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Optimal cyclic exploitation of renewable resources∗

A.O. Belyakov† A. Davydov‡ V.M. Veliov§

Abstract

The paper contributes to the topic of optimal utilization of spatially dis-
tributed renewable resources. Namely, a problem of “sustainable” optimal
cyclic exploitation of a renewable resource with logistic law of recovery is in-
vestigated. The resource is distributed on a circle and is collected by a single
harvester moving along the circle. The recovering and harvesting rates are
position-dependent, and the latter depends also on the speed of the harvester,
which is considered as a control. Existence of an optimal solution is proved,
as well as necessary optimality conditions for the velocity of the harvester. On
this base, a numerical approach is proposed, and some qualitative properties of
the optimal solutions are established. The results are illustrated by numerical
examples, which reveal some economically meaningful features of the optimal
harvesting.

Keywords:

1 Introduction

The issue of optimal extraction of spatially distributed renewable resources is gain-
ing a considerable and growing attention during the past decade (see e.g. [5, 4, 6, 7]).
On the other hand, it poses analytical challenges, especially in models where the
space is heterogeneous, meaning that some parameters (then also the optimal po-
lices) are position-dependent, as in [5, 4, 6] and in the present paper.

Paper [7] considers an agent moving around a circle and harvesting renewable
natural resource at her location. The speed of the motion and the amount of harvest
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at each time are chosen to maximize the profit (revenue minus expenses for harvest-
ing and speed) discounted over the finite time. Paper [5] is devoted to the stability
of patterns on a circle, created by the state variable in an distributed infinite-horizon
optimal control problem. In [4] a similar special-diffusion optimal control problem
is considered with different practical examples including distributed (on a circle)
fishing around an island. Paper [6] studies a system with two state variables dis-
tributed on a circle with diffusion and harvesting by distributed agents. Along
with a decentralized case a social planner problem is analyzed, where discounted
aggregated utilities of all agents are maximized over infinite time.

The present paper studies the problem of optimal harvesting where the space is a
circle. The resource grows according to the logistic dynamic low with parameters de-
pending on the position on the circle. Resource is collected by a harvester at a single
point at each moment of time. The harvesting intensity is assumed to be determined
by the speed of the harvester at its current position and the detection/extraction
(acquisition) rate at this position. The latter is a given (space-heterogeneous) data,
while the former is viewed as a decision variable (control), which is assumed time-
invariant. That is, the control—the speed of the harvester—depends only on the
position of the harvester on the circle, and is kept the same on each round. In
other words, an optimal cyclic harvesting is sought, where the optimality criterion
is formulated in terms of the long run economic revenue from the harvesting, being
in this way consistent with the concept of sustainable utilization of the resource.
Formally, the objective function represents the limit, with the time going to infinity,
of the revenue per unit of time. Thus the considered problem belongs to the class of
averaged infinite-horizon problems []. VV: Alexey, please give a reference.

The model considered in this paper differs from [7] in that (i) homogeneity of the
space is assumed in [7], (ii) the dynamics of the resource is simpler in [7] (exponential
growth, rather than a logistic one), (iii) the objective is to maximize the total
discounted revenue, while the averaged revenue is maximized here.

On the other hand, papers [5, 4, 6] consider a more complicated resource dy-
namics involving diffusion, which is reasonable for “moving” resources. We consider
resources growing “on the spot”, which is a simplification allowing to obtain more
analytic results. Moreover, the problem considered in the present paper is differ-
ent from those in [5, 4, 6], since (i) we maximize the averaged revenue rather than
the discounted one as in these papers, and (ii) we consider extraction by a moving
harvester, in contrast to the distributed harvesting in [5, 4, 6].

Below we describe the main results, together with the plan of the paper.
In Section 2 we give a precise formulation of the considered problem. Then in

Section 3 we prove that when a cyclic control is applied, the amount of harvested
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resource stabilizes at every point on the circle to an explicitly determined limit
value. This allows to reformulate the original averaged infinite-horizon problem as
a (non-smooth) static distributed optimization problem on the circle.

In Section 4 we prove existence of an optimal control, which is not a standard
task, as far as the static (maximization) problem into question turns out to be
non-concave with respect to the control. The auxiliary properties obtained in this
section are used also in the subsequent considerations.

In Section 5 we prove necessary optimality conditions that result in an approach
for solving the problem numerically. A conceptual algorithm for that is presented,
which reduce the original distributed problem to a scalar one.

Using the obtained optimality conditions we prove in Section 6 some qualitative
properties of the optimal solution, which give some information about the possi-
bility that the optimal harvesting involves periods of recovery without harvesting
or not. Numerical experiments are also presented in this section. They illustrate
and support the theoretical results and show some properties that are interesting
from economic point of view. In particular, it is shown that technological progress
(represented by the acquisition rate) leads, as expected, to a higher revenue, but as
a byproduct it may lead to larger deserted areas (without any resource left in the
long run) and to longer periods of no-harvesting.

Finally, in Section 7 we discuss some reasonable extensions that may be a subject
of a future investigation.

2 Statement of the problem, assumptions and discus-
sions

We begin with a short informal description of our harvesting scenario. The spatial
domain into consideration is a one-dimensional closed curve, which we identify with
the unit circle S1. Assume that some renewable resource grows at each point x ∈
S1. The low of growth can be specific for each point x, thus the space may be
heterogeneous. A “harvesting machine” moves counterclockwise around the circle
and at any time t picks a fraction of the available recourse at its current position
x(t). The harvested fraction depends on the speed of the machine at the current
point. The latter is used as a control variable. Moreover, the harvesting machine
starts at time t = 0 from a point O ∈ S1 and we assume that after each round the
machine can stop and stay for awhile at O, while it moves with a strictly positive
speed on S1 \ {O}.

In the next lines we give a formal description of the above scenario. For t ≥ 0 and
x ∈ S1 we denote by p(t, x) the amount of resource available at position x at time
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t. Strictly speaking, p : [0,∞) × S1 is absolutely continuous in t and measurable
and bounded in x. The dynamics of the resource at point x (if not harvested) is
described by the equation

ṗ(t, x) = (a(x)− b(x)p(t, x)) p(t, x), p(0, x) = p0(x), (1)

where (as everywhere in this paper) an upper dot “ ˙ ” denotes differentiation with
respect to the time t, p0(x) is an initial value, a(x) and b(x) are position-dependent
parameters. As usual in this logistic equation, the parameters a(x) and b(x) char-
acterize recovery and competition processes involved in the evolution of renewable
resources.

