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Abstract. The paper investigates an optimal control problem for a distributed system arising in
the economics of endogenous growth. The problem involves a specific coupled family of controlled
ODEs parameterized by a parameter (representing the heterogeneity) running over a domain that may
dynamically depend on the control and on the state of the system. Existence of an optimal control
is obtained and continuity of any optimal control with respect to the parameter of heterogeneity is
proved. The latter allows to substantially strengthen previously obtained necessary optimality con-
ditions and to obtain a Pontryagin’s type maximum principle. The necessary optimality conditions
obtained here have a Hamiltonian representation, and stationarity of the Hamiltonian along any opti-
mal trajectory is proved in the case of time-independent data.

Keywords: optimal control, distributed control, controlled domain, Pontryagin-type maximum
principle, endogenous economic growth
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1 Introduction

In modeling endogenous economic growth we encounter the following situation: at any given time t
there exists a variety of technologies (or products, intermediate goods, etc.) represented by an interval
[0, Q(t)] of real numbers, so that every q ∈ [0, Q(t)] labels some technology that exists at time t, and
the larger is q, the newer is the technology. The technological frontier, Q(t), has its own dynamics
where investments in research and development appear as a control input (various ODE models of
this dynamics are available in the literature, see e.g. [7]). In addition, there is a physical capital stock,
x(t, q), of technology q ∈ [0, Q(t)]. For every technology q the capital x(t, q) obeys a linear ODE
involving depreciation and investment (also a control variable) in this technology. That is, we have a
family of ODEs parameterized by q. It is important to notice that this family of ODEs (viewed as a
distributed control system) is meaningful only in the domain {(t, q) : t ≥ 0, q ∈ [0, Q(t)]} because
investments in non-existing technologies are not possible. Since Q(t) depends on the R&D control,
we encounter a distributed control system on a controlled domain. Various optimization problems can
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be associated with this system, and we choose one that is general enough to cover many interesting
economic models that are a subject of current investigations.

In order to make a link and a comparison with the existing economic literature we refer to [5, 6,
9], mentioning that although a variety of goods is present in these papers, true heterogeneity is not
involved, since the products are viewed as identical, in contrast to the present paper. Models with truly
heterogeneous goods are investigated in [8, 3], but in a rather different context, where the dynamics
of the capital stock is ignored.

The investigation of optimization problems on a controlled domain is burdened by several cir-
cumstances: the possible non-differentiability of the function “control −→ objective value” (shown
in [4]); the non-concavity of this function—in a maximization problem!—shown in Section 3 below;
technical complications due to the dependence of the spatial domain on the control.

Optimality conditions for a more general optimal control problem than the one considered in this
paper are obtained in [4]. However, these conditions are shown in [4] to be efficient for analysis
and numerical approaches only under an a priory continuity-type regularity condition for the optimal
control. The verification of this regularity condition turns out to be uneasy even in simple special
cases, since it cannot rely on the efficient optimality conditions requiring the regularity themselves.

One of the main aims of the present paper is to prove that the optimal control in the more specific
problem considered here satisfies the regularity condition discussed above. As a consequence of this
and the results in [4] we obtain optimality conditions of Pontryagin’s type, which are good enough
for analytic and numerical investigation (as described in [4]). In this sense the present paper is a
substantial complement and enhancement of [4].

The obtained optimality conditions are reformulated in an appropriate Hamiltonian form, which
turned out not to be a trivial task for the considered problem, since the distributed dynamics has to
be appropriately extended outside the intrinsically relevant spatial domain. Under some additional
conditions the Hamiltonian reformulation allows to prove stationarity of the Hamiltonian along the
optimal solutions in case of stationary data.

An additional contribution of the paper is the proof of existence of an optimal solution of the con-
sidered maximization problem, which is not straightforward due to the non-convexity of the problem.

The plan of the paper is as follows. In Section 2 the problem and the assumptions on the data are
stated in detail. In Section 3 existence of optimal control is proved and an example showing the non-
convexity of the considered optimal control problem is given. The core of the present paper is Section
4 where continuity of any distributed optimal control with respect to the parameter of heterogeneity
(i.e. its regularity) is proved. In section 5 we derive Pontryagin’s type necessary optimality conditions
for the optimal control problem we consider in this paper and prove constancy of the Hamiltonian
along any optimal trajectory for the case of time-independent data.

2 Formulation of the problem and preliminaries

In this section we formulate a problem which is a particular case of the general one considered in [4].
Let [0, T ] be a fixed time-interval and let [0, Q̄] be an interval where the parameter of heterogeneity,
q, will take values (T > 0 and Q̄ > 0 are given). Denote D = [0, T ] × [0, Q̄]. State variables in the
model below are the functions

x : D 7→ R1, Q : [0, T ] 7→ [0, Q̄], y : [0, T ] 7→ R1,
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while u : D 7→ [u, u] ⊂ R1 and v : [0, T ] 7→ [v, v] ⊂ R1 are control functions, u ≥ 0, u > 0,
v ≥ 0 and v > 0 being given. For a given Q : [0, T ] 7→ [0, Q̄] we denote DQ := {(t, q) ∈ D : t ∈
[0, T ] and q ∈ [0, Q(t)]}.

The optimal control problem we consider reads as follows:

max
(u(·,·),v(·))

∫ T

0

[∫ Q(t)

0

(
L(t, q,Q(t), x(t, q), y(t))− c1(t, u(t, q))

)
dq − c2(t, v(t))

]
dt, (1)

subject to the equations

Q̇(t) = g1(t, Q(t))y(t) + g2(t, Q(t))v(t) for a.e. t ∈ [0, T ], Q(0) = Q0, (2)

y(t) =
∫ Q(t)

0
d(t, q)u(t, q) dq for a.e. t ∈ [0, T ], (3)

ẋ(t, q) = −δx(t, q) + u(t, q) for a.e. (t, q) ∈ DQ, (4)

x(0, q) = x0(q) for a.e. q ∈ [0, Q0], (5)

x(t, Q(t)) = xb(t) for t ∈ (0, T ], (6)

u(t, q)∈ [u, u] for a.e. (t, q) ∈ D, v(t) ∈ [v, v] for a.e. t ∈ [0, T ]. (7)

Everywhere, an upper “dot” means differentiation with respect to t, so that ẋ(t, q) = ∂x(t, q)/∂t.
The exact meaning of a solution of system (2)–(6) is given below.

From an economic point of view Q(t) is the technological frontier at time t, which changes in
accordance with (2) (where g1 and g2 are given functions), x(t, q) is the amount of physical capital
(or, alternatively, a quality measure) of technology q, v(t) is a direct investment in development of
new technologies, u(t, q) is the investment in the technology q ∈ [0, Q(t)], while y(t) is the indirect
effect of the capital investments on the development of new technologies. The objective functional
represents the aggregated net revenue (L, c1 and c2 are given functions), where the dependence on
t allows for discounting. The depreciation δ > 0 and the function d are given, Q0 ∈ (0, Q̄) and
x0(q), q ∈ [0, Q0] are given initial data, xb(t) is a boundary condition, which represents the amount
of capital stock (or quality level) of technology q at the time this technology is developed, that is,
when Q(t) = q.

The set of admissible controls is U×V , where U = {u ∈ L∞(D) : u(t, q) ∈ [u, u] for a.e. (t, q) ∈
D} and V = {v ∈ L∞([0, T ]) : v(t) ∈ [v, v] for a.e. t ∈ [0, T ]}.

We study problem (1)–(7) under the following Standing Assumptions (i) – (vii) (cf. [4]).

