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Sketching the thread

I (1944) Iwasawa describes groups whose subgroup lattice is
Dedekind: 〈A,B〉 ∩ C = 〈A,B ∩ C 〉 for A a subgroup of C .
In particular, finite such p-groups are near abelian (plus an
extra condition if p = 2).

I He proved: Finite p-groups are Dedekind if and only if any
two subgroups commute, i.e., are quasihamiltonian.

I Certain gaps in Iwasawa’s original proof have been corrected
(e.g., M. Suzuki, R. Schmidt, Y. Berkovich).

I (1977) F. Kümmich, PHD-student of P. Plaumann, studied
topologically quasihamiltonian groups.

I (1986) Y. Mukhin classified topological Dedekind groups.
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Recent results by K.H. Hofmann and F.G. Russo

In their paper (2012, Forum Mathematicum) K.H. Hofmann and
F.G. Russo introduced the notion of near abelian compact
p-group and found for an odd prime p the following equivalent
conditions for a compact p-group:

I G is near abelian;

I G is topologically quasihamiltonian;

I G is the strict inverse limit of finite near abelian groups.

When p = 2 then, in addition, the dihedral group D8 must not be
involved in G .
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What to do? Where to go?

I Describe locally compact near abelian groups and study their
properties.

I Apply this in order to describe topologically quasihamiltonian
groups as Iwasawa has done for all such groups that are either
locally finite or contain Z.
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Monothetic groups

I Recall that a monothetic group is a locally compact
group which contains a dense cyclic subgroup.

I Examples are
I the discrete group of integers Z; this is the only non-compact

example;
I the discrete cyclic groups Cn of order n;
I the compact groups p-adic integers Zp;
I the tori T := R/Z and their cartesian products Tk for k ∈ N or

k = N;
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Inductively monothetic groups

I A locally compact group is an inductively monothetic
group (for short IMG) if every topologically finitely
generated subgroup is monothetic. Such G is either

1. discrete – then it is isomorphic to a subgroup of either Q or
Q/Z;

2. infinite compact – then it is connected of dimension 1 or it is
procyclic;

3. a local product of its p-primary subgroups.

�

I The 2-dimensional torus T×T is monothetic but it is not IMG since

it contains Cp × Cp which is not monothetic!
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Scalar action of IMG-s

I A group H acts by scalars on an LCA-group A if every
element of H leaves all closed subgroups of A invariant.

I If an IMG Γ acts faithfully on an LCA-group by scalars then
one of the following is true:

1. Γ is trivial or Γ contains two elements; then Γ acts by inversion;
2. Γ is isomorphic to a discrete proper subgroup of Q;
3. Γ is an infinite subgroup of Q/Z each of whose primary

components is finite;
4. Γ is a local direct product as above with every factor compact.

Simple example: Every profinite abelian group A is naturally a Ẑ-module.

Thus every closed subgroup of Ẑ acts by scalars on A.
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Near abelian groups

I A locally compact group G is near abelian if it is an
extension of an abelian locally compact group A by an IMG H
that acts by scalars on A.

I Simple examples:
I The p-adic integers act by scalars on the quasicyclic p-group

Z(p∞); hence give rise to extensions each a locally compact
near abelian p-group;

I Let C2 act on any abelian group by inversion. Then Ro C2 is
near abelian.
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Basic structure of a near abelian group

Let G be nonabelian near abelian group. One of the following is
true:

1. G/A acts by inversion on A: Then G/CG (A) ∼= Z(2) and
G0 ≤ G ′ ≤ A. Moreover, A ∈ SING .

2. G/A does not act by inversion on A. Then

2.1 A is periodic;
2.2 G/A has rank 1 and exclusively is either

2.2.1 torsion free and then G = lim←−K
G/K , K ≤ A compact; or;

2.2.2 periodic; then
its p-primary subgroups are compact.

G is periodic and contains an inductively monothetic subgroup
H with G = AH (a supplement).
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ad 2.2.1: Fine structure for G/A torsion free

For each m ∈ N, there are primes pm, elements bm ∈ G \ A,
am = (amp)p ∈ A and, for every fixed prime p, units
rmp ∈ R(Ap)×, such that for Hm = 〈bm〉 and Gm = AHm we have

(1) (Gm : A) = p1 · · · pm, m = 1, 2, . . . .

(2) rpmpm+1 = rpm in R(Ap)×,

(i) bpmm+1 = ambm,
(ii) (ambm)bm+1 = ambm,
(iii) for all a ∈ Ap we have abm = arpm .

The “converse” is true: data as above determine uniquely a near
abelian group of type 2.2.1.
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Topologically quasihamiltonian groups – for short tqh

F. Kümmich defined a group to be tqh if XY is a subgroup
whenever X and Y are closed subgroups. Alternatively, if
XY = YX .
Here is our description of the structure of such groups:

I G contains Z as a discrete subgroup: then G is as in 2.2.1.
and D8 is not involved.

I G is a p-group. Thus G = AH with H = 〈b〉 and for all a ∈ A
b−1ab = a1+ps with s ≥ 1 (s ≥ 2 if p = 2).

I G is a pq-group. Then it is Frobenius with elementary abelian
kernel and complement of order q 6= 2.

I G is periodic. It is a local product of coprime groups that are
either abelian, pq-, or p-groups.
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Main ingredients of our proof – Comparison with relevant
results of Y. Mukhin

I 1. Establishing structure theorems for near abelian groups;
2. Every inductively near abelian p-group is near abelian;
3. If G contains discrete Z an inverse limit argument is used;.
4. Every tqh p-group is inductively near abelian;
5. Studying pq-groups and assemblying details.

I (Y. Mukhin, 1986)

1. defines D-groups to satisfy the Dedekind law
〈A,B〉 ∩ C = 〈A,B ∩ C 〉 for A ≤ C only if A is a procyclic
p-group for some p;

2. Proves that every inductively compact D-group is (in our
sense) near abelian.

3. Periodic tqh-groups are in D and from this our classification of
periodic tqh-groups follows.

I tqh-groups need not be Dedekind, even not if they are abelian.
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Thank you for the attention!
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