Let x : [0,∞) → S1 be an absolutely continuous function representing the
position of the harvesting machine on S1. Then ẋ(t) is the (tangential) velocity of
the machine at the point x(t).

If at time t the machine crosses point x ∈ S1 with a speed v(x) > 0 (that is,
x = x(t) and v(x) = ẋ(t)), then a fraction

1− e−γ(x)r(x)

of the available resource at x is harvested. Here r(x) = 1/v(x) and γ(x) is a resource
acquisition parameter, which characterizes the ability to detect/extract resource at
x. The above expression has its foundation in the retrieval theory. The higher is the
speed v(x) the lower is the value r(x), hence the harvested fraction. The function
r : S1 → (0,∞) is called harvesting effort density (see e.g. [1], [2]).

The harvesting leads to a jump-down of the resource at the point x = x(t)
which the harvesting machine crosses at time t. If r(x) is the harvesting effort at
this point, then

p(t + 0, x) = p(t− 0, x)−
(
1− e−γ(x)r(x)

)
p(t− 0, x) (2)

= e−γ(x)r(x) p(t− 0, x).

In the sequel the effort density r will be used as a control function, therefore we
impose bounds, which are position-specific:

r1(x) ≤ r(x) ≤ r2(x), x ∈ S1, (3)

where 0 < r1(x) ≤ r2(x) are given numbers. Every measurable function r : S1 →
[0,∞) satisfying the above inequalities is called admissible effort. In terms of the
velocity, the above constraints mean that the harvesting machine cannot move with
a speed higher than 1/r1(x) and lower than 1/r2(x) when crossing point x.
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The following assumptions are needed for the formulation of the problem that we
address, and for the further analysis.

Standing assumptions: The functions a, b, p0, γ, r1 and r2 (all defined on S1 and
having real values) are non-negative, (Lebesgue) measurable and bounded, p0(x) is
strictly positive. There exists a subset S ⊂ S1 of positive measure where both a(x)
and γ(x) are strictly positive. For some strictly positive constants b0 and r̄ it holds
that

b(x) ≥ b0, 0 < r1(x) ≤ r2(x) ≤ r̄ for every x ∈ S1.

Given an admissible harvesting effort r, the point x(t) (this is the harvesting
machine) that starts at time t = 0 from the origin O and moves with speed
v(x) = 1/r(x) at position x will return to O at time

Th(r) :=
∫

S1

r(x) dx

(it is assumed that the length of S1 equals 1 in the chosen measurement units). This
follows from the identity τ =

∫ τ
0 dt in which one can change the variable t from

x(t) = s and use that dt = r(s) ds.1 Being back at the origin O, the harvesting
machine can stay there for a certain time T0 ≥ 0. Then at time T = Th(r)+T0. the
harvesting machine moves again around the circle with the same harvesting effort
r(x) (and corresponding speed v(x) = 1/r(x)), followed by a pause T0 at the origin
O. The same motion is repeated further. In this way any admissible effort density
r and time T satisfying ∫

S1

r(x) dx ≤ T (4)

define a periodic motion x(·) with period T around the circle. The corresponding
stopping time is T − Th(r).

Every pair (r, T ) of a measurable function r and T > 0 satisfying (3) and (4)
will be called admissible harvesting policy. The total revenue from the admissible

1The justification of this change of variables, as well as the one that appears below, requires
attention. First of all, within one round the point x(t) can be identified with the distance along
the circle to the origin. Since we have v(x) ≥ 1/r̄, x(t) is a strictly monotone absolutely continuous
function satisfying ẋ(t) = 1/r(x(t)), x(0) = 0. Notice that the superposition r(x(t)) is measurable
thanks to the strict monotonicity of x(·). For the change of the variable t from s = x(t), where
x(t) appears as an argument of a measurable function, one may use [8, Theorem I.4.43].
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harvesting policy (r, T ) in the time period [kT, (k + 1)T ] will be

Jk(r, T ) :=
∫ (k+1)T

kT
p(t, x(t))

(
1− e−γ(x(t))r(x(t))

)
dx(t)

=
∫ kT+Th(r)

kT
p(t, x(t))

(
1− e−γ(x(t))r(x(t))

) 1
r(x(t))

dt.

Here p(t, x) is defined by equation (1), regarding the jump condition (2). To make
this precise, denote by τ(x) the time-instant at which x(τ) = x during the first
rotation of the harvesting machine. Notice that x(t) = x at any time t = τ(x)+kT ,
that is, τ(x) + kT are the harvesting instances at place x. Then for every x the
function p(·, x) is absolutely continuous, satisfies (1) on each interval (kT +τ(x), (k+
1)T +τ(x)), and jumps down at kT +τ(x) according to (2). Notice that the solution
p(·, x) solution exists on [0,∞) and is non-negative and bounded from above by
p̄ = max{‖p0‖L∞ , ‖a‖L∞/b0}. Moreover, p is piece-wise absolutely continuous in
t and measurable and bounded in x. The superpositions r(x(t)) and p(t, x(t)) are
measurable due the strict monotonicity of x(·) (see footnote 1). We consider p(·, x)
as continuous from the left at the jump points, so that p(t, x) = p(t− 0, x) at any t.

Changing the variable t with s = x(t) (see again footnote 1) we represent

Jk(r, T ) =
∫

S1

p(kT + τ(x), x)
(
1− e−γ(x)r(x)

)
dx.

This paper is devoted to the problem of maximization of the average long run
revenue of harvesting:

max
r,T

lim
k→+∞

Jk(r, T )
T

, (5)

where the maximization is carried out on the set of all admissible harvesting policies
(r, T ), that is, subject to the constraints (3) and (4). Below we discuss the problem
formulation and the assumptions.

Since Jk(r, T ) is the harvesting revenue in [kT, (k + 1)T ] resulting from policy
(r, T ), the functional to be maximized is the efficiency of the harvesting in the
k-th period (revenue per unit of time). This means that our problem is to find
an admissible harvesting policy (which by definition is time-invariant) which has
maximal efficiency in the long run.

