

Again our lack of knowledge about the initial conditions S0(ω) and I0(ω) and the inability to
measure S(t, ω) or I(t, ω) at any subsequent point in time forces us again to reduce this infinite
dimensional system to one containing only the quantities S(t), I(t), R(t), and J(t). In order to
do so we first consider a more general problem.

3.1 A general solution

The theorem we prove in this section is a generalization of a theorem presented in [5].
We consider a system of the Form

d

dt
n1(t, a) = n1(t, a)F1(t, a),

d

dt
n2(t, a) = n2(t, a)F2(t, a) + n1(t, a)F3(t, a).

(1)

The functions F1, F2, F3 on the right hand side have the form

F1(t, a) =

n∑
i=1

ui(t, G
1
τ11

(t), . . . , G1
τ1a1

(t), G2
κ11

(t), . . . , G2
κ1b1

(t))φi(a),

F2(t, a) =

m∑
j=1

vj(t, G
1
τ21

(t), . . . , G1
τ2a2

(t), G2
κ21

(t), . . . , G2
κ2b2

(t))φj(a),

F3(t, a) =

o∑
k=1

wk(t, G
1
τ31

(t), . . . , G1
τ3a3

(t), G2
κ31

(t), . . . , G2
κ3b3

(t))φk(a).

Here, all functions ui, vj , wk, φi, φj , φk are given, while a function Gji (t) is defined by

Gji (t) =

∫
A
gi(a)nj(t, a)da,

where gi is a given function.
For d = 1, 2 define

Nd(t) =

∫
A
nd(t, a)da,
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and

Pd(t, a) =
nd(t, a)

Nd(t)
.

Further, define the generating functionals

Φ1(r, λ) =

∫
A
r(a) exp(

n∑
i=1

λiφi(a))P1(0, a)da

and

Φ2(r, λ) =

∫
A
r(a) exp(

m∑
j=1

λjφj(a))P2(0, a)da,

where r(a) is measurable function on A and λ is vector of appropriate length.

Define auxiliary variables as solutions to the system of differential equations

d

dt
q1,i(t) = ui(t, G

1*

τ11
(t), . . . , G1*

τ1a1
(t), G2*

κ11
(t), . . . , G2*

κ1b1
(t)), q1,i(0) = 0, i = 1, . . . , n,

d

dt
q2,j(t) = vj(t, G

1*

τ21
(t), . . . , G1*

τ2a2
(t), G2*

κ21
(t), . . . , G2*

κ2b2
(t)), q2,j(0) = 0, j = 1, . . . ,m,

d

dt
q3,k(t) = wk(t, G

1*

τ31
(t), . . . , G1*

τ3a3
(t), G2*

κ31
(t), . . . , G2*

κ3b3
(t)), q3,k(0) = 0, k = 1, . . . , o,

d

dt
M(t, a) =

F ∗3 (t, a)

K3(t, a)
−M(t, a) (F ∗1 (t, a) + F ∗3 (t, a)− F ∗2 (t, a)) , M(0, a) = 0.

(2)

Here, Gi
*

j is defined by

G1*

i (t) = N1(0)Φ1(gi, q1(t)),

G2*

i (t) = N2(0)Φ2(gi, q2(t)) +

∫
A
gi(a)K1(t, a)K3(t, a)M(t, a)n1(0, a)da,

the Kj(t, a) are defined by

K1(t, a) = exp

(
n∑
i=1

q1,i(t)φi(a)

)
,

K2(t, a) = exp

 m∑
j=1

q2,j(t)φj(a)

 ,

K3(t, a) = exp

(
o∑

k=1

q3,k(t)φk(a)

)
,
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and the F ∗j (t, a) denote the functions

F ∗1 (t, a) =

n∑
i=1

ui(t, G
1*

τ11
(t), . . . , G1*

τ1a1
(t), G2*

κ11
(t), . . . , G2*

κ1b1
(t))φi(a),

F ∗2 (t, a) =
m∑
j=1

vj(t, G
1*

τ21
(t), . . . , G1*

τ2a2
(t), G2*

κ21
(t), . . . , G2*

κ2b2
(t))φj(a),

F ∗3 (t, a) =

o∑
k=1

wk(t, G
1*

τ31
(t), . . . , G1*

τ3a3
(t), G2*

κ31
(t), . . . , G2*

κ3b3
(t))φk(a).

