
AST interpreter for CASM

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Dominik Inführ
Matrikelnummer 0925697

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall
Mitwirkung: Dipl.-Ing. Roland Lezuo

Wien, 03.05.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

AST interpreter for CASM

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Dominik Inführ
Registration Number 0925697

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall
Assistance: Dipl.-Ing. Roland Lezuo

Vienna, 03.05.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Dominik Inführ
Schubertstraße 10, 3442 Langenrohr

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

An Abstract State Machine (ASM) is a method to formalize languages, which can be used for
compiler backend verification to verify translations. CASM is a statically strong typed imple-
mentation of an ASM, targeted for this application. In this bachelor thesis an efficient Abstract
Syntax Tree (AST) interpreter is written for CASM in C++, since for translation validation,
many small files need to be executed. CASM supports symbolic execution with the output of
symbolic traces in TPTP format.

iii

Kurzfassung

Eine Abstract State Machine (ASM) kann genutzt werden, um Programmiersprachen zu formali-
sieren. Dies wird bei der Verifizierung von Compiler-Backends genutzt. CASM ist eine statisch
getypte Implementierung einer ASM für dieses Anwendungsgebiet. In dieser Bachelorarbeit
wird ein effizienter Abstract Syntax Tree (AST)-Interpreter für CASM in C++ geschrieben. Ein
Interpreter ist erforderlich, da für die Verifizierung von Übersetzern viele kleine Dateien aus-
geführt werden müssen. CASM unterstützt die symbolische Ausführung mit der Ausgabe der
Traces im TPTP-Format.

v

Contents

1 Introduction 1
1.1 Compiler Verification . 1
1.2 Abstract State Machine . 1
1.3 Mission Description . 2

2 CASM 3
2.1 Hello World . 4
2.2 Parallel and Sequential Composition . 4
2.3 Types . 5
2.4 Statements . 6
2.5 Operators . 10
2.6 Built-ins . 10
2.7 Program Execution . 12

3 Symbolic execution 13
3.1 Symbolic Output . 14
3.2 Evaluating Expressions with Symbolic Values 15
3.3 Symbolic Conditional Control Flow . 16

4 Type Inference 19
4.1 Annotating Declarations . 20
4.2 Annotating Statements . 21

5 Correctness of Implementation 29
5.1 Unit-Tests . 29
5.2 Adding Test Cases . 29
5.3 Executing the Test Suite . 32

6 Evaluation 33
6.1 Benchmarks . 33
6.2 Performance Analysis . 34

7 Conclusion 37
7.1 Further Work . 37

vii

Bibliography 39

viii

CHAPTER 1
Introduction

1.1 Compiler Verification

The motivation of this thesis is compiler backend verification [6]. Nowadays, safety-critical
applications run verified source code on verified hardware, but bugs in the compiler can lead
to the incorrect translation from source code to machine code. Critical systems are only able
to detect bugs introduced by the compiler by testing. A solution to this problem is compiler
verification with translation validation. For this purpose the generated machine code is verified,
not the whole compiler itself.

For compiler verification the formal semantics of the source code is proven to be equal to
the semantics of the generated machine code with a first-order theorem prover.

1.2 Abstract State Machine

An Abstract State Machine (ASM) can be used to formalize a programming language or an
instruction set of a microprocessor. CASM is a statically strong typed implementation of an
ASM and was designed to be used in translation validation.

Since for translation validation a large number of small and short-running files needs to
be executed, an interpreter is needed for CASM. A compiler would spend most of the time
compiling rather than executing, but it has advantages for long-running files. CASM is also
used to verify an instruction set simulation against its specification, where longer running files
are more common, so CASM has the need for both interpreter and compiler.

CoreASM

At the beginning, CoreASM [3, 4] was used instead of CASM, but performance was not good
enough with the dynamically typed CoreASM interpreter. Since efficient compilation is diffi-
cult for a dynamically typed language like CoreASM, the statically typed CASM was created.
CASM is a subset of CoreASM with some additions and changes. An important difference to

1

CoreASM is that arguments are passed by value in CASM, while in CoreASM arguments are
passed by name.

1.3 Mission Description

casmintr and casm2cpp were the first prototypes for the interpreter and compiler of CASM.
Both programs were written in Python and used the same Abstract Syntax Tree (AST), one for
executing and one for generating C++ code. The new interpreter should be 10 to 100 times faster
than casmintr and is called casmi. The compiler is developed in a separate project but should
use the AST of the interpreter. Test coverage should also be improved for the new interpreter.

2

CHAPTER 2
CASM

CASM is an implementation of an Abstract State Machine (ASM) as defined by Gurevich in [5],
the definitions and equations in this chapter are from [2]. The main concept of an ASM is the
state, which contains the current environment of the program. An ASM consists of a set of
transition rules, where every rule describes how the current state is changed.

In this chapter A is used for a state, whileR and S are used for rules. An ASM allows to bind
variable names to values in the variable interpretation ζ. It is important to point out that in an
ASM the variable bindings are not part of the state A. The state is only composed of functions,
where each function maps its parameters to a value.

Therefore the state is a set of (location, value) pairs in CASM, where location is a function
name with a sequence of n-elements (the arguments for the function) as in f〈a1, ..., an〉 and n is
the arity of the function. The given function name with its parameters is mapped to the element
value. For example a state {(f〈1〉, 3), (f〈5〉, 10), (g, 2)}, where f and g are defined functions,
maps f(1) to 3, f(5) to 10 and g to 2. But which value is returned by f(2), where f〈2〉 is not
a location in the state? In mathematics, a functions has to map all elements of the domain to an
element of the codomain. An ASM returns undef in this situation to fulfill this requirement. It
is neither allowed to access undefined functions nor invoke a function with the wrong arity as in
h(1) or f(1, 2). An ASM function is similar to a global variable in imperative languages.

As mentioned above, executing a transition rule changes the current state of the program in
an ASM. The current state A and the variable interpretation ζ are needed to execute a rule R,
which is described by nextR(A, ζ). This function returns the new or the next state A‘ of the
program, after executing the rule R in the state A with the variable interpretation ζ. A‘ is used
as the current state for the next rule S, which is repeatedly done until there are no more rules to
execute.

In an ASM rules do not directly return the next state, but an update set u which contains
all updates to form the next state A‘ starting from the current state A. The update set is also a
set of (location, value) pairs, but usually much smaller than the set of the state since it only
contains updated function locations. [[R]]Aζ returns the produced update set after executing the
rule R. For an assignment rule f(2) := 3 in the example given above, it returns an update set

3

with a single update: {(f〈2〉, 3)}. The skip keyword has no effect and returns an empty update
set: [[skip]]Aζ = ∅.