The objective functional in (5) is not the only reasonable one to be maximized.
Indeed: (i) it involves a priory only periodic harvesting policies; (ii) it takes into
account only the long run performance. In particular, the amount of initial resource
p0(x) turns out to be irrelevant (as it will be show below). These are essential
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shortcomings of our model, but on the other hand, features (i) and (ii) have clear
counterparts in forestry, fishery, and rotational utilization of agricultural land.

In the presented model the harvesting effort is assumed to be inversely propor-
tional to the speed of the harvesting machine. This assumption is plausible in many
cases, but clearly it is a simplification. An alternative could be to include the inten-
sity of harvesting as an additional position-dependent control function. However,
this would bring some redundancy in the control capacity, which leads to technical
inconveniences. The pause T0 that the harvesting machine may enjoy at the origin
is a “compensation” for that the harvesting effort cannot be set independent of the
speed. It allows the resource to recover, similarly as lower than maximal possible
harvesting effort would do. There is no harvesting during the pause, the harvest-
ing machine just waits to start a next rotation. Such a feature could be observed,
for example, in seasonal cycles of various nature (REFERENCES???)Alexey. We
mention also that the requirement that the harvesting machine may stop only at
the origin O is not essential for the results below (not counting the numerical illus-
trations).

Next, we mention that the restriction r(x) ∈ [r1(x), r2(x)] and the respective
requirements in the standing assumptions are natural, since they translate into
restrictions for the speed of rotation, which are physically plausible.

The assumption that the initial resource density p0(x) is everywhere positive is
technically convenient, but not restrictive at all. Indeed, if p0(x) = 0 on a set of
positive measure, then we may redefine it as a positive constant and set γ(x) = 0
for these x. Then there will be no harvesting at x.

Finally, we mention that a function a(x) in (1) taking negative values might
be meaningful, in general, if we deal with a self-distracting resource. However, in
our long run optimization problem, a(x) < 0 is equivalent to a(x) = 0, since the
resource at such locations x will asymptotically vanish.

3 Reformulation of the problem

In this section we obtain an explicit representation of the limit in (5), which will
allow to reduce the problem to a static one.

For a fixed admissible harvesting policy (r, T ) we denote pk(x) = p(kT +τ(x), x).
In view of (2), pk+1(x) is the solution of equation (1) on a time interval with length
T (notice that the equation is stationary) with initial value p(kT + τ(x) + 0, x) =
e−γ(x)r(x)pk(x). Since (1) is a Riccati equation, we find explicitly that

pk+1(x) =
pk(x)

eγ(x)r(x)−aT + b(x)
a(x)

(
1− e−a(x)T

)
pk(x)

if a(x) > 0
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and
pk+1(x) =

pk(x)
eγ(x)r(x) + b(x)pk(x) T

if a(x) = 0.

In the second case, as well as in the case p0(x) = 0 (which, however, is excluded
by assumption) we obviously have p∞(x) = 0. In the first case pk(x) satisfies the
recurrence

pk+1 =
pk

α + βpk
, where α := eγ(x)r(x)−a(x)T > 0, β :=

b(x)
a(x)

(
1− e−a(x)T

)
> 0.

If α ≥ 1, then pk+1 ≤ pk/(1 + βpk) and apparently pk −→ 0. Now let α < 1 and
p0 > 0. The mapping p 7→ p/(α + βp) is monotone increasing and has two fixed
points: p = 0 and p = p∗ := (1− α)/β. If for some k we have pk ≥ p∗, then

pk =
pk

α + βp∗
≥ pk

α + βpk
= pk+1 =

pk

α + βpk
≥ p∗

α + βp∗ = p∗.

This means that pk is monotonically convergent to p∗. If pk ≤ p∗, then the inverse
chain of inequalities holds, hence pk converges to p∗ as well. Summarizing we obtain
that for every x ∈ S1

lim
k→+∞

p(kT + τ(x), x) =

{
0 if γ(x)r(x) ≥ a(x)T,

1−eγ(x)r(x)−a(x)T

b(x)
a(x)(1−e−a(x)T )

if γ(x)r(x) < a(x)T, (6)

Thanks to the uniform boundedness of p(kT + τ(x), x) (an upper bound p̄ was
introduced in Section 2) and the above convergence, we can pass to the limit under
the integral in (5) due to the Lebesgue dominated convergence theorem. Then
problem (5) can be reformulated as

max
r,T

1
T

∫

S1

p∞(x, r(x), T )
(
1− e−γ(x)r(x)

)
dx, (7)

where p∞(x, r, T ) results from the right-hand side of (6):

p∞(x, r, T ) := max

{
0,

a(x)
b(x)

ea(x)T − eγ(x)r

ea(x)T − 1

}
.

In the special case a(x) = 0 (in which the above right-hand side is indefinite) we
have p∞(x, r, T ) = 0, according to (6). The maximization in (7) is carried out on
the set of all admissible harvesting polices (r, T ).

Further on we analyze problem (7), (4), (3).
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4 Existence of an optimal solution

We start the investigation of problem (7), (4), (3) by proving that an optimal
solution (r, T ) does exist. This is not a routine task since, as it will be seen below,
we deal with a maximization of a non-concave (in r) objective functional, therefore
some specific feature of the problem have to be used in order to prove existence. In
the same time we shall obtain some properties of the problem that will be useful
for the further analysis.

To shorten the notations we define

f(x, r, T ) := p∞(x, t, T )
(
1− e−γ(x)r

)
= max{0, g(x, r, T )}, (8)

where the function g can be written as follows

g(x, r, T ) :=
a(x)
b(x)

ea(x)T − eγ(x)r

ea(x)T − 1

(
1− e−γ(x)r

)
. (9)

Then (7) becomes

max
r,T

1
T

∫

S1

f(x, r(x), T ) dx

(
=: max

r,T
I(r, T )

)
. (10)

Since for every admissible policy (r, T ) we have T ≥ ∫
S1 r(x) dx ≥ ∫

S1 r1(x) dx =:
T 0 > 0, we consider the function f on the domain S1 × [0, r̄]× [T 0,∞).

Lemma 1 The function f : S1 × [0, r̄]× IR+ has the following properties:
(i) f is measurable in x and bounded from above by ‖a‖L∞/b0;
(ii) f(x, ·, T ) is strictly positive and strictly concave on

(
0, r0(x, T )

)
and equals

zero, f(x, r, T ) = 0, for r = 0 and r ≥ r0(x, T ), where

r0(x, T ) =

{
a(x)T
γ(x) if γ(x) > 0,

0 if γ(x) = 0.