Theorem 1 For 0 < T < ∞, let {q1(t), q2(t), q3(t),M(t, a)} be a unique solution to (2) at
t ∈ [0, T ). Then the functions

n1(t, a) = n1(0, a)K1(t, a),

n2(t, a) = n2(0, a)K2(t, a) + n1(0, a)K1(t, a)K3(t, a)M(t, a),

Gji (t) = Gj*i (t),

solve (1) at t. Conversely, if {n1(t, a), n2(t, a), Gji (t)} is a solution of (1) at t ∈ [0, T ), then (2)

has a solution at t and n1, n2, and G
j
i can be written as above.

Proof: First, we see that both

G1
i (t) =

∫
A
gi(a)n1(t, a)da =

∫
A
gi(a)n1(0, a)K1(t, a)da = N1(0)Φ1(gi, q1(t)) = G1*

i (t)

and

G2
i (t) =

∫
A
gi(a)n2(t, a)da =∫

A
gi(a)n2(0, a)K2(t, a)da+

∫
A
gi(a)n1(0, a)K1(t, a)K3(t, a)M(t, a)da = G2*

i (t)

hold true, so the definition of the Gji (t) is consistent.
Consequently, we get

d

dt
n1(t, a) = n1(0, a)

d

dt
K1(t, a) = n1(0, a)K1(t, a)

n∑
i=1

d

dt
q1,i(t)φi(a) = n1(t, a)F1(t, a)
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and

d

dt
n2(t, a) = n2(0, a)

d

dt
K2(t, a) + n1(0, a)

d

dt
(K1(t, a)K3(t, a)M(t, a)) =

n2(0, a)K2(t, a)F2(t, a) + n1(0, a) ∗(
d

dt
K1(t, a)K3(t, a)M(t, a) +K1(t, a)

d

dt
K3(t, a)M(t, a) +K1(t, a)K3(t, a)

d

dt
M(t, a)

)
=

n2(0, a)K2(t, a)F2(t, a) + n1(0, a)K1(t, a) ∗(
F1(t, a)K3(t, a)M(t, a) +K3(t, a)F3(t, a)M(t, a) +

K3(t, a)

(
F3(t, a)

K3(t, a)
−M(t, a)(F1(t, a) + F3(t, a)− F2(t, a))

))
=

n2(0, a)K2(t, a)F2(t, a) + n1(0, a)K1(t, a) (F3(t, a) +K3(t, a)F2(t, a)M(t, a)) =

(n2(0, a)K2(t, a) + n1(0, a)K1(t, a)K3(t, a)M(t, a))F2(t, a) + n1(0, a)K1(t, a)F3(t, a) =

n2(t, a)F2(t, a) + n1(t, a)F3(t, a).

Conversely, suppose n1(t, a) satisfies (1). Define

q∗1,i(t) =

∫ t

0
ui(θ,G

1
τ11

(θ), . . . , G1
τ1a1

(θ), G2
κ11

(θ), . . . , G2
κ1b1

(θ))dθ

and

K1(t, a) = exp

(
n∑
i=1

q∗1,i(t)φi(a)

)
.

Now consider

d

dt
(n1(t, a)− n(0, a)K1(t, a)) = n1(t, a)F1(t, a)− n1(0, a)K1(t, a)F1(t, a) =

(n1(t, a)− n(0, a)K1(t, a))F1(t, a).

This differential equation has the solution

n1(t, a)− n(0, a)K1(t, a) = c exp

(∫ t

0
F1(θ, a)dθ

)
.

Evaluating this equation at t = 0 yields c = 0, i.e.

n1(t, a) = n1(0, a)K1(t, a).

Furthermore, we have

G1
i (t) =

∫
A
gi(a)n1(t, a)da =

∫
A
gi(a)n1(0, a)K1(t, a)da = N1(0)Φ1(gi, q1(t)) = G1*

i (t)
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Similarly, define

q∗2,j =

∫ t

0
vj(θ,G

1
τ21

(θ), . . . , G1
τ2a2

(θ), G2
κ21

(θ), . . . , G2
κ2b2

(θ))dθ,

q∗3,k =

∫ t

0
wk(θ,G

1
τ31

(θ), . . . , G1
τ3a3

(θ), G2
κ31

(θ), . . . , G2
κ3b3

(θ))dθ,

K2(t, a) = exp

 m∑
j=1

q∗2,j(t)φj(a)

 ,

K3(t, a) = exp

(
o∑

k=1

q∗3,k(t)φk(a)

)
,

and M(t, a) with

d

dt
M(t, a) =

F3(t, a)

K3(t, a)
−M(t, a)(F1(t, a) + F3(t, a)− F2(t, a)), M(0, a) = 0.