Standing Assumptions (i) – (v):
(i) The functions L, g1, g2, c1 and c2 are measurable in (t, q), locally essentially bounded, differ-

entiable in (Q, x, y), with locally Lipschitz partial derivatives, uniformly with respect to (t, q) ∈ D.
The function L is concave in (x, y), the function c1 is strongly convex and twice continuously dif-
ferentiable in u on an open set containing [u, u], uniformly in t ∈ [0, T ], the function c2 is convex
and differentiable in v on an open set containing [v, v], with locally Lipschitz derivative, uniformly in
t ∈ [0, T ], the function d is measurable on D;

(ii) there exist g
i
≥ 0 and gi > 0, i = 1, 2, such that g

i
≤ gi(t, Q) ≤ gi for a.e. t ∈ [0, T ], for

Q ∈ [Q0, Q̄] and for i = 1, 2;
(iii) there exist d > 0 and d > 0 such that d ≤ d(t, q) ≤ d for a.e. (t, q) ∈ D;
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(iv) g
1

u + g
2
v > 0;

(v) xb : [0, T ] 7→ R1 is continuously differentiable, x0 : [0, Q0] 7→ R1 is continuous, x0(Q0) =
xb(0).

Since for any given u ∈ U and v ∈ V one can represent

Q̇(t) = g1(t, Q(t))
∫ Q(t)

0
d(t, q)u(t, q) dq + g2(t, Q(t))v(t) (8)

and the function in the right-hand side is locally Lipschitz in Q, equation (2) has locally an absolute
continuous solution Q = Q[u, v] and it is unique on its maximal interval of existence in [0, T ].

Standing Assumption (vi):
For every (u, v) ∈ U × V the solution Q[u, v] exists on the whole interval [0, T ] and takes values in
[Q0, Q̄].

Given u ∈ U and v ∈ V , we define for q ∈ [0, Q̄]

θ[u, v](q) :=


0 if q ∈ [0, Q0],

Q[u, v]−1(q) if q ∈ (Q0, Q[u, v](T )),
T if q ∈ [Q[u, v](T ), Q̄].

The definition is correct, since Q[u, v] is invertible according to Standing Assumptions (ii)–(iv), and
its image is [Q0, Q[u, v](T )]. We extend the definition of x0(·) to [0, Q̄] as x0(q) = xb(0) for q ∈
(Q0, Q̄] and extend the dynamics of the distributed space variable x(·, ·) to the whole region D by
replacing (4)–(6) with

ẋ(t, q) = ẋb(t) for a.e. q ∈ [0, Q̄], and a.e. t ∈ [0, θ[u, v](q)), (9)

ẋ(t, q) = −δx(t, q) + u(t, q) for a.e. q ∈ [0, Q̄], and a.e. t ∈ [θ[u, v](q), T ], (10)

x(0, q) = x0(q) for a.e. q ∈ [0, Q̄]. (11)

By solution of (9)–(11) we mean a function x(·, ·), measurable on D, such that for almost every
q ∈ [0, Q̄] it holds that (11) is satisfied, x(·, q) is absolutely continuous on [0, T ] and satisfies (9) and
(10) almost everywhere in t ∈ [0, T ]; x(t, ·) ∈ L∞([0, Q̄]) for every t ∈ [0, T ]. We thus view (9)–(11)
as a family of ODEs (one for each q ∈ [0, Q̄]), where the functions y = y[u, v] and Q = Q[u, v] are
already defined in (2), (3) as described above.

For each q ∈ [0, Q̄] we define

x∗[u, v](q) :=


x0(q) if q ∈ [0, Q0],

xb(θ[u, v](q)) if q ∈ (Q0, Q[u, v](T )),
xb(T ) if q ∈ [Q[u, v](T ), Q̄].

Then for given controls (u, v), the solution of (4)–(6) on the domain DQ[u,v] is

x[u, v](t, q) = e−δ(t−θ[u,v](q))x∗[u, v](q) +
∫ t

θ[u,v](q)
eδ(s−t)u(s, q) ds. (12)

In accordance with (9)–(11), we extend x[u, v] as

x[u, v](t, q) := xb(t) for (t, q) ∈ [0, T ]× [Q[u, v](t), Q̄]. (13)
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3 Existence of optimal control

In this section we prove existence of a solution of problem (1)–(7). We present the proof in detail,
since the standard Lebesgue-Tonelly approach has to be appropriately adapted to the considered max-
imization problem. The reason is that the problem turns out to be non-concave, as shown in the end
of the section.

Proposition 1 The optimal control problem (1)–(7) has at least one solution.

Proof. Denoting the cost functional (1) by J [u, v], let J∗:= sup{J [u, v] : (u, v) ∈ U × V }. Let
{(uk, vk)} be a maximizing sequence for (1)–(7). Since all control functions are equibounded, there
exist (after extracting subsequences) functions û ∈ L2(D) and v̂ ∈ L2([0, T ]) such that {uk} con-
verges weakly in L2(D) to û and {vk} converges weakly in L2([0, T ]) to v̂. Since U and V are
weakly closed in L2(D) and L2([0, T ]) respectively, we have that (û, v̂) ∈ U ×V . Further we denote
Qk := Q[uk, vk], yk := y[uk, vk] and xk := x[uk, vk] for every k ∈ N. By Standing Assumption (vi)
{Qk} is equibounded on [0, T ]. From here and from Standing Assumptions (ii) and (iii) it follows that
{Q̇k} is equibounded a.e. on [0, T ], meaning that {Qk} is equicontinuous. According to the Arzelà–
Ascoli theorem there is Q̂ ∈ C([0, T ]) such that (after extracting a subsequence) {Qk} converges to
Q̂ uniformly on [0, T ]. Further, because of (7) and of Standing Assumptions (iii) and (vi), {yk} is
equibounded a.e. on [0, T ], so there is ŷ ∈ L2([0, T ]) such that (after extracting a subsequence) {yk}
converges to ŷ weakly in L2([0, T ]). Hence, for each t ∈ [0, T ]∫ t

0
yk(τ) dτ −→

∫ t

0
ŷ(τ) dτ as k →∞.

Also∫ t

0
yk(τ) dτ =

∫ t

0

∫ Qk(τ)

0
d(τ, q)uk(τ, q) dq dτ −→

∫ t

0

∫ Q̂(τ)

0
d(τ, q)û(τ, q) dq dτ as k →∞

because of the equiboundedness of all integrands on D, of the uniform on [0, T ] convergence of {Qk}
to Q̂ and of the weak in L2(D) convergence of {uk} to û. Differentiating in t the equality∫ t

0
ŷ(τ) dτ =

∫ t

0

∫ Q̂(τ)

0
d(τ, q)û(τ, q) dq dτ,

we obtain that

ŷ(t) =
∫ Q̂(t)

0
d(t, q)û(t, q) dq for a.e. t ∈ [0, T ],

i.e. ŷ = y[û, v̂].

Further on, from (8) we obtain for every k ∈ N and for every t ∈ [0, T ]

Qk(t)−Q0 =
∫ t

0
Q̇k(τ) dτ =

∫ t

0

(
g1(τ,Qk(τ))

∫ Qk(τ)

0
d(τ, q)uk(τ, q) dq + g2(τ,Qk(τ))vk(τ)

)
dτ.
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From the uniform continuity of gi(τ, ·) on [Q0, Q̄] (uniformly in τ ∈ [0, T ]), i = 1, 2, the uniform on
[0, T ] convergence of {Qk} to Q̂ and from the weak convergence of {uk} and {vk}, we obtain that

Qk(t) −→ Q0 +
∫ t

0

(
g1(τ, Q̂(τ))

∫ Q̂(τ)

0
d(τ, q)û(τ, q) dq + g2(τ, Q̂(τ))v̂(τ)

)
dτ as k →∞

for every t ∈ [0, T ]. Taking into account that Qk(t) converges to Q̂(t) for all t ∈ [0, T ] and differen-
tiating in t, we see that Q̂(t) satisfies (2), i.e. Q̂ = Q[û, v̂].