(iii) f is Lipschitz continuous in (r, T ) ∈ [0, r̄]× [T 0,∞) uniformly with respect
to x ∈ S1, that is, there exists a number L such that

|f(x, r, T )−f(x, r′, T ′)| ≤ L
(|r − r′|+ |T − T ′|) for all r, r′ ∈ [0, r̄], T, T ′ ∈ [T 0,∞).

Proof. The measurability of g and (8) imply the measurability of f with respect
to x. Moreover, from the definition of g in (9) we have for r ≥ 0

g(x, r, T ) ≤ ‖a‖L∞
b0

,
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which proves property (i), since f(x, r, T ) = g(x, r, T ) for r ∈ [
0, r0(x, T )

]
.

Obviously g(x, r, T ) ≥ 0 for r ∈ [
0, r0(x, T )

]
, hence f(x, r, T ) = g(x, r, T ). In

order to prove properties (ii) we calculate

∂g

∂r
(x, r, T ) =

a(x)γ(x)
b(x)

ea(x)T−γ(x)r − eγ(x)r

ea(x)T − 1
. (11)

If a(x)γ(x) = 0 for some x the above derivative equals zero, but in this case
r0(x, T ) = 0 and (ii) is trivial. In the alternative case ∂g

∂r (x, r, T ) is strictly mono-
tone decreasing in r, therefore g is strictly concave with respect to r. This proves
properties (ii).

To prove property (iii) we notice that the maximum in (8) is achieved at g if
and only if a(x)T ≥ γ(x)r. In this area on the (r, T )-plane we have (skipping the
argument x)

∣∣∣∣
∂g

∂T
(x, r, T )

∣∣∣∣ =
a2

b
eaT eγr − 1

(eaT − 1)2
(
1− e−γr

) ≤ a2

b
eaT eaT − 1

(eaT − 1)2
(
1− e−aT

)

=
‖a‖2

L∞
b0

=: LT .

Moreover, from (11) we have
∣∣∣∣
∂g

∂r
(x, r, T )

∣∣∣∣ ≤
a(x)γ(x)

b(x)
≤ ‖a‖L∞‖γ‖L∞

b0
=: Lr.

Then we obtain property (iii) with L = max{LT , Lr}. Q.E.D.

Let r∗(x, T ) be the leftmost maximizer of f(x, ·, T ) on [r1(x), r2(x)], that is,

r∗(x, T ) := min{r∗ : f(x, r∗, T ) ≥ f(x, r, T ) ∀ r ∈ [r1(x), r2(x)]},

see Fig. 1. Notice that if γ(x) > 0 and a(x) > 0, then the function f(x, ·, T )
has a unique global maximizer r = a(x)T/2γ(x), but it does not need to be-
long to [r1(x), r2(x)]. In the latter case r∗(x, T ) coincides with one of the bounds,
Fig. 1 b), c), d). If γ(x) = 0 or a(x) = 0, then r∗(x, T ) = r1(x). Moreover, r∗(x, T )
is measurable in x and continuous in T .

Lemma 2 The supremum, Î, of the objective value in (7) subject to (3), (4) is
finite and positive.
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a)

0

0.0

a(x)T
2γ(x)

r1(x) r2(x)

b)

0

0.0

a(x)T
2γ(x)

a(x)T
γ(x)

r1(x) r2(x)

c)

0

0.0

a(x)T
2γ(x)

a(x)T
γ(x)

r1(x) r2(x)

d)

0

0.0

a(x)T
2γ(x)

r1(x) r2(x)

Figure 1: The function f (dashed line) and several configurations of the leftmost
maximizer r∗(x, T ) of the restriction of f to the interval [r1(x), r2(x)] (solid line).

Proof. Let (T, x) be an admissible policy. According to property (i) in Lemma 1
we have

I(r, T ) ≤ 1
T

‖a‖L∞
b0

≤ ‖a‖L∞
T 0b0

,

thus Î < ∞.
According to the standing assumptions there is a subset S0 ⊂ S1 with positive

measure and a number ε > 0 such that a(x) ≥ ε and γ(x) ≥ ε for x ∈ S0. Let us
fix T satisfying the inequalities T ≥ ∫

S1 r2(x) dx and εT ≥ 2‖r2γ‖L∞ . We have

I(r2, T ) =
1
T

∫

S1

f(x, r2(x), T ) dx ≥ 1
T

∫

S0

f(x, r2(x), T ) dx

=
1
T

∫

S0

a(x)
b(x)

ea(x)T − eγ(x)r2(x)

ea(x)T − 1

(
1− e−γ(x)r2(x)

)
dx,

which is strictly positive due to the choice of T and the inequalities a(x), γ(x) ≥ ε
for x ∈ S0. Q.E.D.

Proposition 1 Problem (7), (3), (4) has a solution.

Proof. Let (rk, Tk) be a maximizing sequence of admissible policies. Then the
sequence Tk is bounded. Indeed, if for a subsequence Tk −→ +∞, then, according
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to property (i) in Lemma 1,

I(rk, Tk) =
1
Tk

∫

S1

f(x, r(x), T ) dx ≤ 1
Tk

‖a‖L∞
b0

−→ 0,

which contradicts Lemma 2. Thus we can extract a convergent subsequence (we
shall use the same index k) Tk −→ T ≥ T 0. Now define

r̃k(x) = min{rk(x), r∗(x, T )}.

The pair (r̃k, T ) does not need to be an admissible policy, but apparently r̃k is an
admissible harvesting density. The set of admissible harvesting densities is convex,
closed and bounded in L2(S1), hence it is weakly compact due the lemma of Mazur
and the theorem of Banach-Alaoglu [?]. VV: more direct citation?? Then
from the sequence r̃k one can extract a subsequence (we shall use again the same
index k) which is L2-weakly convergent to some admissible density r. Passing to
the limit in the inequality

∫

S1

r̃k(x) dx ≤
∫

S1

rk(x) dx ≤ Tk

we obtain that (r, T ) is an admissible policy.
Since the function f(x, ·, T ) is concave on [0, r0(x, T )] ⊃ [r1(x), r∗(x, T )] 3 r̃k(x),

(see Lemma 1 (ii)) the theorem for upper semi-continuity of integral functionals with
concave integrands [?] implies that

limsup
k→+∞

∫

S1

f(x, r̃k(x), T ) dx ≤
∫

S1

f(x, r(x), T ) dx.