Then for n2(t, a) satisfying (1) we get

d

dt
(n2(t, a)− n2(0, a)K2(t, a)− n1(0, a)K1(t, a)K3(t, a)M(t, a)) =

n2(t, a)F2(t, a) + n1(t, a)F3(t, a)− n2(0, a)K2(t, a)F2(t, a)−
n1(0, a)K1(t, a)F3(t, a)− n1(0, a)K1(t, a)K3(t, a)F2(t, a)M(t, a) =

(n2(t, a)− n2(0, a)K2(t, a)− n1(0, a)K1(t, a)K3(t, a)M(t, a))F2(t, a),

since we already know, that n1(t, a) = n1(0, a)K1(t, a). As above this yields

n2(t, a) = n2(0, a)K2(t, a) + n1(0, a)K1(t, a)K3(t, a)M(t, a),

and also G2
i (t) = G2*

i (t).
2

3.2 Reducing the system

We return to the model

˙̄S(t, ω) = −σp(ω)
J(t)

R(t) + J(t)
S̄(t, ω) + λ(S, I)S̄(t, ω) + γ(S, I)

I(t)

S(t)
S̄(t, ω),

˙̄I(t, ω) = σp(ω)
J(t)

R(t) + J(t)
S̄(t, ω)− δ(S, I)Ī(t, ω),
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where

S(t) =

∫
Ω
S̄(t, ω)dω,

I(t) =

∫
Ω
Ī(t, ω)dω,

R(t) =

∫
Ω
p(ω)S̄(t, ω)dω,

J(t) =

∫
Ω
q(ω)Ī(t, ω)dω.

We set

u1(S, I,R, J) = −σ J(t)

R(t) + J(t)
,

u2(S, I,R, J) = λ(S, I) + γ(S, I)
I(t)

S(t)
,

v(S, I,R, J) = −δ(S, I),

w(S, I,R, J) = σ
J(t)

R(t) + J(t)
,

then

˙̄S(t, ω) = S̄(t, ω) (u1(S, I,R, J)p(ω) + u2(S, I,R, J)) ,

˙̄I(t, ω) = Ī(t, ω)v(S, I,R, J) + S̄(t, ω)w(S, I,R, J)p(ω).

Define

d

dt
q1,1(t) = u1(S∗, I∗, R∗, J∗), q1,1(0) = 0,

d

dt
q1,2(t) = u2(S∗, I∗, R∗, J∗), q1,2(0) = 0,

d

dt
q2(t) = v(S∗, I∗, R∗, J∗), q2(0) = 0,

d

dt
q3(t) = w(S∗, I∗, R∗, J∗), q3(0) = 0,

d

dt
M(t, ω) =

w(S∗, I∗, R∗, J∗)p(ω)

exp (q3(t)p(ω))
−M(t, ω) (u2(S∗, I∗, R∗, J∗)− v(S∗, I∗, R∗, J∗)) , M(0, ω) = 0,
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with

S∗(t) =

∫
Ω

exp (q1,1(t)p(ω) + q1,2(t)) S̄(0, ω)dω,

I∗(t) =

∫
Ω

exp (q2(t)) Ī(0, ω)dω +

∫
Ω

exp(q1,1(t)p(ω) + q1,2(t) + q3(t)p(ω))M(t, ω)S̄(0, ω)dω,

R∗(t) =

∫
Ω
p(ω) exp (q1,1(t)p(ω) + q1,2(t)) S̄(0, ω)dω,

J∗(t) =

∫
Ω
q(ω) exp (q2(t)) Ī(0, ω)dω +∫

Ω
q(ω) exp(q1,1(t)p(ω) + q1,2(t) + q3(t)p(ω))M(t, ω)S̄(0, ω)dω.