If an update set contains more than one update for a single location, it is called inconsistent.
An update set {(f〈2〉, 1), (f〈2〉, 2)} is inconsistent, while {(f〈2〉, 1), (f〈3〉, 2)} is consistent.
The function Locs returns all locations occurring in an update set u as shown in equation 2.1.

Locs(u) = {loc|∃val : (loc, val) ∈ u} (2.1)

The function fireA(u) is used to merge an update set u into the state A, where fire is
only defined for consistent update sets. A‘ is equal to A, except to the locations defined in u,
where fA‘(a) = val for each (f〈a〉, val) ∈ u. That means, both states are equal except to those
function locations which are updated in u, if u is empty and therefore contains no updates, both
states are the same. nextR(A, ζ) can also be expressed with fire:

nextR(A, ζ) = fireA([[R]]
A
ζ) (2.2)

2.1 Hello World

A simple Hello World-program is shown in listing 2.1 to get a first impression of CASM:

1 CASM SpecificationName
2

3 // header block
4

5 init initRule
6

7 rule initRule = {
8 print "Hello World!"
9 program(self) := undef

10 }

Listing 2.1: Hello World in CASM

The first line states the name of the CASM specification. Then the header block follows in
which functions, deriveds and enums are declared globally, but these declarations are explained
later in this chapter. The first rule to be executed is initRule, which is defined by the init

keyword and the name of the rule on line 5. The rule initRule is defined on line 7, which
prints to stdout and terminates the program. In CASM rules can be compared to procedures in
imperative programming languages, but all of these statements are explained later in more detail.

2.2 Parallel and Sequential Composition

In a block of CASM rules, all rules are invoked independently of each other, which is a big
difference to imperative programming languages. In CASM, a parallel block is encapsulated in
curly brackets, e.g. { R S } or semantically equivalent par R S endpar. Invoking indepen-
dently means that each rule in the block is evaluated with the same state as shown in equation
2.3. The update sets of all rules in the block are merged, a resulting inconsistent update set leads

4

to a runtime error in casmi. Although it is called parallel block, the rules are not really executed
in parallel (although this would be possible) in CASM. Parallel means that all rules are called
for the same state in this context.

[[R par S]]Aζ = [[R]]Aζ ∪̇ [[S]]Aζ (2.3)

There are sometimes situations where it is very useful for the developer to invoke rules in a
more imperative way. Therefore CASM also supports a sequential block with seqblock R S

endseqblock. In this example R would be invoked with state A, but S in contrast to the parallel
block with state A‘ (equation 2.4). A‘ is the state after invoking rule R in state A, expressed by
by nextR(A, ζ). This means each rule is executed with the resulting state of the previous rule,
so the rules are not independent in a sequential block. The update sets are merged with u⊕ v as
shown in equation 2.5.

u and v cannot be inconsistent in the first place, because otherwise the execution would have
already failed. The resulting update set cannot be inconsistent, since updates for locations in u
are replaced by their newer entries in v.

[[R seq S]]Aζ = [[R]]Aζ ⊕ [[S]]A‘ζ where A‘ = nextR(A, ζ) (2.4)

u⊕ v = {(loc, val)|(loc, val) ∈ u ∧ loc /∈ Locs(v)} ∪ v (2.5)

CASM needs to clone the current state into a temporary state for a sequential block. All rules
within a sequential block are invoked with this state. After executing a rule in the sequential
block the resulting update set is merged back to the temporary state, with the result that the next
rule can be invoked with it. All update sets are also merged into a single update set, which is
returned at the end of the sequential block and the temporary state can be safely deleted at the
end of the block. It is not feasible to change the current state directly instead of the temporary
state, because a sequential block can also be used inside a parallel block.

Both types of blocks can easily contain more than two rules:

[[{R S T}]]Aζ = [[(R par S) par T]]Aζ (2.6)

[[seqblock R S T endseqblock]]Aζ = [[(R seq S) seq T]]Aζ (2.7)

2.3 Types

CASM supports the types List, Tuple, Int, Boolean, String and RuleRef. Int is a 64-bit signed
integer, floating point values are not supported. RuleRef is explained in section 2.4. In CASM,
types are used to declare functions and parameters of rules and deriveds, but this section should
only give an overview of the existing types.

A list can save an arbitrary count of elements of the same type and is defined with e.g. List
(Int). In this example the list can only contain integer values, Int is considered as subtype of

5

the list. In the contrast to a list, a tuple needs at least two subtypes as in Tuple(Int,String,

Boolean). In many programming languages, the syntax is different for lists and tuples, however
both types are defined within square brackets in CASM. While it is easy to recognize the type
of [1,"a",true], it is more difficult for [1,2,3] since it could either be a list or a tuple and so
the type has to be deduced through the usage of the constant by the type inference unit.

2.4 Statements

function declaration

All n-ary functions need to be globally defined with the function keyword. In CASM all
parameters and return values need to be typed as shown in listing 2.2, so the arity of each
function is fixed. CASM differentiates between controlled and static functions, static functions
are read-only and cannot be updated after their definition. In this example x and y are controlled
functions in contrast to z. If neither controlled nor static is given, the function is assumed to
be controlled. The * operator is used to separate parameter types, the return type follows after
the -> operator. initially can optionally be used to initialize a function with the given values.
When a function has more than one parameter all arguments need to be encapsulated in square
brackets as in [1,2]->"a", where 1 and 2 are used as parameters.

1 function x: -> Int initially { 1 }
2 function controlled y: Int -> String initially { 1 -> "a", 2 -> "b" }
3 function static z: Int * Int -> String initially { [1, 2] -> "a" }

Listing 2.2: Defining functions

For the declarations in listing 2.2, x would return 1 and y(1) returns "a". If a function
location is accessed and no value is stored for it, casmi returns undef like for y(5) or z(1,3).

A controlled function can be updated in the program with the := operator. The update set
of the statement is a single update with the evaluated expressions. Note that it is only able to
update functions, but not variables. Listing 2.3 shows updating functions:

x := 3
y(5) := "e"
z(1, 5) := "b" // error, z is static

Listing 2.3: Updating functions

The first line updates x to 3, the second updates y(5) to 10. Line 3 would fail, because
updating static functions is not allowed. Since undef is compatible with every type, this value
can also be assigned to the function x, with x := undef. When x is now read, it returns undef
and there is no way to determine whether x was uninitialized or not. If this differentiation is
needed, either do not use undef for assignments or save this information in another function.
Since undef is compatible with every type it can also be used as parameter as in y(1,undef):=

undef or y(1,undef):= 3.