Then

I(r, T ) =
1
T

∫

S1

f(x, r(x), T ) dx ≥ limsup
k→+∞

1
Tk

∫

S1

f(x, r̃k(x), T ) dx

≥ limsup
k→+∞

1
Tk

∫

S1

f(x, rk(x), T ) dx

≥ limsup
k→+∞

[
1
Tk

∫

S1

f(x, rk(x), Tk) dx +
L(T + 1)

Tk
|Tk − T |

]
= Î ,

where we use Lemma 1 (iii) in the last inequality. Hence, (r, T ) is an optimal
solution. Q.E.D.

We mention that the optimal harvesting polices is not unique for some data
configurations. This point will be discussed in the next section.
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5 Optimality conditions and a numerical approach

In order to characterize the solution(s) of problem (7), (3), (4) we split this problem
into an inner problem, where T is fixed and the maximization is carried out only
with respect to r, and outer problem, where (7) is maximized with respect to T ,
with the solution of the inner problem inserted.

Let us fix T ≥ T 0 and consider the maximization problem

max
r

1
T

∫

S1

f(x, r(x), T ) dx, (12)

subject to (3), (4). Since T ≥ T 0, the set of admissible densities r in this problem is
non-empty and it has a solution r̂(·, T ), by a similar argument as in Proposition 1.
If T = T 0, then the considered problem is trivial, since it has a unique admissible
density r = r1. We shall obtain necessary optimality conditions for the above
problem with T > T 0, utilizing an elaborated form of the Lagrange principle given
e.g. in [3, Section 4.2.2].

Theorem 1 Let T > T 0 be fixed and let r̂(·, T ) be an optimal solution of problem
(12), (3), (4). Then there exists a number (Lagrange multiplier) λ̂ ≥ 0 such that

(a) for a.e. x ∈ S1 the number r̂(x, T ) solves the problem of maximization of the
point-wise Lagrangian,

max
r∈[r1(x),r2(x)]

{
1
T

f(x, r, T )− λ̂ r

}
; (13)

(b) the complementary slackness condition holds:

λ̂

(∫

S1

r̂(x, T ) dx− T

)
= 0. (14)

Proof. The theorem in [3, Section 4.2.2] claims in our rather special case that there
exist non-negative Lagrange multipliers λ0, λ such that λ0 + λ > 0, (14) holds, and
for a.e. x ∈ S1 the value r̂(x, T ) maximizes the pointwise Lagrange function

λ0

T
f(x, r, T )− λr (15)

on the set [r1(x), r2(x)].
We shall prove that one can always take λ0 = 1. If λ0 = 0 then λ > 0. In that

case the only solution of problem (15) is r(x) = r1(x). Then condition (14) yields

13



∫
S1 r1(x) dx = T , which means T = T 0 and contradicts the assumed T > T 0. Thus

λ0 > 0 and we can take in (15) λ̂ = λ/λ0 instead of λ and 1 instead of λ0.
Q.E.D.

Remark 1 Using the theorem in [3, Section 4.2.2] gives a substantial advantage
compared with standard Lagrange and Karush-Kuhn-Tacker theorems, since the
solution is claimed to be a global maximizer of the Lagrange function, although the
function f is not concave in r (the so-called hidden convexification, known from the
Pontryagin maximum principle). This avoids the need of using the derivative of the
Lagrange function (notice that f is not differentiable in r!).

For a fixed T ≥ T 0 and λ ≥ 0 we consider the problem that arises in (13):

max
r∈[r1(x),r2(x)]

{
1
T

f(x, r, T )− λ r

}
. (16)

Taking into account the properties of the function f(x, ·, T ) in Lemma 1 (see also
Fig 1) we consider the following cases.

Case 1: λ > 0. In this case for every x ∈ S1 there is a unique maximizer
r∗(x, T ;λ) in (16) and

r∗(x, T ; λ) = min{r2(x), max{r1(x), r̄(x, T ;λ)}} , (17)

where r̄(x, T ; λ) is the unique maximizer of f(x, r, T ) − λ rT on r ∈ [0,∞). If
a(x) γ(x) = 0 for some x, then r̄(x, T ; λ) = 0, otherwise r̄(x, T ; λ) can be determined
by solving with respect to r the equation

∂g

∂r
(x, r, T )− λT = 0,

where ∂g
∂r (x, r, T ) is given in (11). Simple calculations give the following expression:

r̄(x, T ; λ) =
a(x)T
2γ(x)

− 1
γ(x)

ln
(
m +

√
m2 + 1

)
, (18)

where
m = λ T

b(x)
2a(x)γ(x)

(
e

a(x)T
2 − e−

a(x)T
2

)
.

An equivalent representation in terms of hyperbolic functions reads as

r̄(x, T ; λ) =
a(x)T
2γ(x)

− 1
γ(x)

arsinh

(
λT

b(x) sinh(a(x)T
2 )

a(x)γ(x)

)
, (19)

14



Case 2: λ = 0, a(x) γ(x) > 0, and r1(x) < r0(x, T ). In this case the objective
function in (16) also has a unique maximizer and it is given by (17) and (18) or (19)
as in Case 1.

Case 3: λ = 0 and either a(x) γ(x) = 0 or r1(x) ≥ r0(x, T ). In this case either
f(x, ·, T ) is identically zero, or it is zero at least on [r1(x), r2(x)]. Thus any element
of [r1(x), r2(x)] solves (16). In this case it is reasonable to define r∗(x, T ; λ) = r1(x).
Indeed, with this definition the function r∗(·, T ; λ) is the minimal solution of (16)
and hence, it the is most favorable from the point of view of constraint (4).

Combining the above analysis with Theorem 1 we obtain the following corollary.

Corollary 1 Let r̂ be a solution of problem (12), (3), (4) with a fixed T ≥ T 0.
Then there exists λ̂ ≥ 0 such that r̂(x) ≥ r∗(x, T ; λ̂) for every x ∈ S1,

r̂(x) = r∗(x, T ; λ̂),

for all x ∈ S1 for which Case 1 or Case 2 takes place, and the complementary
slackness condition (14) holds.