From Theorem 1 we know that

S̄(t, ω) = S̄(0, ω) exp(q1,1(t)p(ω) + q1,2(t)),

Ī(t, ω) = Ī(0, ω) exp(q2(t)) + S̄(0, ω) exp(q1,1(t)p(ω) + q1,2(t) + q3(t)p(ω))M(t, ω),

S(t) = S∗(t),

I(t) = I∗(t),

R(t) = R∗(t),

J(t) = J∗(t),

is a solution of the system. Differentiating S(t) and I(t) to get differential equations for them
yields

Ṡ(t) = u1(S, I,R, J)

∫
Ω
p(ω) exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
S̄(0, ω)dω +

u2(S, I,R, J)S(t),

İ(t) = v(S, I,R, J)I(t)−

u1(S, I,R, J)

∫
Ω
p(ω) exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
S̄(0, ω)dω.

Seeing that

R(t) =

∫
Ω
p(ω)S̄(t, ω)dω =

∫
Ω
p(ω)S̄(0, ω) exp(q1,1(t)p(ω) + q1,2(t))dω =∫

Ω
p(ω) exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
S̄(0, ω)dω,

we get

Ṡ(t) = u1(S, I,R, J)R(t) + u2(S, I,R, J)S(t),

İ(t) = v(S, I,R, J)I(t)− u1(S, I,R, J)R(t).
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Doing the same for R(t) and J(t) gives the equations

d

dt
R(t) =

d

dt

∫
Ω
p(ω)S̄(t, ω)dω =

d

dt

∫
Ω
p(ω)S̄(0, ω) exp(q1,1(t)p(ω) + q1,2(t))dω =∫

Ω
p(ω) exp(q1,1(t)p(ω) + q1,2(t))

(
d

dt
q1,1(t)p(ω) +

d

dt
q1,2(t)

)
S̄(0, ω)dω =

u1(S, I,R, J)

∫
Ω

(p(ω))2 exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
S̄(0, ω)dω +

u2(S, I,R, J)

∫
Ω
p(ω) exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
S̄(0, ω)dω =

u1(S, I,R, J)

∫
Ω

(p(ω))2 exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
S̄(0, ω)dω +

u2(S, I,R, J)R(t)

and

d

dt
J(t) =

d

dt

∫
Ω
q(ω)Ī(t, ω)dω =

d

dt

∫
Ω
q(ω)

(
Ī(0, ω) exp(q2(t)) + S̄(0, ω) exp(q1,1(t)p(ω) + q1,2(t) + q3(t)p(ω))M(t, ω)

)
dω =∫

Ω
q(ω) exp

(∫ t

0
v(S, I,R, J)τ

)
Ī(0, ω)v(S, I,R, J)dω +∫

Ω
q(ω) exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
w(S, I,R, J)p(ω)S̄(0, ω)dω +∫

Ω
q(ω) exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ +

∫ t

0
w(S, I,R, J)dτp(ω)

)
∗

v(S, I,R, J)M(t, a)S̄(0, ω)dω =

w(S, I,R, J)

∫
Ω
q(ω)p(ω) exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
S̄(0, ω)dω +

v(S, I,R, J)J(t),

since

J(t) =

∫
Ω
q(ω) exp

(∫ t

0
v(S, I,R, J)τ

)
Ī(0, ω)dω +∫

Ω
q(ω) exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ +

∫ t

0
w(S, I,R, J)dτp(ω)

)
∗

M(t, a)S̄(0, ω)dω.
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Thus we get the closed system

Ṡ(t) = u1(S, I,R, J)R(t) + u2(S, I,R, J)S(t),

İ(t) = v(S, I,R, J)I(t)− u1(S, I,R, J)R(t),

Ṙ(t) = u2(S, I,R, J)R(t) +

u1(S, I,R, J)

∫
Ω

(p(ω))2 exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
S̄(0, ω)dω,

J̇(t) = v(S, I,R, J)J(t) +

w(S, I,R, J)

∫
Ω
q(ω)p(ω) exp

(∫ t

0
u1(S, I,R, J)dτp(ω) +

∫ t

0
u2(S, I,R, J)dτ

)
S̄(0, ω)dω,

where S(0), I(0), R(0), J(0), S(0, ω), p(ω), and q(ω) need to be given.
Substituting the terms u1, u2, v, and w to apply to our specific model we get

Ṡ(t) = −σ J(t)

R(t) + J(t)
R(t) +

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
S(t),

İ(t) = −δ(S, I)I(t) + σ
J(t)

R(t) + J(t)
R(t),

Ṙ(t) =

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
R(t)− σ J(t)

R(t) + J(t)
e
∫ t
0 λ(S,I)+γ(S,I)

I(τ)
S(τ)

dτ ∗∫
Ω

(p(ω))2e
−

∫ t
0 σ

J(τ)
R(τ)+J(τ)

dτp(ω)
S0(ω)dω,

J̇(t) = −δ(S, I)J(t) + σ
J(t)

R(t) + J(t)
e
∫ t
0 λ(S,I)+γ(S,I)

I(τ)
S(τ)

dτ
∫

Ω
q(ω)p(ω)e

−
∫ t
0 σ

J(τ)
R(τ)+J(τ)

dτp(ω)
S0(ω)dω.