Next, denoting θk := θ[uk, vk] and x∗k := x∗[uk, vk], we first note that θk converges uniformly on
[0, Q̄] to θ̂ := θ[û, v̂] and this together with the continuity of xb on [0, T ] yields that x∗k converges
uniformly on [0, Q̄] to x̂∗. It is clear from (12) and (13) that the sequence {xk} is equibounded on D,
hence, there is x̂ ∈ L2(D) which is the weak in L2(D) limit of (a subsequence of) {xk}. So, for each
t ∈ [0, T ] and each q ∈ [0, Q̄] we have∫ t

0

∫ q

0
xk(τ, σ) dσ dτ −→

∫ t

0

∫ q

0
x̂(τ, σ) dσ dτ as k →∞. (14)

Taking (t, q) ∈ [0, T ]× [0, Q̂(t)), we first obtain from (12) that∫ q

0
xk(t, σ) dσ −→

∫ q

0
e−δ(t−θ̂(σ))x̂∗(σ) dσ +

∫ q

0

∫ t

θ̂(σ)
eδ(s−t)û(s, σ) ds dσ

as k → ∞, because of the uniform on [0, Q̄] convergence of {θ∗k} and {x∗k} and the weak in L2(D)
convergence of {uk}. Next, the Lebesgue bounded convergence theorem yields∫ t

0

∫ q

0
xk(τ, σ) dσ dτ −→

∫ t

0

∫ q

0
e−δ(τ−θ̂(σ))x̂∗(σ) dσ dτ +

∫ t

0

∫ q

0

∫ τ

θ̂(σ)
eδ(s−τ)û(s, σ) ds dσ dτ

(15)
as k →∞. Taking into account (14) and (15) and differentiating first in t, then in q, we obtain

x̂(t, q) = e−δ(t−θ̂(q))x̂∗(q) +
∫ t

θ̂(q)
eδ(s−t)û(s, q) ds

for (t, q) ∈ [0, T ]× [0, Q̂(t)), i.e. x̂ = x[û, v̂].

Next we define the linear mappings u 7→ (x̄[u], ȳ[u]) in the following way:

x̄[u](t, q) := e−δ(t−θ̂(q))x̂∗(q) +
∫ t

θ̂(q)
eδ(s−t)u(s, q) ds,

ȳ[u](t) :=
∫ Q̂(t)

0
d(t, q)u(t, q) dq.

One easily obtains that xk(t, q) = x̄[uk](t, q) + γx,k(t, q) and yk(t) = ȳ[uk](t) + γy,k(t) with
γx,k(t, q) → 0 uniformly on D and γy,k(t) → 0 uniformly on [0, T ] as k →∞. The functional

J̄ [u, v] :=
∫ T

0

[∫ Q̂(t)

0

(
L(t, q, Q̂(t), x̄[u](t, q), ȳ[u](t))− c1(t, u(t, q))

)
dq − c2(t, v(t))

]
dt
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is strongly in L2(D)×L2([0, T ]) continuous and concave, hence, it is weakly upper semicontinuous.
Also, one easily obtains that J [uk, vk] = J̄ [uk, vk] + γJ,k with γJ,k → 0 as k →∞. So, we have

J∗ = lim
k→∞

J [uk, vk] = lim
k→∞

J̄ [uk, vk] ≤ J̄ [û, v̂] = J [û, v̂],

i.e. (û, v̂) is a solution of the optimal control problem (1)–(7). Q.E.D.

Remark 1 We note that problem (1)–(7) is not concave, so the obtained existence result is not an
entirely trivial issue. The non-concavity is shown in the following example in which a particular case
of (1)–(7) is considered. We show that the cost functional J(·) considered over the one-dimensional
line segment in U consisting of all constant functions in U (the control v is absent) is not concave as
a function of one variable.

Example. Consider the problem

max
u

J(u) :=
∫ T

0

∫ Q(t)

0

(
x(t, q)− αu2(t, q)

)
dq dt,

subject to the equations

Q̇(t) = βy(t) for a.e. t ∈ [0, T ], Q(0) = 1,

y(t) =
∫ Q(t)

0
u(t, q) dq for a.e. t ∈ [0, T ],

ẋ(t, q) = u(t, q) for a.e. (t, q) ∈ DQ,

x(0, q) = 0 for a.e. q ∈ [0, Q0],
x(t, Q(t)) = 0 for t ∈ (0, T ],

u(t, q)∈ [u, u] for a.e. (t, q) ∈ D.

Here α > 0 and β > 0 are given, 0 < u < u, and it is assumed that Q̄ > eβuT .

Now, take u(t, q) ≡ u ∈ [u, u]. Then Q[u](t) = eβut for t ∈ [0, T ] and θ[u](q) = 1
βu ln(q) for

q ∈ [1, eβuT ]. Hence,

x[u](t, q) =

{
tu if (t, q) ∈ [0, T ]× [0, 1](
t− 1

βu ln(q)
)

u if (t, q) ∈ [ 1
βu ln(q), T ]× [1, eβuT ]

and
J(u) = −αu

β
eβuT +

1
β2u

(
eβuT − 1

)
+

1
β

(αu− T ).

From here we obtain that

J ′′(u) =
(
−2αT − αβT 2u− 2T

βu2
+

T 2

u

)
eβuT +

2
β2u3

(
eβuT − 1

)
.

The last term above is positive. Denoting

Φ(T, u) = −2αT − αβT 2u− 2T

βu2
+

T 2

u
,
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we have

Φ(T, u) =
[(
−2α− 2

βu2

)
+
(
−αβu +

1
u

)
T

]
T.

Take now u0 ∈ (u, u) such that −αβu0 +
1
u0

> 0 (if necessary, we decrease the lower bound u > 0).

Now, for u ∈ [u, u0] we have −αβu +
1
u

> −αβu0 +
1
u0

and 2α +
2

βu2
> 2α +

2
βu2

. Hence,

if T is large enough, Φ(T, ·) > 0 holds true on [u, u0], i.e J ′′(·) > 0 on [u, u0], i.e. J(·) is strongly
convex, hence non-concave, on the set of constant controls u ∈ [u, u0].

4 Regularity of the optimal control

As it was shown in [4, Theorem 2], Pontryagin’s type optimality conditions for an optimal control û
are valid if this control satisfies the “regularity condition” that û(t, ·) is for almost every t continuous
from the left at q = Q(t). In this section, it shall be proved that any optimal control in problem
(1)–(7) is “regular”. We need the following additional assumption.

Standing Assumption (vii):
The functions L, Lx and d are continuous with respect to q uniformly in the rest of the variables.

Proposition 2 Let Standing Assumptions (i)–(vii) be fulfilled. Then any optimal control û of problem
(1)–(7) is continuous in q for almost every t ∈ [0, T ].