6

The update set for an assignment is a single update with the given function location and
value as shown in 2.8:

[[f(t1, ..., tn) := t]]Aζ = {(f〈[[t1]]Aζ , ..., [[tn]]
A
ζ 〉, [[t]]

A
ζ)} (2.8)

let statement

let x [: type] = t in R

The let statement binds the evaluated value of t to the variable x, where x can be used in the
rule R. The type of x can be deduced from the expression t in most situations by type inference,
but can also be explicitly declared by the developer when this is not possible with the : operator.
Although x is called a variable in CASM, all variables are immutable and are semantic names
for values. It is not allowed to update x with the := operator. let does not induce any updates,
the update set returned by let is the update set of R, where all occurrences of x are substituted
with the value of t as shown in equation 2.9.

[[let x = t in R]]Aζ = [[R]]Aζ x
v

where v = [[t]]Aζ (2.9)

let can only be used inside rules, it is not possible to declare global variables with it.

if statement

if t then R [else S]

If the condition t is true, the update set of R will be returned. Otherwise the update set of S
is returned. If the condition is undef, the execution will fail.

[[if t then R else S]]Aζ =

{
[[R]]Aζ , if [[t]]Aζ = true

[[S]]Aζ , otherwise
(2.10)

The case statement is very similar to if, but can have more than two possible branches as
shown in listing 2.4. case evaluates the expression t and executes the rule from the branch with
the matching value. The default label is optional and is executed, if no label matches the value
of t. In CASM, there is no automatic fall-through for case as in C-like languages. The update
set of case is the update set of the executed rule or empty, if no matching or default branch was
found.

1 case t of
2 v1: R1
3 v2: R2
4 default: S
5 endcase

Listing 2.4: The case statement

7

forall statement

forall x in t do R

The forall statement is a parallel composition, the rule R is invoked for the same state
however with different bindings for the variable x as show in equation 2.11. t needs to be a list
and x is bound to each of its list elements. The update set of a forall statement is the parallel
composition of all the passes.

[[forall x in t do R]]Aζ =
⋃
v∈V

[[R]]Aζ x
v

where V = [[t]]Aζ (2.11)

When a name of an enumeration is given for t, a list with all possible values of the enumera-
tion is used for t. When t is an integer value, that is the same as looping over [1..t] or [-1..t]
if t < 0. If t = 0 or an empty list is given for t, the rule R is not executed at all.

rule declaration

CASM allows to define named rules with parameters:

rule <name>(<param1> : <type1>, ..., <paramN> : <typeN>) = R

Every parameter of the named rule needs to be typed, if no type is given for a parameter, Int
is assumed and a warning message is printed to stdout for the missing type of the parameter. A
named rule can be called via the call statement.

call (<ruleExpr>)(<param1>, ..., <paramN>)

Listing 2.5: Calling a rule

As already mentioned, a CASM program needs to have at least one named rule to be valid,
since the execution is always started for a named rule. The start rule is not allowed to have
parameters and can be specified with init <ruleName>. A CASM rule can be compared to
functions in imperative programming languages, but rules do not return values in CASM.

There is an important difference in the handling of rule parameters to CoreASM. CASM uses
call-by-value for parameters, while CoreASM uses call-by-name. This means parameters are
evaluated before they are passed to the rule in CASM, the usages of parameters are substituted
with its expressions in CoreASM. So the parameter is evaluated each time it is used. CASM uses
call-by-value instead of call-by-name, since of performance reasons for the compiler. One can
create let statements for each parameter right before the rule is called to achieve a call-by-value
behaviour in CoreASM. So the semantics of the rule call is defined as 2.13 in CASM as opposed
to 2.12 in CoreASM. A is a state, R a named rule defined by rule R(a, ..., an).

[[call R(t1, ..., tn)]]Aζ = [[R[t1/a1, ..., tn/an]]]
A
ζ (2.12)

[[call R(t1, ..., tn)]]Aζ = [[R]]Aζ∅
a0
v0
...an

vn

where vi = [[ti]]
A
ζ (2.13)

8

The type RuleRef can be used as a reference or pointer to a specific rule in CASM. A given
function function r: -> RuleRef can be initialized with r := @rule_name. call can be used
to dynamically invoke rules with call (r).

push and pop statement

CASM also supports pushing into and popping from 0-ary functions defined as List, e.g.
function f: -> List(Int).

push <expr> into <func>
pop <var> from <func>

func needs to be the name of a controlled function, since static functions cannot be changed.
The variable for the pop statement is created with the subtype of the list as type. Both statements
will raise an error if the given function is undef. Moreover pop does not allow an empty list. push
puts the given value to the beginning of the list, while pop returns and removes the first value of
the list. These statements produce a single update to the function with the updated value.

Listing 2.6 demonstrates how to push into and pop from a list:

1 function list: -> List(Int) initially { [] }
2

3 rule main = seqblock
4 push 1 into list // [] -> [1]
5 push 2 into list // [1] -> [2,1]
6 pop x from list // [2,1] -> [1], x = 2
7 pop y from list // [1] -> [], y = 1
8

9 program(self) := undef // termination
10 endseqblock

Listing 2.6: push/pop example

derived declaration

deriveds are semantic shorthands of expressions with the possibility of parameters as shown
in listing 2.7 and can be used anywhere in the program in an expression. A derived without
arguments is just a name for a constant. It is only necessary to declare the return type of the
derived, if the type inference of casmi cannot infer it. If no parameter type is given, it will be
assumed to be Int. This means the definitions of add1 and add2 are semantically equivalent.
Note that a warning message is printed, if a parameter is not typed in a derived statement.

1 derived add1(a, b) = a + b
2 derived add2(a : Int, b : Int) : Int = a + b
3 derived one = 1

Listing 2.7: Declaring deriveds

9

enum declaration

In CASM it is also possible to declare enumerations:
enum states { ready, running, blocked }

Listing 2.8: Declaring an enumeration

All enumerations are also types which can be used in the declaration of functions or parame-
ters. Listing 2.8 defines the additional type states with the constant values ready, running and
blocked. The values in the enumeration are integer constants starting with 0. An enumeration
value can be automatically converted to an integer and vice versa.