Now we present an approach for determining the Lagrange multiplier λ̂ needed to
solve the inner problem (12), (3), (4). In the numerical procedure we target finding
some solution, rather than all solutions, in the special cases where the optimal
solution is not unique.

It is important to observe that the function λ → r̄(x, T ; λ), and hence also
λ → r∗(x, T ; λ), is monotone non-increasing in λ. This is evident from each of the
representations (18) and (19) of r̄(x, T ; λ). From (18) or (19) it is also obvious that

lim
λ→∞

∫

S1

r∗(x, T ;λ) dx =
∫

S1

lim
λ→∞

r∗(x, T ; λ) dx =
∫

S1

r1(x) dx = T 0.

This means that when λ runs increasingly on (0,∞) the value
∫
S1 r∗(x, T ; λ) dx cov-

ers continuously the interval
(
T 0,

∫
S1 r∗(x, T ; 0) dx

)
from right to left. In addition,

the function λ 7→ f(x, r∗(x, T ;λ), T ) is monotone non-increasing.
These observations allow to formulate the following conceptual algorithm for

calculation of an optimal solution r̂(·, T ) of problem (12), (3), (4) for every T ≥ T 0.

Conceptual algorithm:
1. If T = T 0, set r̂(·, T ) = r1(·).
2. If T ∈ (

T 0,
∫
S1 r∗(x, T ; 0) dx

)
, then increase λ starting from λ = 0 until

reaching the minimal λ̂ = λ̂(T ) > 0 such that
∫
S1 r∗(x, T ; λ̂) dx = T . Then set

r̂(·, T ) = r∗(·, T ; λ̂).
3. If T ≥ ∫

S1 r∗(x, T ; 0) dx, set r̂(·, T ) = r∗(·, T ; 0).
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Proposition 2 For every T ≥ T 0 the function r̂(·, T ) defined in the algorithm is
an optimal solution of problem (12), (3), (4).

Proof. Point 1 is clear. Let T , λ̂, and r∗(·, T ) be as in point 2. Let r] be an
optimal solution of problem 12), (3), (4) for this T . Then, according to Corollary 1,
there exists λ] ≥ 0 such that r](x) = r∗(x, T ; λ]) for all x ∈ S1 for which Case 1 or
Case 2 takes place.

Due to the minimality of λ̂ and we have
∫

S1

r∗(x, T ;λ) dx > T

for every λ < λ̂. Since (r], T ) = (r∗(x, T ; λ]), T ) is an admissible policy, we obtain
that λ] ≥ λ̂.

We consider the following three cases.
(i) If λ̂ < λ], then

f(x, r](x)) = f(x, r∗(x, T ; λ]), T ) ≤ f(x, r∗(x, T ; λ̂), T ) = f(x, r̂(x, T ), T ),

where the first equality holds due to Corollary 1, since λ] > 0 and only Case 1 is
relevant. Then Î(T ) = I(r], T ) ≤ I(r̂(·, T ), T ) ≤ Î(T ). This implies the optimality
of r̂(·, T ).

(ii) If λ] = λ̂, then Case 1 takes place since λ̂ > 0 and r∗(·, T ; λ̂) is uniquely
determined, hence r](·) = r̂(·, T ).

Let us consider point 3 of the algorithm. Let r] be an optimal solution of problem
(12), (3), (4) and let λ] ≥ 0 be the Lagrange multiplier from Corollary 1, so that
r](x) = r∗(x, T ;λ]) for those x ∈ S1 for which Case 1 or Case 2 takes place.

If λ] = 0, then r](x) = r∗(x, T ;λ]) = r̂(x, T ) for those x for which a(x)γ(x) >
0 and r1(x) < r0(x, T ) (Case 2). For x for which Case 3 take place we have
f(x, r̂(x, T ), T ) = 0 and r̂(x, T ) = r1(x) ≤ r](x), hence f(x, r](x), T ) = 0. Thus
I(r̂(·, T ), T ) = I(r](·), T ) and r̂(·, T ) is optimal.

If λ] > 0, we obtain the optimality of r̂(·, T ) in the same way as in (i) above.
Q.E.D.

Being able to determine an optimal solution r̂(·, T ) of problem (12), (3), (4)
and to calculate the corresponding optimal value Î(T ) := I(r̂(·, T ), T ) it remains to
solve numerically the outer problem

max
T∈[T 0,∞)

Î(T ). (20)
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Figure 2: Objective function I(T ) with harvesting intensity γ ≡ 0.45, r1 = 0.05,
r2 = 0.1, b(x) ≡ 0.5, a(x) = 1 + 0.6 cos(4πx).

Plot of the function Î(T ) is given in Fig 2. We mention that in our numerical
experiments the function Î(T ) is not monotone in general and even not concave.
Thus, the uniqueness of the optimal period T̂ is questionable.

We mention that the above two-stage numerical procedure involves two nested
cycles – an outer one for T and an inner one for λ. However, a cleverer implemen-
tation substantially shortens one of them and practically reduces the calculations
to a single loop.

The following corollary combines the results of this section with the existence
of an optimal solution from the previous section.

Corollary 2 Problem (7), (3), (4) has a solution in the form (r∗(x, T̂ ; λ̂), T̂ ), where
according to the conceptual algorithm

λ̂ = min
λ≥0

{
λ :

∫

S1

r∗(x, T̂ ;λ) dx ≥ T̂

}
(21)

and

r∗(x, T̂ ; λ) :=

{
min

{
r2(x), max

{
r1(x), r̄(x, T̂ ;λ)

}}
if γ(x)a(x) > 0,

r1(x) if γ(x)a(x) = 0,
(22)

where r̄(x, T̂ ; λ) is given by (18) or (19).
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6 Some qualitative properties and numerical results

In the first part of this section we prove two propositions which investigate the effect
of the parameters a(x) and γ(x) on the optimal harvesting policy. We also provide
sufficient conditions for the upper bound r2 to be not active. i.e. when velocity is
always higher than its lower bound 1/r2. In doing this we shall use the notations
and the results from the last section.