3.3 Comparison between models

We again want to show how this model reduces to the original model if we get rid of the
heterogeneity. So we will assume that p(ω) = p and q(ω) = q are constant.
In this case the equation for R(t) can be written as

Ṙ(t) =

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
R(t)−σ J(t)

R(t) + J(t)
e
∫ t
0 −σ

J(τ)
R(τ)+J(τ)

p+λ(S,I)+γ(S,I)
I(τ)
S(τ)

dτ
p2

∫
Ω
S0(ω)dω.

Noting that we can write

p

∫
Ω
S0(ω)dω =

∫
Ω
pS0(ω)dω = R(0),

and also know that

R(t) = R(0)e
∫ t
0 −σ

J(τ)
R(τ)+J(τ)

p+λ(S,I)+γ(S,I)
I(τ)
S(τ)

dτ
,

this can be written as

Ṙ(t) =

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
R(t)− σ J(t)

R(t) + J(t)
pR(t).
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Define f(t) = pS(t)−R(t). Obviously we have f(0) = 0. For the derivative we get

d

dt
f(t) = pṠ(t)− Ṙ(t) =

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
(pS(t)−R(t)) =

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
f(t),

which shows that

f(t) = ce
∫ t
0 λ(S,I)+γ(S,I)

I(τ)
S(τ)

dτ
.

Since f(0) = 0, we have c = 0, i.e. R(t) = pS(t).
Completely analogous reasoning shows that J(t) = qI(t). This leads to the system

Ṡ(t) = −σ qI(t)

pS(t) + qI(t)
pS(t) +

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
S(t),

İ(t) = −δ(S, I)I(t) + σ
qI(t)

pS(t) + qI(t)
pS(t).

In particular, if p = q = 1 the resulting system is exactly the original one. Also, if p = q the
resulting system is

Ṡ(t) = −σp I(t)

S(t) + I(t)
S(t) +

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
S(t),

İ(t) = −δ(S, I)I(t) + σp
I(t)

S(t) + I(t)
S(t),

which is again exactly the original model if we incorporate the constant p into the constant σ.

3.4 Eliminating the initial data

One way to deal with the unknown function S0(ω) is to repeat everything we did in section 2.3
to reach the same conclusions as before.
Under two additional assumptions however, we are able to simplify the model even further. We
will therefore assume

1. p(ω) and q(ω) are linear functions of ω,

2. f(ω) = S0(ω)
S(0) is the probability density function of a generalized inverse Gaussian distri-

bution.

ad 1.) We will restrict ourselves to the case p(ω) = ω and q(ω) = κω for some κ ∈ R. Letting
p(ω) and q(ω) take a more general form would only complicate notation. Furthermore, every
important aspect of the calculation is already included when considering this easy functional
form.
ad 2.) Since the integral over S0(ω)

S(0) is 1 we can treat it as a probability density function f(ω). This
can be interpreted as the distribution of the trait ω amongst the initial susceptible population
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S(0). The generalized inverse Gaussian distribution is a distribution with three parameters
a > 0, b > 0, and p ∈ R. Its probability density function is

f(ω) =

(
a
b

) p
2

2Kp(
√
ab)

ωp−1e−
aω
2
− b

2ω

with parameters a, b, and p, where Kp is the modified Bessel function of second kind, i.e.

Iα(x) =
∞∑
m=0

1

m!Γ(m+ α+ 1)

(x
2

)2m+α
,

Kα(x) =
π

2

I−α(x)− Iα(x)

sin(απ)
.

The moments of a generalized inverse Gaussian with parameters a, b, and p are given by

E[ωn] =

(
b

a

)n
2 Kp+n(

√
ab)

Kp(
√
ab)

.

The generalized inverse Gaussian is a very general distribution and includes for example the
Wald and Gamma distributions as special or limit cases.