Before proving the proposition, an auxiliary problem and two auxiliary results will be considered.
Let (x̂, ŷ, Q̂, û, v̂) be a solution of problem (1)–(7), the existence of which was proved in the previous
section. Consider the new optimal control problem

max
u

J(u) =
∫ T

0

∫ Q̂(t)

0
[L(t, q, Q̂(t), x(t, q), ŷ(t))− c1(t, u(t, q))] dq dt (16)

subject to

ẋ(t, q) = −δx(t, q) + u(t, q), for a.e. (t, q) ∈ DQ̂ (17)

x(0, q) = x0(q) for a.e. q ∈ [0, Q0], (18)

x(t, Q̂(t)) = xb(t) for t ∈ [0, T ], (19)∫ Q̂(t)

0
d(t, q)u(t, q) dq = ŷ(t) for a.e. t ∈ [0, T ], (20)

u ≤ u(t, q) ≤ u for a.e. q ∈ [0, Q̂(t)]. (21)

This is a reduction of the original problem, where y, Q and v are fixed at their optimal values, ŷ, Q̂, v̂.
Obviously û is an optimal control for the reduced problem.

We introduce the following notational convention: dependencies on values of the control or the
state variables, fixed at the considered optimal trajectory are suppressed. For example, L(t, q, x(t, q)) :=
L(t, q, Q̂(t), x(t, q), ŷ(t)), Lx(t, q) := Lx(t, q, Q̂(t), x̂(t, q), ŷ(t)), g1(t) := g1(t, Q̂(t)), etc.
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Consider the following (decoupled) family of ODEs parameterized by q ∈ [0, Q̂(T )]:

˙̂
λ(t, q) = δλ̂(t, q)− Lx(t, q), λ̂(T, q) = 0, t ∈ [θ(q), T ]. (22)

Clearly, a unique solution λ(t, q), which is absolutely continuous in t and measurable and uniformly
bounded in q exists on DQ̂.

Lemma 1 Let the Standing Assumptions (i)–(vii) be fulfilled. Let û be an optimal control of problem
(16)–(21) and let λ̂ be the solution to (22). Then for almost every t ∈ [0, T ] the function û(t, ·)
maximizes ∫ Q̂(t)

0
[λ̂(t, q)u(q)− c1(t, u(q))] dq (23)

over the set of u ∈ L∞([0, Q̂(t)]) satisfying∫ Q̂(t)

0
d(t, q)u(q) dq = ŷ(t), u ≤ u(q) ≤ u for a.e. q ∈ [0, Q̂(t)]. (24)

Proof. Let u(t, q) be any measurable function on D satisfying the constraints (20), (21). Denote by
x̂(t, q) and x(t, q) the trajectories corresponding to û and u, respectively. Further, define ∆u(t, q) :=
u(t, q)− û(t, q), ∆x(t, q) := x(t, q)− x̂(t, q) and ∆J := J(u)− J(û).

∆J =
∫ T

0

∫ Q̂(t)

0
[L(t, q, x)− L(t, q, x̂)− c1(t, u(t, q)) + c1(t, û(t, q))] dq dt,

=
∫ T

0

∫ Q̂(t)

0
[〈Lx(t, q, x̂ + s(t, q)∆x(t, q)),∆x(t, q)〉 − c1(t, u(t, q)) + c1(t, û(t, q))] dq dt,

=
∫ T

0

∫ Q̂(t)

0
[〈Lx(t, q, x̂),∆x(t, q)〉 − c1(t, u(t, q)) + c1(t, û(t, q))] dq dt + e(∆u), (25)

where

e(∆u) :=
∫ T

0

∫ Q̂(t)

0
〈Lx(t, q, x̂(t, q) + s(t, q)∆x(t, q))− Lx(t, q),∆x(t, q)〉 dq dt.

The difference ∆x(t, q) satisfies in DQ̂ the differential equation

d
dt

∆x(t, q) = −δ∆x(t, q) + ∆u(t, q)

with initial conditions ∆x(0, q) = ∆x(t, Q̂(t)) = 0. Therefore, for some constant M1, ‖∆x‖∞ ≤
M1 meas ({t ∈ [0, T ] : u(t, ·) 6= û(t, ·)}).Since Lx is Lipschitz in x, it follows that

|e(∆u)| ≤ M2 meas ({t ∈ [0, T ] : u(t, ·) 6= û(t, ·)})2 . (26)
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Using (22) for λ̂, the following holds true:∫ T

0

∫ Q̂(t)

0
〈Lx(t, q, x̂),∆x(t, q)〉 dq dt =

∫ T

0

∫ Q̂(t)

0
〈δλ̂(t, q)− ˙̂

λ(t, q),∆x(t, q)〉 dq dt

=
∫ T

0

∫ Q̂(t)

0
〈δλ̂(t, q),∆x(t, q)〉 dq dt−

∫ T

0

d
dt

∫ Q̂(t)

0
〈λ̂(t, q),∆x(t, q) dq dt

+
∫ T

0
〈λ̂(t, Q̂(t)),∆x(t, Q̂(t))〉ŷ(t) dt +

∫ T

0

∫ Q̂(t)

0
〈λ̂(t, q),−δ∆x(t, q) + ∆u(t, q)〉 dq dt

=
∫ T

0

∫ Q̂(t)

0
〈λ̂(t, q),∆u(t, q)〉 dq dt−

∫ Q̂(T )

0
〈λ̂(T, q),∆x(T, q)〉 dq

+
∫ Q0

0
〈λ̂(0, q),∆x(0, q)〉 dq

=
∫ T

0

∫ Q̂(t)

0
〈λ̂(t, q),∆u(t, q)〉 dq dt.

Inserting the last expression in (25), and using the optimality of û which implies ∆J ≤ 0, we obtain∫ T

0

∫ Q̂(t)

0
[λ̂(t, q)û(t, q)−c1(t, û(t, q))] dq dt ≥

∫ T

0

∫ Q̂(t)

0
[λ̂(t, q)u(t, q)−c1(t, u(t, q))] dq dt+e(∆u).

(27)
Assume that the assertion of the lemma is not true, i.e. there exist an ε > 0 and a subset A ⊂ [0, T ]

with meas(A) > 0 such that for every t ∈ A there exists a ut(·) ∈ L∞([0, Q̂(t)]) such that∫ Q̂(t)

0
[λ̂(t, q)ut(q)− c1(t, ut(q))] dq ≥

∫ Q̂(t)

0
[λ̂(t, q)û(t, q)− c1(t, û(t, q))] dq + ε. (28)

Next we want to show that we can take ut to be measurable in (t, q). Consider the set valued mapping
Γ : A ⇒ L1([0, Q̄]), defined as

Γ(t) := {u(·) ∈ X : (G1(t, u(·)), G2(t, u(·))) ∈ [0,∞)× {0}} ,

where X :=
{
u(·) ∈ L1([0, Q̄]) : u ≤ u(q) ≤ ū

}
, and

G1(t, u(·)) =
∫ Q̂(t)

0
[λ̂(t, q)u(q)− c1(t, u(q))− λ̂(t, q)û(t, q) + c1(t, û(t, q))] dq − ε,

G2(t, u(·)) =
∫ Q̂(t)

0
d(t, q)u(q) dq − ŷ(t).

The so defined function fulfills the assumptions of Theorem 8.2.9 (p. 315 of [2]), because X is a
complete separable metric space, (G1(t, u(·)), G2(t, u(·))) is Caratheodory, Γ(t) 6= ∅ ∀t ∈ A.
Therefore, a measurable selection w(t) ∈ Γ(t) exists. Since w is a measurable function from A
to L1([0, Q̄]), there exists an equivalent function u(t, q) measurable in (t, q) (Lusin’s theorem and
Lemma 2.1 on page 25 in [11]).
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Now choose m big enough such that M2
m < ε and 1

m < meas(A), then choose a subset Am of A
with meas(Am) = 1

m and define

um(t, q) =
{

u(t, q) if t ∈ Am

û(t, q) if t ∈ [0, T ]\Am

The so defined control um is admissible because û and u are measurable and fulfill the conditions
(20)–(21). It differs only on a set of measure m−1 from the optimal control and therefore, using (26),
|e(∆um)| ≤ M2m

−2.