2.5 Operators

All operators have their common semantic meaning in CASM, but there are some limitations
compared to other programming languages.

+, -, *, / and %
These operators only work for Int operands and always return Int. undef is returned as
long as at least one operand has the value undef.

<, <=, > and >=
These comparison operators only compare integer values and return either true or false.
The result of these operators is undef as far as at least one operand has the value undef.

= and !=
These operators can compare values of the same type and return a Boolean as well. So it
is also possible to compare strings, lists or tuples by value but comparing different types
would lead to an error. The return value is never undef, since undef = undef is true,
while undef = 2 is false.

2.6 Built-ins

CASM supports print to write to stdout. + can be used to concatenate the output of expressions
as in print "a = "+a, + is here only used as separator, not as the Int operator and is also avail-
able for diedie and debuginfo. In expressions it is not possible to concatenate strings. diedie

stops the execution and prints the given parameter as its error message.
debuginfo is a more mature way for printing debug messages than print. This statement

expects an identifier as first parameter as in debuginfo x1 "message", which can be used to
filter output. By default all messages are filtered out, but can be activated with the -d parameter
for casmi, -dx1 activates messages with identifier x1. Multiple identifiers are separated with
commas (e.g. -dx1,x2), while -dall and -d* activate all debug messages.

assert raises an error if the given expression does not return true and is heavily used within
the test suite of casmi.

casmi also has some built-in functions primarily used for list handling, which operate on
values and do not induce any updates:

10

hex

This function converts a number to its hexadecimal representation, e.g. hex(28) returns "1c".
hex returns "undef" for undef. The parameter has to be Int, return type is String.

len

len returns the length of a list, e.g. 2 for [1,2]. It gets a list as only parameter, return type is Int.

nth

This function is the only one which accepts a tuple. It returns an element of the given list or
tuple according to the also given index, e.g. nth(2,[2,3]) returns 3 and nth(1,["a",2,true

]) returns "a". As shown in these small examples, the index starts with 1 as in CoreASM and
not 0 as used in many other languages. nth returns undef if the index is out of bounds.

The second parameter can either be list or tuple. If the method is invoked for a tuple, the
first parameter has to be an integer constant. Otherwise it is not possible to determine the return
type of the function for the type inference unit. For lists, this parameter can be any valid Int
expression, since the return type is always the subtype of the list.

cons

cons adds an element to the beginning of a list, so cons(1,[2,3]) returns [1,2,3]. The second
parameter needs to be a list. The subtype of the list and the type of the first parameter must
match. Return type is a list, identical to the type of the second parameter. cons returns undef, if
the given list is undef.

peek

peek returns the first element of a list. Return type of the parameter is the subtype of the list.
peek([3,2]) returns 3.

tail

tail returns all but the first element from a list. A list is expected as only parameter, the return
type is the type of the list. tail([4,7,1,1]) returns [7,1,1].

External functions

casmi can also call functions from a shared library. This functionality is used to invoke functions
of a bit vector library. It searches the path of its executable for an asm_engine directory. In
this directory a header file arithmetics.hpp is parsed, for all defined functions and arity. These
functions are limited to Int parameters and Int as return type, so no more information is needed.
When the header file could not be found, casmi prints an error message, but it does not stop
execution immediately.

11

When an external function is called the first time, casmi dynamically loads the file asm_engine.so.
The interpreter also has to convert the parameters to the type shared_int and pass the converted
values to the function. casmi cannot use a simple int data type, since Ints in casmi can also be
undef.

1 class shared_int {
2 public:
3 uint64_t value;
4 bool undef;
5 uint64_t sym_t;
6 };

The external function also needs to return a shared_int value, which is converted back to a
value suitable for the interpreter. The property undef is true for undef, sym_t is explained later
in chapter 3.

2.7 Program Execution

In CASM a simple program can be written with just one line of code: rule main = { print "

Hello World"}. This program prints "Hello World" to stdout infinitely in CASM. By default,
the initial rule is executed repeatedly, this can be controlled with the program function, defined
by function program: Agent -> RuleRef. In CoreASM, this function is used to start mul-
tiple agents. In CASM, this is not possible so the only possible parameter for program is the
current agent self. Agent is used as a type only internally for this function, so it is not possible
to use it for functions defined by the developer.

The agent has to be set to undef with program(self):= undef to end the execution of
the program. program can also be used to replace the top level rule, as shown in listing 2.9.
program is used to call the rule hello_world, which prints to stdout and ends the execution
of the program by setting the current agent to undef. The top level rule is not allowed to have
parameters.

1 rule main = {
2 program(self) := @hello_world
3 }
4

5 rule hello_world = {
6 print "Hello World"
7 program(self) := undef
8 }

Listing 2.9: Prints ’Hello World’ once

12

CHAPTER 3
Symbolic execution

casmi also supports a symbolic mode or symbolic execution. Any valid CASM file can be
executed in this mode. The syntax remains the same, while the semantic slightly changes. casmi
has to be started with the parameter --symbolic or -s to run a file in symbolic mode. Otherwise
casmi is in so-called concrete or normal mode. casmi can either be in one of these two modes,
the mode is chosen on startup and cannot be changed at runtime.

In symbolic mode it is allowed that states or variables do not hold concrete values but sym-
bolic values instead of them. Symbolic values cannot occur in concrete mode. Each symbolic
value has an unique id, which is simply a counter started with 1. Creating a new symbolic value
increases this counter, so symbolic values are equal if they have the same id. When a symbolic
value is used in an operation, the return value is a new symbolic value.

Symbolic mode is used to verify an instruction set simulation against its specification [7],
where the naive implementation of instructions is an easy task compared to writing pipelined
models for the same instruction set. Pipelined models are proven to be equivalent to their naive
counter part by theorem proving. Therefore running in symbolic mode also means that a trace
file or output is written in TPTP format [9], which is suitable for many theorem provers. This
output describes the transformations made to a state and connects the initial to the final states.
The two generated trace files allow a theorem prover like VAMPIRE [8] to prove the correctness
of the pipelined model.

It is enough to access an uninitialized function state to create a symbolic value, like in listing
3.1.

1 function a: -> Int
2

3 rule main = {
4 print "a = " + a
5 program(self) := undef
6 }

Listing 3.1: Creating a symbolic value

13

The output shows a = sym2, this means that the value is a symbolic value with the id 2,
however in concrete mode casmi prints a = undef.