Proposition 3 There exists a measurable function r̄2(x) ≥ r1(x) such that the
following claim holds true: for every measurable upper bound r2(x) ≥ r̄2(x), if

∫

S1\{x: γ(x)=0}

a(x)
γ(x)

dx > 2, (23)

then for every solution (r̂, T̂ ) of problem (7), (3), (4) there are no stops, i.e.∫
S1 r̂(x) dx = T̂ , and for a.e. x where γ(x) > 0 and r1(x) < T̂ a(x)

2γ(x) we have

r̂(x) <
T̂

2
a(x)
γ(x)

. (24)

Proof. According to Lemma 2 the supremum Î is finite and positive. Let (r̂, T̂ )
be an optimal solution of problem (5), (3), (4). Due to Lemma 1(i) we have

Î =
1
T̂

∫

S1

r̂(x) dx ≤ ‖a‖L∞

T̂ b0

,

hence T̂ ≤ ‖a‖L∞
Î b0

:= T̄ .
Define

r̄2(x) =

{
max

{
r1(x), a(x)T̄

2γ(x)

}
if a(x) γ(x) > 0,

r1(x) if a(x) γ(x) = 0,

and let r2 be an arbitrary measurable function satisfying r2(x) ≥ r̄2(x). Then
whenever γ(x) > 0 we have

r∗(x, T̂ ; 0) = max

{
r1(x), min

{
r2(x),

T̂ a(x)
2γ(x)

}}
= max

{
r1(x),

T̄ a(x)
2γ(x)

}
≥ T̂ a(x)

2γ(x)
.

Using (23) we have
∫

S1

r∗(x, T̂ ; 0) dx ≥
∫

S1

T̂ a(x)
2γ(x)

dx > T̂ . (25)
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Clearly, r̂ solves problem (12), (3), (4) with T = T̂ . Let λ̂ be the Lagrange
multiplier from Corollary 1 for T = T̂ . Then r̂(x) ≥ r∗(x, T̂ ; λ̂), according to
Corollary 1. Thus

∫
S1 r∗(x, T̂ ; λ̂) dx ≤ T̂ , which compared with (25) implies that

λ̂ > 0. Then (4) is satisfied as equality due to the complementary slackness condition
(14).

In order to prove (24) we notice that for x such that γ(x) > 0 and r1(x) < T̂ a(x)
2γ(x) ,

it holds that a(x) γ(x) > 0. Since λ̂ > 0, Case 1 (see the previous section) takes
place. Then

r̂(x) = r∗(x, T̂ ; λ̂) = max

{
r1(x),

T̂ a(x)
2γ(x)

− β

}
,

where β is the second summand in the right-hand side in (18) or (19) for T = T̂
and λ = λ̂. Since a(x) γ(x) > 0 and λ̂ > 0 the number β is positive, which together

with the inequality r1(x) < T̂ a(x)
2γ(x) implies (24). Q.E.D.

Proposition 4 If γ(x) > 0 for almost all x and
∫

S1

a(x)
γ(x)

dx < 2, (26)

then there exists an optimal solution (r̂, T̂ ) of problem (7), (3), (4) such that:
(i) the lower bound is active, that is, r̂(x) = r1(x) for x of positive measure,

or
(ii) there are stops:

∫
S1

r̂(x) dx < T̂ .

Proof. Let us take the optimal solution (r̂, T̂ ) defined in Corollary 2, where r̂(x) =
r∗(x, T̂ ; λ̂). The function r∗(x, T̂ ; ·) is not increasing, so we have the following
inequalities when r̂(x) > r1(x) for all x:

r̂(x) ≤ r∗(x, T̂ ; 0) = min

{
a(x)T̂
2γ(x)

, r2(x)

}
≤ a(x)T̂

2γ(x)
.

Integrating and taking into account (26) we obtain

∫

S1

r̂(x) dx ≤
∫

S1

a(x)T̂
2γ(x)

dx < T̂ .
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Q.E.D.

In our numerical experiments (e.g. see Figs. 3 and 4 below) the lower bound r1

is always active, that is, possibility (i) in Proposition 4 holds. The reason may be
that if r1 is not active for some admissible pair (r, T ) then an admissible solution
with a smaller T exists, which gives a better objective value. It is proved in the
next Proposition on some additional assumptions for the involved data.

Proposition 5 Assume that the functions a, γ and r1 are continuous, that γ(x) > 0
on S1, and that there exists a scalar T̄ > 0 such that for all x ∈ S1

r1(x) ≤ a(x)T̄
2γ(x)

, r2(x) >
a(x)T̄
2γ(x)

, (27)

and that ∫

S1

a(x)
γ(x)

dx < 2. (28)

Then there exists the solution (r̂, T̂ ) of problem (7), (3), (4) such that the lower
bound is active (that is, r̂(x) = r1(x) for x of positive measure), the upper bound r2

is not active (that is, r̂(x) < r2(x) for a.e. x), and T̂ ≤ T̄ .

Proof. We take the optimal solution r̂(x) = r∗(x, T̂ ; λ̂) as stated in Corollary 2.
First we prove that r2 is not active for this solution. For any given T we introduce
the value

I
(
r](·, T ), T

)
=

1
T

∫

S1

a(x)
b(x)

ea(x)T/4 − e−a(x)T/4

ea(x)T/4 + e−a(x)T/4
dx, (29)

where r](x, T ) = a(x)T
2γ(x) . This is the maximal value of the objective functional in

(10), where the maximization is carried out with respect to r, regardless of the
pointwise constraints (3). Then Î = I(r̂, T̂ ) ≤ I(r∗(·, T̂ ), T̂ ). The total derivative
of (29) w.r.t. T is strictly negative,

dI

dT
=

1
T 2

∫

S1

a(x)
b(x)

(
a(x)T(

ea(x)T/4 + e−a(x)T/4
)2 −

ea(x)T/4 − e−a(x)T/4

ea(x)T/4 + e−a(x)T/4

)
dx

=
1
T 2

∫

S1

a(x)
b(x)

a(x)T − ea(x)T/2 + e−a(x)T/2

(
ea(x)T/4 + e−a(x)T/4

)2 dx < 0, (30)

because in the numerator of the integrand for a(x)T > 0 we have a(x)T −ea(x)T/2 +
e−a(x)T/2 < 0. If we assume that T̂ > T̄ , then

Î ≤ I(r](·, T̂ ), T̂ ) < I(r](·, T̄ ), T̄ ). (31)
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Notice that due to (27), the control r](x, T̄ ) satisfies the pointwise constraints (3),
and due to (28), the pair (r](x, T̄ ), T̄ ) satisfies also the integral constraint (4). Thus
(r](·, T̄ ), T̄ ) is an admissible policy, and (31) contradicts the optimality of (r̂, T̂ ).
This contradiction implies that T̂ ≤ T̄ .