Using (28) and the definition of Am and um, it follows that∫
Am

∫ Q̂(t)

0
[λ̂(t, q)û(t, q)− c1(t, û(t, q))] dq dt +

ε

m

≤
∫

Am

∫ Q̂(t)

0
[λ̂(t, q)um(t, q)− c1(t, um(t, q))] dq dt

≤
∫

Am

∫ Q̂(t)

0
[λ̂(t, q)û(t, q)− c1(t, û(t, q))] dq dt− e(∆um)

<

∫
Am

∫ Q̂(t)

0
[λ̂(t, q)û(t, q)− c1(t, û(t, q))] dq dt +

ε

m
,

where the second inequality comes from (27) and the last one holds true because of the choice of m.
The obtained contradiction completes the proof. Q.E.D.

In what follows c′1 denotes differentiation with respect to u. Also, (c′
1
(t))−1(η) denotes

(
∂c1
∂u (t, ·)

)−1
(η).

Lemma 2 Let the Standing Assumptions (i)–(vii) be fulfilled and let λ̂ be the solution to (22). The
function

U(t, q, λ, ξ) :=


u if λ + ξ d(t, q) < c′1(t, u)
(c′1(t))

−1(λ + ξ d(t, q)) if c′1(t, u) ≤ λ + ξ d(t, q) ≤ c′1(t, u)
u if λ + ξ d(t, q) > c′1(t, u)

(29)

is continuous in q, Lipschitz in λ, and there exists a measurable on [0, T ] function ξ̂(t), such that the
optimal control û(t, q) of problem (1)–(7) fulfills û(t, q) = U(t, q, λ̂(t, q), ξ̂(t)).

Proof. According to Lemma 1, for almost every t ∈ [0, T ] the function û(t, ·) maximizes (23) subject
to (24). According to the Theorem in Section 4.2 (p. 218) in [1], there exist ξ0(t) ≥ 0 and ξ∗(t) ∈ R
with ξ2

0(t) + (ξ∗(t))2 > 0, such that for a.e. q ∈ [0, Q̂(t)], û(t, q) solves the problem

max
w∈[u,u]

{
ξ0(t)[λ̂(t, q)w − c1(t, w)] + ξ∗(t)

[
d(t, q)w − ŷ(t)

Q̂(t)

]}
. (30)

It can be shown that ξ0(t) can be taken equal to 1.
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Fix (t, q) ∈ DQ̂. For ξ0(t) = 1, problem (30) is equivalent to minimization of c1(t, w) −
[ξ∗(t)d(t, q)+λ̂(t, q)]w over w ∈ [u, u]. Since c1(t, ·) is strongly convex, that is, c′′1(t, w) ≥ ε̄ > 0 for
all w, the function c′1(t, ·) is invertible. Since (c′1(t))

−1(c′1(t, w)) = w we have [(c′1(t))
−1(c′1(t, w))]′ =

1 and therefore
[(c′1(t))

−1]′(c′1(t, w)) =
1

c′′1(t, w)
≤ 1

ε̄
. (31)

The maximizer is thus obtained by the sign of

λ̂(t, q)− c′1(t, w) + ξ∗(t)d(t, q)

for w ∈ [u, u]. The optimal control is therefore (c′1(t))
−1(λ̂(t, q) + ξ∗(t)d(t, q)) projected on [u, u].

That is, the optimal control can be written in feedback form (29), û(t, q) = U(t, q, λ̂(t, q), ξ∗(t)). It
is clear from (29) and (31), that U(t, q, λ, ξ) is Lipschitz with respect to λ with constant (ε̄)−1. The
continuity in q follows from that of d(t, ·)

The Lagrange multiplier ξ∗ from above may not be measurable. We will now prove that there
exists a measurable multiplier ξ̂(·) such that U(t, q, λ̂(t, q), ξ̂(t)) = U(t, q, λ̂(t, q), ξ∗(t)) on DQ̂,

hence û(t, q) = U(t, q, λ̂(t, q), ξ̂(t)). Consider the set valued mapping

G(t) :=

{
ξ ∈ R :

∫ Q̂(t)

0
d(t, q)U(t, q, λ̂(t, q), ξ) dq − ŷ(t) = 0

}
, t ∈ [0, T ]. (32)

Since ŷ(·) is measurable, from Theorem 8.2.9 in [2], it follows that G(·) is measurable, therefore, a
measurable selections exists which we denote by ξ̂(·).

Note that the mapping ξ → U(t, q, λ̂(t, q), ξ) is monotone increasing. Let ξ̂(t) ≥ (≤) ξ∗(t)
hold for some t ∈ [0, T ]. Due to the monotonicity of U this implies the corresponding inequality
U(t, q, λ̂(t, q), ξ̂(t)) ≥(≤) U(t, q, λ̂(t, q), ξ∗(t)) for q ∈ [0, Q̂(t)]. Since the equality in (32) is satis-
fies with both ξ = ξ̂(t) and ξ = ξ∗(t), and since d(t, q) > 0, we conclude that U(t, q, λ̂(t, q), ξ∗(t)) =
U(t, q, λ̂(t, q), ξ̂(t)) for a.e. q ∈ [0, Q̂(t)]. This completes the proof.

Q.E.D.

Proof of Proposition 2. Let λ̂(t, q) be the solution of (22), and let U(·, ·, ·, ·) and ξ̂(·) be the functions
defined in Lemma 2. We know from Lemma 2 that û(t, q) = U(t, q, λ̂(t, q), ξ̂(t)).

Let us consider the following boundary value problem on DQ̂:

ẋ(t, q) = −δx(t, q) + U(t, q, λ(t, q), ξ̂(t)), x(θ̂(q), q) = x0(q) (33)

λ̇(t, q) = δλ(t, q)− Lx(t, q, x(t, q)), λ(T, q) = 0. (34)

Obviously (x̂, λ̂) is a solution of this system. Our goal below will be to prove that it is the only
solution and that it depends continuously on q, hence û also depends continuously on q.

Consider the initial value problem (33)–(34) with λ(θ̂(q), q) = p instead of the end point con-
dition for λ. Due to the standing assumptions and Lemma 2, the right-hand side of the differential
system in (33), (34) is Lipschitz continuous in (λ, x). Then for every q the initial value problem has a
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unique solution (x(t, q; p), λ(t, q; p)) on [θ̂(q), T ]. Let us fix q and suppress it, as well as ξ̂(t), in the
notations below.

To prove uniqueness of the solution of (33)–(34), assume that there are two solutions, (x1, λ1)
and (x2, λ2). If λ1(θ̂) = λ2(θ̂), then both solutions coincide with (x(t; p), λ(t; p)) for p = λ1(θ̂).
Therefore, let us assume that λ2(θ̂) − λ1(θ̂) > ε for some ε > 0. Let τ be the maximal number
in [θ̂, T ] such that λ2(t) − λ1(t) ≥ ε for all t ∈ [θ̂, τ ]. Using that the function λ 7→ U(t, λ) is
non-decreasing due to its definition in (29) and the convexity of c, we obtain that for t ∈ [θ̂, τ ]

ẋ2(t)− ẋ1(t) = −δ(x2(t)− x1(t)) + U(t, λ2(t))− U(t, λ1(t)) ≥ −δ(x2(t)− x1(t)).