3.1 Symbolic Output

TPTP output in casmi is printed to stdout by default, but with parameter -x or --fileout can
be forced to be written into a .trace file. The statements straceon and straceoff can be used
to activate and disable output for symbolic values for specific parts of the program in CASM,
by default output is deactivated and has to be activated with straceon. In concrete mode, these
commands have no effect. The parameter --straceon can be used for casmi to switch on the
symbolic output at the beginning of the program. Listing 3.2 shows the output with parameter
--straceon in symbolic mode. The first 3 lines would be missing, without this parameter.

1 tff(symbolNext, type, sym2: $int).
2 fof(id0,hypothesis,fa(0,sym2)). %CREATE: a
3 fof(id1,hypothesis,fprogram(1,0,undef)). %UPDATE: program self
4 fof(final0, hypothesis, fa(0,X) <=> fa(666,X)).
5 fof(final1, hypothesis, fprogram(1,0,X) <=> fprogram(666,0,X)).

Listing 3.2: Complete output of listing 3.1

Each update instruction is logged in the output. In symbolic mode, the first access to an
uninitialized function does not return undef any more, but creates a symbolic value and initial-
izes the function with it. Since a is uninitialized, a symbolic integer value sym2 is created and
assigned to a on line 1 and 2. The first line is needed to correctly type the problem for the
theorem prover.

program(self):= undef leads to the output on line 5, since program(self) was al-
ready initialized with @main, casmi prints UPDATE instead of CREATE for a. The first parameter
in fprogram(1, 0,undef) is a generation counter, which is a logical timestamp pro location.

At the end, casmi dumps the final state. With casmi and the parameter --prefix, it is possi-
ble to prefix symbol and function names, so when executing listing 3.1 with casmi --symbolic

--straceon --prefix=PRE symbol names are now prefixed. Use parameter --symbolic_f
instead of --symbolic or -s to prefix function names, listing 3.3 shows the prefixed version of
listing 3.2.

1 tff(symbolNext, type, symPRE2: $int).
2 fof(idPRE0,hypothesis,fPREa(0,symPRE2)). %CREATE: a
3 fof(idPRE1,hypothesis,fPREprogram(1,0,undef)). %UPDATE: program self
4 fof(final0, hypothesis, fPREa(0,X) <=> fPREa(666,X)).
5 fof(final1, hypothesis, fPREprogram(1,0,X) <=> fPREprogram(666,0,X)).

Listing 3.3: Prefixed output of listing 3.1

Assuming the declaration function a: Int * Int -> Boolean and its update with a(1,2)

:= true, leads to the output of fof(id1,hypothesis,fa(1,1,2,1)). %UPDATE: a 1 2. Be-
fore the first update of a, it is automtically initialized with a symbolic value, since a is unini-
tialized at this point. This means fof(id0,hypothesis,fa(0,1,2,sym2)).%CREATE: a 1 2 is
printed right before the update.

14

As already seen values are encoded a bit different for the theorem prover in TPTP output,
true is printed as 1, false is 0. String constants and RuleRef s are escaped with e to e.g. e"

Hello World!" or emain. As already mentioned above, self is printed as 0.

3.2 Evaluating Expressions with Symbolic Values

Since symbolic values can occur in expressions, the evaluation rules for expressions need to be
adjusted for symbols. +, -, *, / and % still return undef, if at least one operand is undef. In
symbolic mode these operators return a new symbol if at least one symbol is given as operand.
Listing 3.4 shows the results of the possible combinations, a and b are two symbolic values. The
order of the operands has no effect on the result, a + undef is the same as undef + a. Although
this listing only shows the add operator, the results remain the same for the rest.

1 a // = sym2
2 b // = sym3
3

4 a + b // = sym4
5 a + undef // = undef
6 a + 2 // = sym5

Listing 3.4: Evaluating expressions

The comparison operators <, <=, =, !=, > and >= work really similar with subtle differences.
If two symbolic values with the same id are compared, these operators return true or false
depending on the used operator. If the symbols have different ids, a new symbol will be cre-
ated and returned. Comparing a symbol with undef returns false for the equality and true

for the inequality operator, since a symbolic value and undef cannot be equal. The remaining
comparison operators return undef in this situation.

1 a // = sym2
2 b // = sym2
3 c // = sym3
4

5 a = b // = true
6 a = c // = sym4
7 a = undef // = false
8 a < undef // = undef
9 a = 2 // = sym5

Listing 3.5: Comparing values

With the built-in function symbolic, an expression can be checked if it returns a concrete or
symbolic value. This is used in listing 3.6 to assert a symbolic value for an uninitialized state.
In casmi this function was useful for many tests in symbolic mode.

1 // symbolic
2

3 function a: -> Int
4

5 rule main = {

15

6 assert(symbolic(a))
7 program(self) := undef
8 }

Listing 3.6: Checking for symbolic value

3.3 Symbolic Conditional Control Flow

External functions

As mentioned in section 2.6, casmi can use functions from a shared library. These functions can
also be invoked with symbolic integer values, therefore the sym_t property in shared_int from
listing 2.6 saves the id of the symbolic value and is greater than 0 for symbolic values.

In symbolic mode casmi does not load asm_engine.so but asm_engine_symbolic.so. There-
fore these functions can behave differently depending on the current mode.

push and pop statement

push and pop also work for symbolic values. When a value (it does not matter if it is symbolic
or not) is pushed into a state with a symbolic value, then a new symbol is created and saved in
this state. pop works very similar and returns a new symbol and updates the state with a new
symbolic value. Listing 3.7 shows a part of the output of two CASM files, which push into and
pop from function a: -> List(String). Since a is uninitialized, it is initialized with sym2.
Pushing "a" changes a to sym3, while popping returns sym3 and changes a to sym4.

1 % push "a" into a
2 fof(id0,hypothesis,fa(0,sym2)).%CREATE: a
3 fof(id1,hypothesis,fpush(sym2,e"a",sym3)).
4 fof(id2,hypothesis,fa(1,sym3)).%UPDATE: a
5

6 % pop x from a
7 fof(id0,hypothesis,fa(0,sym2)).%CREATE: a
8 fof(id1,hypothesis,fpop(sym2,sym3,sym4)).
9 fof(id2,hypothesis,fa(1,sym4)).%UPDATE: a

Listing 3.7: push and pop in symbolic output

if statement

If a symbolic value is given for an if statement, casmi does not know if the symbolic value is
true or false. So casmi forks itself and assumes the value in one execution path as true, in the
other as false. That means a symbolic program can have more than one symbolic output and
execution path as in listing 3.9, which is the output for listing 3.8.