Since the function r∗(x, T̂ ; ·) is not increasing, using (22) and the second in-
equality in (27) we obtain that

r̂(x) = r∗(x, T̂ ; λ̂) ≤ r∗(x, T̂ ; 0) ≤ max

{
r1(x),

a(x)T̂
2γ(x)

}
≤ max

{
r1(x),

a(x)T̄
2γ(x)

}

=
a(x)T̄
2γ(x)

< r2(x),

so that the upper bound r2 is not active.
Now assume that the lower bound r1 is also non-active. We shall prove that

(r](x, T̂ − ε), T̂ − ε) is an admissible policy for all sufficiently small ε > 0. Due to
(28), this pair satisfies the integral constraint (4). The second inequality in (27)
together with T̂ − ε < T̄ implies r](x, T̂ − ε) ≤ r2(x). From r1(x) < r̂(x) < r2(x),
(22) and (18) it follows that

r̂(x) = r∗(x, T̂ ; λ̂) = r̄(x, T̂ ; λ̂) ≤ r̄(x, T̂ ; 0) = r](x, T̂ ).

Since r1 is non-active, r1(x) < r](x, T̂ ) for all x ∈ S1. Due to the continuity of r1

and r], and the compactness of S1, this implies that r1(x) < r](x, T̂ − ε) if ε > 0 is
sufficiently small. Thus (r](x, T̂ − ε), T̂ − ε) is admissible. Due to (30),

I(r](·, T − ε), T̂ − ε) > I(r](·, T̂ ), T̂ ) ≥ I(r̂, T̂ ),

which contradicts the optimality of (r̂, T̂ ). Thus r1 is active. Q.E.D.

The above propositions exhibit the role of the regeneration/acquisition ratio
a(x)/γ(x) and its integral,

A =
∫

S1\{x: γ(x)>0}

a(x)
γ(x)

dx.

VV: If you like, you may move this to an earlier point, but do not use it in
the formulations of the propositions and do not emphasize it too much.
I do not like introducing terminology on so minor and wage ground.
Proposition 3 states that if A > 2, then the optimal cycling has no stops, which
is seen on the left plots in Fig. 3: a), c). That is, when the rate of recovery is, in
average, high enough relative to the acquisition rate, harvesting takes place all the
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time. If A < 2, then stops can occur, as stated by Proposition 4, see the right plots
in Fig. 3: b), d). In this case the resource regenerates so slowly that the harvester
may have to wait. But whether stops really appear or not, this heavily depends on
other properties of the data. In Fig. 3 b), d), for example, there are stops, while in
Fig. 4 b), d), where the only difference is that the lower bound r1 is higher, stops
disappear.

Fig. 3 compares the results for two different values of γ: γ = 0.45 and γ = 0.55.
We observe that a larger acquisition rate γ leads to appearance of stops and to
a larger period T (although the harvesting time

∫
S1 r(x) dx is smaller due to the

higher velocity 1/r(x)). Fig. 4 presents a similar comparison of the results for
γ = 0.45 and γ = 0.55, but with a higher value of the lower bound r1 than that in
Fig. 3. Here, a larger acquisition rate γ leads to a smaller harvesting period T , and
in both cases there are no stops. It is remarkable that for the larger γ it is optimal
to exhaust the resource in certain areas with low regeneration rate a(x). That is, an
improvement of the detection/acquisition technology may result in larger exhausted
areas.

Notice that the example in Fig. 3 b), d) involves stops,
∫
S1 r(x) dx < T , when

λ1 = 0 and our solution (22) is the minimal maximizer r∗(x, T ; 0) that was used
in the proof of existence in Section 4. But the optimal solution can be non-unique
in presence of stops and exhausted areas. Indeed, if the harvester spends a little
more time in the exhausted areas, taking somewhat slower speed there (somewhat
larger r(x)), and reduces the time of stops at the same amount, then the integral
constraint (4) still holds, and the objective functional does not change.

7 Discussion

The paper investigates a new model of periodic harvesting in a spatial domain,
which exhibits some interesting properties in terms of harvesting period, period of
no harvesting, and appearance of exhausted areas. In particular, it is shown that an
increase in the acquisition parameter γ leads to an increase in the optimal revenue
and in the optimal velocity, which in turn, leads to reduction of the harvesting
time. As a result, exhausted areas could appear or grow during the optimal motion.
Stops can also appear thanks to improvement of the resource acquisition technology,
γ. The period of harvesting T can both increase of decrease, depending on the
presence of stops between harvesting circles. It seems that the appearance of stops
and exhausted areas is caused by the assumption of strict inverse proportionality
of the harvesting density and the velocity. A relaxation of this assumption is an
interesting topic of future research. Another (complementary) extension involves
harvesting in a moving spatial sub-domain (rather than a point), as it is the case
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with rotational use of agricultural land.
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∫ 1
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Figure 3: Left and right graphs correspondingly depict same computations for two
different harvesting intensities γ ≡ 0.45 and γ ≡ 0.55. Graphs a) and b) show
resulting controls r (bold line) in comparison with Ta(x)

2γ(x) (dashed line). Constant
bounds r1 = 0.05 and r2 = 0.1 are depicted with dotted lines. Parameters b(x) ≡ 0.5
and a(x) = 1 + 0.6 cos(4πx). Graphs c) and d) show amount of harvested product
at corresponding x.
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without stops without stops
T =

∫ 1
0 r(x) dx = 0.0895 T =

∫ 1
0 r(x) dx = 0.0885

λ1 = 0, I = 0.53 λ1 = 0, I = 0.545
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Figure 4: Left and right graphs correspondingly depict same computations for two
different harvesting intensities γ ≡ 0.45 and γ ≡ 0.55. Graphs a) and b) show
resulting controls r (bold line) in comparison with Ta(x)

2γ(x) (dashed line). Constant
bounds r1 = 0.08 and r2 = 0.1 are depicted with dotted lines. Parameters b(x) ≡ 0.5
and a(x) = 1 + 0.6 cos(4πx). Graphs c) and d) show amount of harvested product
at corresponding x. There are two small exhausted areas in c) and larger exhausted
areas d) around x = 0.25 and x = 0.75, where the amount of harvested product is
zero.
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