Since x1(θ̂) = x2(θ̂), the above inequality implies x2(t)− x1(t) ≥ 0 for all t ∈ [θ̂, τ ]. Using the last
inequality and the fact that the function x 7→ Lx(t, x) is non-increasing due to the concavity of L, we
obtain

λ̇2(t)− λ̇1(t) = δ(λ2(t)− λ1(t))− (Lx(t, x2(t))− Lx(t, x1(t)))
≥ δ(λ2(t)− λ1(t)) ≥ 0, t ∈ [θ̂, τ ],

which implies λ2(τ) − λ1(τ) > ε. This means that τ = T and, in particular, λ2(T ) − λ1(T ) ≥ ε.
This contradicts the boundary condition in (34), and implies that the solution of (33), (34) is unique
(namely, (x̂(·, q), λ̂(·, q))).

Next, we shall prove the continuity of λ̂ with respect to q. Due to the boundedness of û it is easy
to verify that there is a compact interval P ⊂ R containing all values λ̂(θ̂(q), q), q ∈ [0, Q̂(T )]. Let
us prove the following property (P): for every ε > 0 there exists δ > 0 such that for any q1, q2 ∈
[0, Q̂(T )] and p1, p2 ∈ P satisfying |q1 − q2| < δ and λ(T, q1; p1) = λ(T, q2; p2) = 0, it holds that
|p1 − p2| ≤ ε.

According to the continuous dependence of the solution of an ODE with Lipschitz continuous
right-hand side with respect to initial data and parameter (see e.g. [10, Theorem 2], where the required
continuity in t is not necessary.) the mapping [0, Q̂(T )] ×R 3 (q, p) → λ(·, q; p) ∈ C([θ̂(q), T ]) is
continuous, hence it is uniformly continuous on [0, Q̂(T )]× P .

Assume that property (P) does not hold. Then there exists ε > 0 such that for every δ > 0 there
exist q1, q2 ∈ [0, Q̂(T )] and p1, p2 ∈ P such that |q1− q2| < δ, λ(T, q1; p1) = λ(T, q2; p2) = 0, and
p2 − p1 > ε. Due to the (uniform) continuous dependence we may choose δ > 0 so small that

|λ(T, q2; p2)− λ(T, q1; p2)| ≤ ε/2.

We have

λ(θ̂(q1), q1; p2)− λ(θ̂(q1), q1; p1) = p2 − p1 ≥ ε, x(θ̂(q1), q1; p2) = x(θ̂(q1), q1; p1).

Then we can prove in exactly the same way as a few paragraphs above that λ(t, q1; p2)−λ(t, q1; p1) ≥
ε for all t ∈ [θ̂(q1), T ]. Hence

λ(T, q2; p2)− λ(T, q1; p1) ≥ λ(T, q1; p2)− λ(T, q1; p1)− ε/2 ≥ ε/2.

This contradicts the equality λ(T, q1; p1) = λ(T, q2; p2) and proves property (P).
Applying property (P) for pi = λ̂(θ̂(qi), qi), i = 1, 2, we obtain that for every ε > 0 there exists

δ > 0 such that |q1 − q2| < δ implies |λ̂(θ̂(q1), q1) − λ̂(θ̂(q2), q2)| < ε. Then using again the
continuous dependence of the solution of ODEs we conclude that q 7→ λ̂(·, q) is continuous. From
the equality û(t, q) = U(t, q, λ̂(t, q), ξ̂(t)) and Lemma 2 we obtain the desired continuity of û(t, ·).
Q.E.D.
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5 Pontryagin maximum principle and stationarity of the Hamiltonian
along any optimal trajectory

In this section we derive necessary optimality conditions of Pontryagin’s type for problem (1)–(7)
and prove stationarity of the Hamiltonian along any optimal trajectory in the case of stationary data.

Define the adjoint variables (λ̂(t, q), µ̂(t), ν̂(t)) for (t, q) ∈ DQ̂ as solutions to the following
adjoint system (we use the notational convention from the beginning of Section 4)

λ̇(t, q) = δλ(t, q)− Lx(t, q) (t, q) ∈ DQ̂, λ(T, q) = 0, q ∈ [0, Q̂(T )], (35)

µ̇(t) = µ(t)
[
−∂g1

∂Q
(t) ŷ(t)− ∂g2

∂Q
(t) v̂(t)

]
− L(t, Q̂(t)) + c1(t, û(t, Q̂(t))) (36)

− λ(t, Q̂(t))[−δxb(t)− ẋb(t) + û(t, Q̂(t))]− ν(t)d(t, Q̂(t))û(t, Q̂(t))

−
∫ Q̂(t)

0
LQ(t, q) dq, t ∈ [0, T ], µ(T ) = 0,

ν(t) = µ(t) g1(t) +
∫ Q̂(t)

0
Ly(t, q) dq, t ∈ [0, T ]. (37)

The distributed equation (35) is viewed as a family of ODEs parameterized by q, with a zero end-point
condition at t = T .

Define H : D ×R× [0, Q̄]×R× [u, u]× [v, v]×R×R×R 7→ R as

H(t, q, x,Q, y, u, v, λ, µ, ν) = [L(t, q, x,Q, y)− c1(t, u)− c2(t, v)]+
+ λ (−δx + u) + µ [g1(t, Q)y + g2(t, Q)v] + ν d(t, q)u.

Theorem 1 Let Standing Assumptions (i)–(vii) be fulfilled, let (û, v̂) ∈ L∞(D) × L∞([0, T ]) be
an optimal control of the problem (1)–(7) and denote by ẑ := (x̂, Q̂, ŷ) the corresponding state
trajectory. Then the adjoint system (35)–(37) has a unique solution π̂ := (λ̂, µ̂, ν̂) and for a.e.
(t, q) ∈ DQ̂

H(t, q, ẑ(t, q), û(t, q), v̂(t), π̂(t, q)) = max
(u,v)∈[u,u]×[v,v]

H(t, q, ẑ(t, q), u, v, π̂(t, q)). (38)

Proof. Essentially, the result follows from the more general Theorem 2 in [4]. A key requirement in
[4, Theorem 2] (and the main difficulty) is the regularity condition for the optimal u, which we proved
in Section 4. A minor additional work is needed due to the non-distributed control v(t) involved in
the present paper in order to cover some existing economic models. Only distributed controls are
involved in [4], but in all other respects the model there is more general, in particular, the control and
the states may be multi-dimensional.

It is easy to bring our problem (1)–(7) to a form tractable by [4, Theorem 2]. Indeed, we introduce
a second (artificial) distributed control u2(t, q) ∈ [v, v] and an additional integral state

y2(t) =
∫ Q(t)

0
u2(t, q) dq. (39)
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It is clear that whatever is Q(t) > 0, every measurable v with v(t) ∈ [v, v] can be represented as
v(t) = y2(t)/Q(t) with u2(t, q) = v(t) ∈ [v, v] in (39), and u2 satisfies the regularity condition.
Moreover, every measurable u2(t, q) ∈ [v, v] defines in the same way a measurable v(t) ∈ [v, v].

We modify problem (1)–(7) by replacing everywhere v with y2/Q, and adding equation (39) as
a second integral equation along with (3). Clearly, û and û2(t, q) = v̂(t) forms an optimal control
pair for the modified problem. Applying Theorem 2 in [4] and returning to the original control v we
obtain the claim of the theorem. The technicalities are straightforward. Q.E.D.

