LC Near Abelian Groups and Applications

W. Herfort, K.H. Hofmann and F.G. Russo

(Wien, Darmstadt and New Orleans, Palermo and IMPA - Brazil)

GROUPS AND TOPOLOGICAL GROUPS, MIMAR SINAN FINE ARTS UNIVERSITY ISTANBUL, 18TH JANUARY 2014

- (1944) Iwasawa describes groups whose subgroup lattice is Dedekind: ⟨A, B⟩ ∩ C = ⟨A, B ∩ C⟩ for A a subgroup of C. In particular, finite such p-groups are near abelian (plus an extra condition if p = 2).
- ► He proved: Finite *p*-groups are Dedekind if and only if any two subgroups commute, i.e., are QUASIHAMILTONIAN.
- Certain gaps in Iwasawa's original proof have been corrected (e.g., M. Suzuki, R. Schmidt, Y. Berkovich).
- (1977) F. Kümmich, PHD-student of P. Plaumann, studied topologically quasihamiltonian groups.
- ► (1986) Y. Mukhin classified topological Dedekind groups.

(日本) (日本) (日本)

In their paper (2012, Forum Mathematicum) K.H. Hofmann and F.G. Russo introduced the notion of NEAR ABELIAN compact p-group and found for an odd prime p the following equivalent conditions for a compact p-group:

- ► *G* is near abelian;
- *G* is topologically quasihamiltonian;
- *G* is the strict inverse limit of finite near abelian groups.

When p = 2 then, in addition, the dihedral group D_8 must not be involved in G.

- Describe locally compact near abelian groups and study their properties.
- Apply this in order to describe topologically quasihamiltonian groups as lwasawa has done for all such groups that are either locally finite or contain Z.

A B K A B K

- ► Recall that a MONOTHETIC GROUP is a locally compact group which contains a dense cyclic subgroup.
- Examples are
 - ► the discrete group of integers Z; this is the only non-compact example;
 - ▶ the discrete cyclic groups *C_n* of order *n*;
 - ► the compact groups *p*-adic integers Z_p;
 - ▶ the tori $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ and their cartesian products \mathbb{T}^k for $k \in \mathbb{N}$ or $k = \mathbb{N}$;

Inductively monothetic groups

- ► A locally compact group is an INDUCTIVELY MONOTHETIC GROUP (for short IMG) if every topologically finitely generated subgroup is monothetic. Such *G* is either
 - 1. discrete then it is isomorphic to a subgroup of either ${\mathbb Q}$ or ${\mathbb Q}/{\mathbb Z};$
 - infinite compact then it is connected of dimension 1 or it is procyclic;
 - 3. a local product of its *p*-primary subgroups.

The 2-dimensional torus $\mathbb{T} \times \mathbb{T}$ is monothetic but it is not IMG since it contains $C_p \times C_p$ which is not monothetic!

- ► A group *H* ACTS BY SCALARS on an LCA-group *A* if every element of *H* leaves all closed subgroups of *A* invariant.
- If an IMG Γ acts faithfully on an LCA-group by scalars then one of the following is true:
 - 1. Γ is trivial or Γ contains two elements; then Γ acts by inversion;
 - 2. Γ is isomorphic to a discrete proper subgroup of \mathbb{Q} ;
 - 3. Γ is an infinite subgroup of \mathbb{Q}/\mathbb{Z} each of whose primary components is finite;
 - 4. $\ensuremath{\Gamma}$ is a local direct product as above with every factor compact.

- 4 同 6 4 日 6 4 日 6

Simple example: Every profinite abelian group A is naturally a $\hat{\mathbb{Z}}$ -module. Thus every closed subgroup of $\hat{\mathbb{Z}}$ acts by scalars on A.

- ► A locally compact group *G* is NEAR ABELIAN if it is an extension of an abelian locally compact group *A* by an IMG *H* that acts by scalars on *A*.
- Simple examples:
 - ► The *p*-adic integers act by scalars on the quasicyclic *p*-group Z(*p*[∞]); hence give rise to extensions each a locally compact near abelian *p*-group;
 - ▶ Let C_2 act on any abelian group by inversion. Then $\mathbb{R} \rtimes C_2$ is near abelian.

Let G be nonabelian near abelian group. One of the following is true:

- 1. G/A acts by inversion on A: Then $G/C_G(A) \cong \mathbb{Z}(2)$ and $G_0 \leq G' \leq A$. Moreover, $A \in SIN_G$.
- 2. G/A does not act by inversion on A. Then
 - 2.1 A is periodic;
 - 2.2 G/A has rank 1 and exclusively is either
 - 2.2.1 torsion free and then $G = \lim_{K} G/K$, $K \leq A$ compact; or;
 - 2.2.2 periodic; then

its *p*-primary subgroups are compact.

G is periodic and contains an inductively monothetic subgroup H with G = AH (a supplement).

▲圖▶ ★ 国▶ ★ 国▶

For each
$$m \in \mathbb{N}$$
, there are primes p_m , elements $b_m \in G \setminus A$,
 $a_m = (a_{mp})_p \in A$ and, for every fixed prime p , units
 $r_{mp} \in R(A_p)^{\times}$, such that for $H_m = \langle b_m \rangle$ and $G_m = AH_m$ we have
(1) $(G_m : A) = p_1 \cdots p_m, m = 1, 2, \dots$
(2) $r_{p_{m+1}}^{p_m} = r_{p_m}$ in $R(A_p)^{\times}$,
(i) $b_{m+1}^{p_m} = a_m b_m$,
(ii) $(a_m b_m)^{b_{m+1}} = a_m b_m$,
(iii) for all $a \in A_p$ we have $a^{b_m} = a^{r_{p_m}}$.

The "converse" is true: data as above determine uniquely a near abelian group of type 2.2.1.

(本部) (本語) (本語) (語)

F. Kümmich defined a group to be tqh if \overline{XY} is a subgroup whenever X and Y are closed subgroups. Alternatively, if $\overline{XY} = \overline{YX}$.

Here is our description of the structure of such groups:

- ► G contains Z as a discrete subgroup: then G is as in 2.2.1. and D₈ is not involved.
- ▶ G is a p-group. Thus G = AH with $H = \overline{\langle b \rangle}$ and for all $a \in A$ $b^{-1}ab = a^{1+p^s}$ with $s \ge 1$ ($s \ge 2$ if p = 2).
- G is a pq-group. Then it is Frobenius with elementary abelian kernel and complement of order $q \neq 2$.
- ► G is periodic. It is a local product of coprime groups that are either abelian, pq-, or p-groups.

(日本) (日本) (日本)

Main ingredients of our proof – Comparison with relevant results of Y. Mukhin

- Establishing structure theorems for near abelian groups;
 - 2. Every inductively near abelian *p*-group is near abelian;
 - 3. If G contains discrete \mathbb{Z} an inverse limit argument is used;.
 - 4. Every tqh p-group is inductively near abelian;
 - 5. Studying *pq*-groups and assemblying details.
- ► (Y. Mukhin, 1986)
 - 1. defines \mathcal{A} -groups to satisfy the Dedekind law $\overline{\langle A, B \rangle} \cap C = \overline{\langle A, B \cap C \rangle}$ for $A \leq C$ only if A is a procyclic *p*-group for some *p*;
 - 2. Proves that every inductively compact *Π*-group is (in our sense) near abelian.
 - 3. Periodic tqh-groups are in Π and from this our classification of periodic tqh-groups follows.

(本間) (本語) (本語)

tqh-groups need not be Dedekind, even not if they are abelian.

Thank you for the attention!

▲□→ ▲圖→ ▲厘→ ▲厘→

æ