1 function a: -> Boolean
2 function b: -> Int initially { 0 }
3

4 rule main = {

16

5 if a then b := 1 else b := 2
6 program(self) := undef
7 }

Listing 3.8: if with symbolic value

1 forklog: I
2 fof(id0,hypothesis,fa(0,sym2)).%CREATE: a
3 fof(’idtests/sym_if.casm:5’,hypothesis,sym2=1).
4 fof(id1,hypothesis,fb(1, 1)).%UPDATE: b
5

6 forklog: E
7 fof(id0,hypothesis,fa(0,sym2)).%CREATE: a
8 fof(’idtests/sym_if.casm:5’,hypothesis,sym2=0).
9 fof(id1,hypothesis,fb(1, 2)).%UPDATE: b

Listing 3.9: Symbolic output of if

Listing 3.9 shows the two execution paths. I is the output if the if branch is taken, otherwise
E is the output. The important line in the TPTP output is:

fof(’idtests/sym_if.casm:5’,hypothesis,sym2=1).

This line assumes the symbolic value sym2 in the if statement to be true, while for else it is
assumed to be false with sym2=0.

If -x was used as additional parameter for executing this program and assuming the file name
to be if.casm, casmi would create two trace files, if_I.trace and if_E.trace instead of writing to
stdout.

17

CHAPTER 4
Type Inference

CASM is a statically typed language, that means all parameters, variables and return types need
a static type. casmi can infer variable and return types since explicitly typing every element of
the application is tedious. Type inference is a separate pass before the interpreter starts executing
the program.

An Abstract Syntax Tree (AST) is generated for the program, when parsing and tokenizing
the source code. The structure of a node in the tree is defined in listing 4.1.

1 typedef struct ast {
2 ast_type type;
3 struct ast *left, *right;
4

5 int line;
6 int col;
7

8 union {
9 int_type number;

10 const char *name;
11 };
12

13 itype *aprio, *inferred;
14 ientry *entry;
15 vector<itype*> *param_types;
16 } ast;

Listing 4.1: Node of the AST

After parsing, the whole source code of the input file can be referenced through one single
pointer ast *program. In contrast to casmintr an AST node only has two children, the left and
right successor, in casmintr each node could have a list of children. It was easier to generate the
tree in this format with Bison, which was used for writing the parser and to generate the tree.
Type inference is done on the AST of the CASM program.

aprio and inferred are the two main properties of a node for type inference. aprio is set for
a node, if the node is or should be of this type. This property is calculated from the top to the

19

bottom. inferred is the calculated type of the node, which is computed from the bottom to the top
of the tree. The properties aprio and inferred have to be compatible types, this is accomplished
with the function type_check in listing 4.2, which is called for every node in an expression. If
aprio is not set, the check cannot fail.

1 void iannotation::type_check(ast *node) {
2 if(node->aprio == NULL) {
3 return;
4 }
5

6 if(!itype::compatible(node->aprio, node->inferred)) {
7 ERR("type " + node->aprio->inspect() +
8 " expected but got " + node->inferred->inspect(), node);
9 }

10 }

Listing 4.2: Checking inferred and aprio properties of a node

Type inference consists of three different steps. At first the types of the initializers of func-
tions are checked. After checking initializers all deriveds are type annotated and their return
type is computed. The last step is annotating all statements, that means the body or content of
all defined rules. deriveds need to be annotated before rules, since the return type of a derived
needs to be known when it is used inside a rule.

4.1 Annotating Declarations

Annotating declarations starts with annotating the initializers of all controlled and static func-
tions, which is very easy since the interpreter knows all function signatures. Therefore the aprio
property can be set for all values.

After checking initializers, all deriveds are type annotated, so that the return type is com-
puted and can later be used by rules when calling deriveds. If a return type is given for the
derived, the computed return type has to be compatible with it. casmi uses the types of the pa-
rameters, operators and built-in functions to infer a type. For example + and len return an Int,
while hex returns a String.

It is not always possible to calculate the return type, e.g. for undef or []. So in these rare
cases, a return type has to be specified. In the contrast to local variables, casmi does not try to
determine the return type of deriveds through their usage. Of course casmi could try to do this,
but it would add some complexity to the type inference unit for minor savings for the developer
in very unusual cases. A naive implementation would have to annotate almost the whole source
code again if a return type was detected to ensure that all usages are compatible with the return
type. Moreover it is very easy to fix this error, through stating the return type of the derived
explicitly.

Return types of deriveds are calculated in order of their declaration in the source code. A
current limitation of the type inference implementation does not allow a derived to use another
derived, which return type is not already known. Listing 4.3 demonstrates this case, where d1
calls d2, which leads to an error. This situation can be resolved by either specifying the return

20

type for d2 with derived d2(a : Int): Int = a + 2 or placing the definition of d2 before
d1. casmi could make some efforts to detect return types in such situations, but this was not
implemented for the sake of simplicity. The reasons were the same as mentioned above.

1 derived d1(a) = d2(a) // error
2 derived d2(a : Int) = a + 2

Listing 4.3: Derived using another derived

4.2 Annotating Statements

After computing all return types of deriveds, casmi starts checking the body of all named rules.
This means all statements and expressions in rules in the source code are annotated and checked
for type mismatches. The function type_statement is invoked for the body of the rule, which
recursively calls the annotation function of every statement in the rule. Each instruction has its
own function for annotation, since they all work in different ways. However, there are some
statements such as straceon or skip which do not need to be annotated at all, so they are
just skipped. Annotating rules starts by calling type_statement for each body of a rule. The
parameter table references the symbol table, which holds all available parameters and local
variables, but also all global elements, such as enumerations, deriveds or functions. table is
reinitialized for every rule with all global elements and all parameters of it.

1 void iannotation::type_statement(ast *node, isymtable &table) {
2 switch(node->type) {
3 case AST_SEQBLOCK:
4 case AST_PARBLOCK:
5 type_block(node, table);
6 break;
7

8 case AST_UPDATE: type_update(node, table); break;
9 case AST_LET: type_let(node, table); break;

10 case AST_FORALL: type_forall(node, table); break;
11

12 // ...
13

14 default: ERROR();
15 }
16 }

Listing 4.4: Function type_statement

undef and the empty list

It is important to note that undef is a value and compatible with every type, but there is no own
undef type to be used inside a program by the developer. undef always needs a specific type
such as Int or String if bound to a variable. undef is only used as type internally to indicate
that this part of the type is still unknown. [] is of type List(undef), which means that the
subtype of the list is unknown. If bound to a variable, this part of the type needs to be resolved.