Our next aim will be to obtain a Hamiltonian representation of the optimality conditions and to prove
stationarity of the Hamiltonian (for stationary problems) along any optimal solution. This turned out
to be a non-straightforward task, and even the correct definition of a Hamiltonian is not evident, due
to the endogenous change of the spatial domain in which the distributed equation (4) acts. In order
to correctly define the Hamiltonian we replace equations (4)–(6) with the extended system (9)–(11),
which has the advantage of defining a solution x on all the rectangular D (we remind that x0 was
extended to [0, Q̄] by setting x0(q) = xb(0) for q ∈ (Q0, Q̄]). Similarly, we extend the adjoint
function λ to the whole rectangular by defining λ̇(t, q) = 0 on D\DQ. This is consistent with the
redefinition of x, since L and the dynamics ẋ(·, ·) do not depend on x for (t, q) on D\DQ (cf. the
adjoint equation (11) on p. 293 in [4]).

We define the Hamiltonian as a functional depending on the following variables: t ∈ [0, T ],
x ∈ L∞([0, Q̄]), Q ∈ [0, Q̄], y ∈ R1, u ∈ L∞([0, Q̄]), v ∈ R1, λ ∈ L∞([0, Q̄]), µ ∈ R1, ν ∈ R1.
The definition is as follows:

H(t, x, Q, y, u, v, λ, µ, ν)

:=
∫ Q

0
(L(t, q,Q, x(q), y)− c1(t, u(q))) dq − c2(t, v) +

∫ Q

0
λ(q) (−δx(q) + u(q)) dq

+ ẋb(t)
∫ Q̄

Q
λ(q) dq + µ (g1(t, Q)y + g2(t, Q)v) + ν

(
−y +

∫ Q

0
d(t, q)u(q) dq

)
.

Using this Hamiltonian functional, the primal control system (2), (3), (9)–(11) and the adjoint system
(35)–(37) can be written in a more compact form. The primal system takes the form

ẋ(t, ·) =
∂H
∂λ

(t, x(t, ·), Q(t), y(t), u(t, ·), v(t), λ(t, ·), µ(t), ν(t)), x(0, ·) =x0(·),

Q̇(t) =
∂H
∂µ

(t, x(t, ·), Q(t), y(t), u(t, ·), v(t), λ(t, ·), µ(t), ν(t)), Q(0) =Q0,

0 =
∂H
∂ν

(t, x(t, ·), Q(t), y(t), u(t, ·), v(t), λ(t, ·), µ(t), ν(t)),

while the adjoint system can be written as

λ̇(t, ·) = −∂H
∂x

(t, x(t, ·), Q(t), y(t), u(t, ·), v(t), λ(t, ·), µ(t), ν(t)), λ(T, ·) = 0,

µ̇(t) = −∂H
∂Q

(t, x(t, ·), Q(t), y(t), u(t, ·), v(t), λ(t, ·), µ(t), ν(t)), µ(T ) = 0,

0 =
∂H
∂y

(t, x(t, ·), Q(t), y(t), u(t, ·), v(t), λ(t, ·), µ(t), ν(t)).
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We mention that in general, the derivatives ∂H
∂λ and ∂H

∂x are elements of the dual space of L∞([0, Q̄]),
but they turn out to be representable by L∞-functions.

The condition of maximization of the Hamiltonian takes the following form: for each t ∈ [0, T ]

H(t, ẑ(t, ·), û(t, ·), v̂(t), π̂(t, ·)) = max
u,v

H(t, ẑ(t, ·), u(·), v, π̂(t, ·)), (40)

where, as in Theorem 1, ẑ := (x̂, Q̂, ŷ) and π̂ := (λ̂, µ̂, ν̂), and the maximization takes place on the
set of all u ∈ L∞([0, Q̂(t)]) with u(q) ∈ [u, u] and all v ∈ [v, v].

Having in mind the specific form of the Hamiltonian, above maximization condition splits in two:

max
u

∫ Q̂(t)

0
[−c1(t, u(q)) + (λ(t, q) + ν(t)d(t, q))u(q)] dq, u(q) ∈ [u, u]

max
v∈[v,v]

{−c2(t, v) + µ(t)g2(t) v}.

Clearly, the first maximization problem is equivalent to point-wise maximization for every q sepa-
rately, thus it is equivalent to (38).

Having at hand the correct Hamiltonian representation of the optimality conditions, we can prove that
for stationary problems the Hamiltonian is constant along any optimal solution. Our proof, however,
requires an additional assumption formulated in the next theorem.

Theorem 2 Let Standing Assumptions (i)–(vii) hold and let L be linear in y. Let the functions L,
c1, c2, g1, g2, d and ẋb do not depend on t and let c2 be strongly convex and twice continuously
differentiable on an open set containing [v, v]. Let (x̂, Q̂, ŷ, û, v̂) be an optimal trajectory and let λ̂,
µ̂, and ν̂ be the respective solutions to the adjoint system (35)–(37). Then the maximized Hamiltonian

M(x̂(t, ·), Q̂(t), ŷ(t), λ̂(t, ·), µ̂(t), ν̂(t)) := max
u,v

H(x̂(t, ·), Q̂(t), ŷ(t), u(·), v, λ̂(t, ·), µ̂(t), ν̂(t)),

where the maximization takes place over the set of all u ∈ L∞([0, Q̂(t)]) with u(q) ∈ [u, u] and all
v ∈ [v, v], is constant on [0, T ].

Proof. First of all we shall prove uniform boundedness of the trajectories and the adjoint vari-
ables. Denote for brevity z := (x,Q, y) and π := (λ, µ, ν). Due to the boundedness of x0,
ẋb, g1, g2, d, [u, u], and [v, v] (see the Standing Assumptions) there is a compact set Z ∈ R5

such that (z(t, q), u(t, q), v(t)) ∈ Z for every admissible control (u, v) and corresponding trajec-
tory z = (x, Q, y). Then the right-hand sides of the adjoint equations (35)–(37) are uniformly
bounded, hence there exists a compact set Π ∈ R3 such that π(t, q) ∈ Π for the adjoint variables
π = (λ, µ, ν) corresponding to any admissible control and the corresponding trajectories. Then
the set A := {(z(t, ·), u(t, ·), v(t), π(t, ·)) : t ∈ [0, T ], (u(·, ·), v(·)) ∈ U × V} is bounded in
L∞([0, Q̄])× [0, Q̄]×R1 × L∞([0, Q̄])×R1 × L∞([0, Q̄])×R1 ×R1.

Since L is linear in y, we can represent L(q, x, Q, y) = L1(q, x, Q)y+L2(q, x, Q), where L1 and
L2 have the same properties as L in the Standing Assumptions. From the corresponding differential
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equations and the boundedness of the right-hand sides, we have that x̂(·, q), Q̂(·), λ̂(·, q) and µ̂(·) are
Lipschitz continuous, uniformly in q ∈ [0, Q̄]. Further, we have Ly = L1 and, hence,

ν̂(t) = µ̂(t) g1(Q̂(t)) +
∫ Q̂(t)

0
L1(q, x̂(t, q), Q̂(t)) dq. (41)

The first term in the right-hand side above is Lipschitz continuous in t because µ̂ and Q̂ are such, and
g1 is continuously differentiable in Q, hence Lipschitz on [0, Q̄]. The second term is also Lipschitz
continuous due to the Lipschitz continuity of Q̂, the boundedness of the integrand, the Lipschitz con-
tinuity of L1 in (x,Q), and the Lipschitz continuity of x̂(·, q) uniformly in q. Thus ν(·) is absolutely
continuous.