Using these two assumptions turns our system into

Ṡ(t)= −σ J(t)

R(t) + J(t)
R(t) +

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
S(t),

İ(t)= −δ(S, I)I(t) + σ
J(t)

R(t) + J(t)
R(t),

Ṙ(t)=

(
λ(S, I)+γ(S, I)

I(t)

S(t)

)
R(t)−σ J(t)

R(t) + J(t)
e
∫ t
0 λ(S,I)+γ(S,I)

I(τ)
S(τ)

dτ
S(0)

∫
Ω
ω2e

−
∫ t
0 σ

J(τ)
R(τ)+J(τ)

dτω
f(ω)dω,

J̇(t)= −δ(S, I)J(t) + σ
J(t)

R(t) + J(t)
e
∫ t
0 λ(S,I)+γ(S,I)

I(τ)
S(τ)

dτ
κS(0)

∫
Ω
ω2e

−
∫ t
0 σ

J(τ)
R(τ)+J(τ)

dτω
f(ω)dω.

We will look more closely at the term∫
Ω
ω2e

−
∫ t
0 σ

J(τ)
R(τ)+J(τ)

dτω
f(ω)dω.
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We will abbreviate c(t) = −
∫ t

0 σ
J(τ)

R(τ)+J(τ)dτ . It is now possible to rewrite

∫
Ω
ω2ec(t)ωf(ω)dω =

∫
Ω
ω2ec(t)ω

(
a
b

) p
2

2Kp(
√
ab)

ωp−1e−
aω
2
− b

2ω dω =

∫
Ω
ω2

(
a
b

) p
2

2Kp(
√
ab)

ωp−1e(c(t)−
a
2 )ω− b

2ω dω =

∫
Ω
ω2

(
a
b

) p
2

2Kp(
√
ab)

ωp−1e
(2c(t)−a)ω

2
− b

2ω dω =

a
p
2 2Kp(

√
(a− 2c(t))b)

(a− 2c(t))
p
2 2Kp(

√
ab)

∫
Ω
ω2

(
a−2c(t)

b

) p
2

2Kp(
√

(a− 2c(t))b)
ωp−1e−

(a−2c(t))ω
2

− b
2ω dω.

We now see that the integral in the last term can be interpreted as the second moment of
generalized inverse Gaussian distribution with the parameters a− 2c(t), b, and p. We therefore
get ∫

Ω
ω2ec(t)ωf(ω)dω =

a
p
2 2Kp(

√
(a− 2c(t))b)

(a− 2c(t))
p
2 2Kp(

√
ab)

b

a− 2c(t)

Kp+2(
√

(a− 2c(t))b)

Kp(
√

(a− 2c(t))b)
=

a
p
2 b

(a− 2c(t))
p
2

+1

Kp+2(
√

(a− 2c(t))b)

Kp(
√
ab)

.

Putting this in our model yields the following system

Ṡ(t) = −σ J(t)

R(t) + J(t)
R(t) +

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
S(t),

İ(t) = −δ(S, I)I(t) + σ
J(t)

R(t) + J(t)
R(t),

Ṙ(t) =

(
λ(S, I) + γ(S, I)

I(t)

S(t)

)
R(t)− σ J(t)

R(t) + J(t)
e
∫ t
0 λ(S,I)+γ(S,I)

I(τ)
S(τ)

dτ ∗

S(0)
a
p
2 b(

a+ 2
∫ t

0 σ
J(τ)

R(τ)+J(τ)dτ
) p

2
+1

Kp+2

(√
(a+ 2

∫ t
0 σ

J(τ)
R(τ)+J(τ)dτ)b

)
Kp

(√
ab
) ,

J̇(t) = −δ(S, I)J(t) + σ
J(t)

R(t) + J(t)
e
∫ t
0 λ(S,I)+γ(S,I)

I(τ)
S(τ)

dτ ∗

κS(0)
a
p
2 b(

a+ 2
∫ t

0 σ
J(τ)

R(τ)+J(τ)dτ
) p

2
+1

Kp+2

(√
(a+ 2

∫ t
0 σ

J(τ)
R(τ)+J(τ)dτ)b

)
Kp

(√
ab
) .

With the initial conditions S(0) and I(0) known, this model now only depends on the parameters
a, b, and p as well as the initial condition for J (The value R(0) can be calculated with the
knowledge of a, b, and p).
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