21

The complete type is only needed for variables, since otherwise statements such as len([])
or len(undef) would not work, where the unknown subtype of the list is no problem.

Although undef is compatible with all types, binding it to a variable does not mean that the
variable can be used for all types, it still needs a static type. The following listing fails for type
inference on line 7:

1 function a: -> Int
2 function b: -> String
3

4 // ...
5 let x = undef in {
6 a := x
7 b := x // error, x is Int
8 }

Annotating update instruction

One of the most important rules is the update instruction, since it often allows to determine
the type of local variables. Due to the fact that it is only allowed to update functions and they
are guaranteed to be explicitly typed, the types of all expressions in the statement are known.
Therefore the update instruction on line 4 in listing 4.5 defines the type of x as Boolean, y
as String and z as Int.The function type_update sets the aprio property for all parameter
expressions and the value and calls type_expression for them. This function annotates an
expression and returns the detected type of it. It also calls type_check (see listing 4.2), as a
result aprio and inferred are checked for every single node in an expression.

1 function a: Boolean * String -> Int
2

3 // ...
4 a(x, y) := z

Listing 4.5: Update function a

Assuming type_expression is called for a variable and the property aprio is already set
(such as in listing 4.5 for x, y and z), the type of the variables can be determined. If the variable
type is already known, its type will be assigned to inferred and therefore checked against aprio
with type_check, so no explicit check is necessary for the return type. Listing 4.6 shows some
code of type_expression. The function calls itself recursively for all operands.

22

1 itype *iannotation::type_expression(ast *node, isymtable &table) {
2 switch(node->type) {
3 case ’+’ || ’-’ || ’*’ || ’/’ || ’%’:
4 // operands need to be Int
5 node->left->aprio = node->right->aprio = itype::const_int;
6

7 type_expression(node->left, table); // call function for successors
8 type_expression(node->right, table);
9

10 node->inferred = itype::const_int; // return type is Int
11

12 case AST_NUMBER: node->inferred = itype::const_int; break;
13 case AST_STRING: node->inferred = itype::const_string; break;
14

15 // ...
16

17 default: ERROR();
18 }
19

20 type_check(node);
21 return node->inferred;
22 }

Listing 4.6: function type_expression

Annotating let

Since the let statement allows omitting the type of the variable, casmi has to be able to deter-
mine types of variables. The detection of the type in expressions such as 2, "Hello!" or false
is straightforward, while expressions as undef or [] are more trickier.Assigning [] to a variable
means that it is some sort of List, but the subtype of the list remains unknown, while for undef
the type of the variable remains completely unknown, since undef is compatible with every type.

If the type of a variable was not declared or could not be calculated from the binding, the
type must be determined through the usage of the variable. In most cases, the type can be
deduced from an update instruction, but there are also some other ways, e.g. through an equality
operator. push and pop allow the type of the variable to be easily recognized, since functions
are explicitly typed. The let statement adds a variable to table, annotates the scope where
the variable is available and removes the variable again. After annotating the variable scope,
the variable type should be known. Type inference fails and raises an error, if the type is still
unknown.

If the type of the variable could be determined because of its usage, it is necessary to annotate
the binding again with an updated aprio property. Otherwise some rare cases like in listing 4.7
do not work. Since x is undef, the type cannot be inferred from the binding alone and so the
type of y is also unknown on line 2. z is explicitly declared as Int, so aprio can be set for the
binding. Since y is used as Int on line 3, its type can be inferred at this point. This leads to the
repetitive annotation of the binding on line 2 with aprio set to Int for x and therefore the type
of x can now be inferred. If the binding would not be annotated again, the type of x could not be

23

computed and type inference would fail on line 1 for the variable x.
1 let x = undef in
2 let y = x in
3 let z : Int = y in skip

Listing 4.7: x, y and z as Int

Annotating the binding with an updated aprio property is also necessary, because of assign-
ments like z = cons(x, y) in listing 4.8. When the binding is annotated again on line 6,
both x and y get their types Int and List(Int) assigned.

1 function a: -> List(Int)
2

3 rule main = {
4 let x = undef in
5 let y = undef in
6 let z = cons(x, y) in
7 a := z
8

9 program(self) := undef
10 }

Listing 4.8: cons in assignment

Choosing Tuple or List for a Variable

As already mentioned, type inference has to differentiate between tuple and list in CASM. At
first, list constants are treated as tuple unless the list constant has less than two elements or aprio
is set to list. Note that tuple and list types are not compatible with each other in any case.

The list constant [1,2,3] is assumed to be of type Tuple(Int,Int,Int) at first, but could
also be of type List(Int), which is not possible for all list constants. A tuple is saved in the
structure itype_tuple (shown in listing 4.9). The property subtype is set to NULL if the tuple
cannot be used as a list. If the tuple can be used as a list, subtype references the subtype of the
list. For the example above, subtype references Int.

Declaring a function or variable as a tuple, always sets subtype to NULL. Non-NULL values
are only allowed for list constants.

1 class itype_tuple : public itype {
2 public:
3 vector <itype*> subtypes;
4 itype *subtype;
5 };

Listing 4.9: The structure of a tuple in casmi

It is not a must to treat list constants as a tupel first and later transform it to a list as required.
The reverse would also be possible, it is only important that the type can change and the variable
can either be used as tuple or list, but not both.

The built-in functions len, peek, tail and cons need some type of List, so using a variable
in one of these functions also determines the type of it. Therefore the variable cannot be used as

24

Tuple again. nth is a bit special and more complex, since it is possible to call it for a Tuple, but
only if the first parameter is a constant value. Otherwise the type inference could not determine
the return type of nth, whereas for List it is always possible.

= and !=

These operators are by far the most complex part of type inference for CASM, since the two
operands of the operators need to have the same type. Listing 4.10 shows a pseudo code for
annotating these operators. This code serves as an overview for the explanations in this section.