From (29), taking into account that now c1 and d do not depend on t, we obtain that

û(t, q) = Ũ(q, λ̂(t, q), ν̂(t)), (42)

where

Ũ(q, λ, ν) :=


u if λ + ν d(q) < c′1(u)
(c′1)

−1(λ + ν d(q)) if c′1(u) ≤ λ + ν d(q) ≤ c′1(u)
u if λ + ν d(q) > c′1(u).

Obviously, Ũ is Lipschitz in both λ and ν, uniformly in q. Due to the (uniform) Lipschitz continuity
of λ̂(·, q), there exists a constant C such that

|û(t, q)− û(τ, q)| ≤ C
(
t− τ + |ν̂(t)− ν̂(τ)|

)
for 0 ≤ τ < t ≤ T and q ∈ [0, Q̂(τ)]. From here, for 0 ≤ τ < t ≤ T we obtain

|ŷ(t)− ŷ(τ)| =

∣∣∣∣∣
∫ Q̂(t)

0
d(q)û(t, q) dq −

∫ Q̂(τ)

0
d(q)û(τ, q) dq

∣∣∣∣∣
≤

∣∣∣∣∣
∫ Q̂(τ)

0
d(q) (û(t, q)− û(τ, q)) dq +

∫ Q̂(t)

Q̂(τ)
d(q)û(t, q) dq

∣∣∣∣∣
≤ d Q̄C

(
t− τ + |ν̂(t)− ν̂(τ)|

)
+ u d|Q̂(t)− Q̂(τ)|.

The absolute continuity of ν̂(·) and Q̂(·) yield the absolute continuity of ŷ(·).

We next show that the function t 7−→ M(ẑ(t, ·), π̂(t, ·)) is absolutely continuous on [0, T ]. From
(40) we have

M(ẑ(t, ·), π̂(t, ·)) = H(ẑ(t, ·), û(t, ·), v̂(t), π̂(t, ·)). (43)

First we shall show that for any fixed t′ ∈ [0, T ] the function t 7→ H(ẑ(t, ·), û(t′, ·), v̂(t′), π̂(t, ·)) is
Lipschitz continuous, uniformly in t′. Due to the uniform boundedness and the Lipschitz continuity
in t of the arguments of this function, it is enough to prove that it is Lipschitz continuous on A.
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Although this is a routine task, we show this property with respect to x(·):∣∣∣H(x1(·), Q, y, u(·), v, λ(·), µ, ν)−H(x2(·), Q, y, u(·), v, λ(·), µ, ν)
∣∣∣

=
∣∣∣∣∫ Q

0

[
L(q, x1(q), Q, y)− L(q, x2(q), Q, y)

]
dq − δ

∫ Q

0
λ(q)

(
x1(q)− x2(q)

)
dq

∣∣∣∣
≤

∫ Q

0
ML|x1(q)− x2(q)| dq + δ

∫ Q

0
|λ(q)| |x1(q)− x2(q)| dq

≤ (ML + δ|Π|) Q̄ ‖x1(·)− x2(·)‖L∞([0,Q̄]),

where ML is the Lipschitz constant of L on Z and |Π| := supπ∈Π |π|.
Thus there exists a constant K such that

|H(ẑ(t, ·), û(t, ·), v̂(t), π̂(t, ·))−H(ẑ(t′, ·), û(t, ·), v̂(t), π̂(t′, ·))| ≤ K|t− t′|,

for every t, t′ ∈ [0, T ]. From here, using also (40), we obtain that

−K|t− t′| ≤ H(ẑ(t, ·), û(t′, ·), v̂(t′), π̂(t, ·))−H(ẑ(t′, ·), û(t′, ·), v̂(t′), π̂(t′, ·)) ≤
≤ H(ẑ(t, ·), û(t, ·), v̂(t), π̂(t, ·))−H(ẑ(t′, ·), û(t′, ·), v̂(t′), π̂(t′, ·)) ≤
≤ H(ẑ(t, ·), û(t, ·), v̂(t), π̂(t, ·))−H(ẑ(t′, ·), û(t, ·), v̂(t), π̂(t′, ·)) ≤ K|t− t′|,

hence, |M(ẑ(t, ·), π̂(t, ·)) −M(ẑ(t′, ·), π̂(t′, ·))| ≤ K|t − t′|, which yields the Lipschitz continuity
of t 7−→M(ẑ(t, ·), π̂(t, ·)).

Now we shall prove that d
dtM(ẑ(t, ·), π(t, ·)) = 0 almost everywhere on [0, T ]. We remind that both

t 7→ x̂(t, ·) ∈ L∞([0, Q̄]) and t 7→ λ̂(t, ·) ∈ L∞([0, Q̄]) are Lipschitz continuous, as well as Q̂ and
µ̂. Fix τ in the subset (of full measure) of [0, T ] on which (43), the state equations, and the adjoint
equations (in their Hamiltonian form) are satisfied. For almost every t ∈ [0, T ] it holds that

M(ẑ(t, ·), π̂(t, ·)) ≥ H(ẑ(t, ·), û(τ, ·), π̂(t, ·)),

and thus,

M(ẑ(t, ·), π̂(t, ·))−M(ẑ(τ, ·), π̂(τ, ·)) ≥ H(ẑ(t, ·), û(τ, ·), π̂(t, ·))−H(ẑ(τ, ·), û(τ, ·), π̂(τ, ·)).

Assume that t converges to τ from above, divide by (t− τ) > 0 and take the limit t −→ τ :

d
dt
M(ẑ(t, ·), π̂(t, ·))

∣∣∣
t=τ

≥ d
dt
H(ẑ(t, ·), û(τ, ·), π̂(t, ·))

∣∣∣
t=τ

=
(
〈Hx, ˙̂x〉+ 〈HQ,

˙̂
Q〉+ 〈Hy, ˙̂y〉+ 〈Hλ,

˙̂
λ〉+ 〈Hµ, ˙̂µ〉+ 〈Hν , ˙̂ν〉

)
t=τ

= 〈− ˙̂
λ, ˙̂x〉+ 〈− ˙̂µ,

˙̂
Q〉+ 0 + 〈 ˙̂x,

˙̂
λ〉+ 〈 ˙̂

Q, ˙̂µ〉+ 0 = 0, (44)

where 〈·, ·〉 denotes the dual product on the appropriate spaces and the point of evaluation is omitted
for clarity. The two zeros in the left–hand side of the last line of (44) result from the facts that
Hy(ẑ(t, ·), û(τ, ·), π̂(t, ·))

∣∣∣
t=τ

= 0 (this is the ajoint equation (37)) and

Hν(ẑ(t, ·), û(τ, ·), π̂(t, ·))
∣∣∣
t=τ

= 0 (this is the state equation (3)).
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Taking t to converge to τ from below, results in the opposite inequality

d
dt
M(ẑ(t, ·), π̂(t, ·))

∣∣∣
t=τ

≤ 0. (45)

Since (44) and (45) hold for a.e. τ ∈ [0, T ], the time derivative ofM is zero almost everywhere, thus,
M is constant.

Q.E.D.

We conclude the paper with the following two remarks.
1. The Hamiltonian form of the maximum principle obtained above in this section is valid also

for the general model considered in [4], provided that the regularity condition for the optimal control
û is fulfilled. However, this regularity condition is difficult to verify a priori. Its verification for the
more specific model considered in the present paper was one of our main goals.

2. The previous paper [4] contains numerical results for a model that is a particular case of
the one considered here. The numerical approach proposed therein is based on the Pontryagin type
optimality conditions, whose validity is proved under the abovementioned regularity condition. Thus
the present paper provides a justification for the numerical (and analytic) results in [4]. A more
profound economic analysis based on Theorem 1 is a subject of a current work by the first author.
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