1 void iannotation::type_equals(ast *node, isymtable &table) {
2 ast *l = node->left;
3 ast *r = node->right;
4

5 bool re_r = false, re_l = false;
6

7 // first annotation of operands
8 l->aprio = r->aprio = NULL;
9 itype *tl = type_expression(l, table);

10 itype *tr = type_expression(r, table);
11

12 // check if tuple is compared to list and tuple can be converted
13 // to a list
14 if(is_list(tl) && is_tuple_and_convertible_to_list(tr)) {
15 re_r = true; // annotate right operand again
16 tr = convert_to_list(tr);
17 } else if(is_tuple_and_convertible_to_list(tl) && is_list(tr)) {
18 re_l = true; // annotate left operand again
19 tl = convert_to_list(tl);
20 }
21

22 // types must be compatible
23 if(!types_compatible(tl, tr))
24 ERROR;
25

26 itype *tm = merge(tl, tr);
27

28 // annotate operands again if their type changed
29 if(re_r || tm != tr) {
30 r->aprio = tm;
31 type_expression(r, table);
32 }
33

34 if(re_l || tm != tl) {
35 l->aprio = tm;
36 type_expression(l, table);
37 }
38

39 if(unknown_type(tm)) {
40 // save comparison for the current scope and rule
41

42 current_scope.add_comparison(node);

25

43 current_rule.add_comparison(node);
44 }
45

46 // operators always return bool
47 node->inferred = itype::const_bool;
48 }

Listing 4.10: Annotating = and !=

Because all types are allowed, the aprio property of the operands is set to NULL. After this,
the method type_expression is invoked for both operands, to annotate these expressions. If
both types are compatible, the type of the comparison is computed by merging the types of the
operands. Merging types returns the common type of both given types. Note that merge is
only defined for compatible types. The following table demonstrates some results of the merge
function:

t1 t2 merge(t1, t2)

String String String
undef Int Int

List(undef) List(String) List(String)
Tuple(undef,String) Tuple(Int,undef) Tuple(Int,String)

List(undef) undef List(undef)
Int String merging fails

If the merged type is different than the type of an operand, type_expression will be invoked
again for the operand with the aprio property set to the merged type. Listing 4.11 demonstrates
this case, where undef and Int are merged to Int on line 2. The left operand of the = operator
is annotated again, so that the type of x can be inferred. This must be done, otherwise it would
not be possible to assign a type from one operand to the other.

1 let x = undef in {
2 if x = 4 then
3 print "x = 4"
4 }

Listing 4.11: x is used as Int

A special case occurs for the comparison when a tuple is compared to a list, since the tuple
needs to be checked if it can be converted to a list. This case needs to be considered, since list
constants are assumed to be tuples at first, but the type can change to a list as in listing 4.12. In
this example on line 4, the types of the operands are Tuple(Int,undef,Int) and List(Int)

first, type inference would fail for these types. Therefore the tuple needs to be converted to a
list, in this example List(Int). Now both operands are compatible. Since the merged type is
List(Int), the left operand is annotated again to assign the new type to x.

The same would happen for comparing function a with the list constant [1,2] as in a =

[1,2]. [1,2] is assumed to be Tuple(Int,Int), so a conversion is needed too.

1 function a: -> List(Int)
2

26

3 let x = [1,undef,3] in { // at first Tuple(Int,undef,Int)
4 if x = a then
5 print "x = a"
6 }

Listing 4.12: x is used as a list

As mentioned above, both operands need to have compatible types, but unfortunately the
types of the operands are not always known at this time. So in casmi, each comparison with
undefined merged type is saved and treated as a requirement, which has to be fulfilled. Later,
these comparisons are annotated again, when the interpreter hopefully has more information to
detect type errors.

The comparison on line 5 in listing 4.13 has undef as merged type, so it is saved in a list for
the current scope. The type of x can then be inferred through the update for a on line 7. Before
the scope is left on line 8, the comparison is annotated again, but at this point Int can be used
as aprio type for the left operand and the type of y can now be inferred.

1 function a: -> Int
2

3 let x = undef in
4 let y = undef in {
5 if x = y then print "x = y"
6

7 a := x
8 }

Listing 4.13: Unknown type of comparison on line 5

It is also valid if the merged type of a comparison is still undefined at this point, since all
comparisons are always added to the current rule too, where they are annotated again when leav-
ing the rule. At this point, all variable types are known, so all type mismatches in comparisons
are guaranteed to be detected.

In listing 4.14, the comparison on line 8 has an unknown type and when checking the com-
parisons for the scope of variable z, the type is still undefined. The type mismatch is detected,
when the rule is left.

1 function a: -> List(String)
2 function b: -> List(Int)
3

4 // ...
5 let x = [undef, undef] in
6 let y = [undef, undef] in {
7 let z = 10 in {
8 if tail(x) = tail(y) then print "yeah" // error
9 // ...

10 }
11

12 a := x
13 b := y
14 }

Listing 4.14: Error in comparison could be undetected

27

To find all type mismatches, it is only necessary to check the comparisons at the end of the
rule. It is important to point out that although all variable types are known, unknown compare
types can still occur at the end of the rule and no error is raised for them. Otherwise comparisons
such as undef = [] would not be allowed.

Comparisons are verified again at the end of a scope, to detect variables types as in listing
4.13. If the check is not done, the type of variable x cannot be inferred and x would need to be
explicitly typed.

Annotating call

Annotating is a single pass before the interpreting of the file starts. The single one exception
is the call statement, since a dynamically called rule is only known at runtime. So the type
annotation saves the types of all parameters in the node of the call instruction. Due to this,
the node has a property param_types, which is a pointer to a type vector (vector<itype*> *).
Then the interpreter only needs to compare the parameter types of the call instruction with the
rule declaration.

For static rule calls, the parameters are checked right in the type inference unit. param_types
is set to NULL, so that the interpreter does not check the parameter types again. It is faster to

check the types in the type inference unit if this is possible, since the interpreter would have to
check them at every call.

28

CHAPTER 5
Correctness of Implementation

The test suite of casmi was a very important part in the development. It is written in Ruby and
simply executes all CASM files in the tests folder and checks its output and exit codes against the
expected values. Since the test suite worked very well, the development has become more and
more test-driven. At the time of writing casmi has 309 tests, the execution of these tests lasts for
about four seconds. 42 preexisting CASM files were added to the tests to ensure compatibility
with casmintr. These files reside in the directories examples, tests/examples and tests/

examples2. Some of these files are also used for performance comparison with casmintr.
The rest of the test suite consists of small files, which check different features of casmi.

Code coverage for the test suite was measured with gcov and is about 85%, that means 85% of
the source code lines of casmi are executed while running the test suite. A large part of the not
executed code is either unreachable or contains methods used for debugging. Therefore code
coverage is good and the development of new features or bug fixing should not lead to major
regressions.

5.1 Unit-Tests

Additional to the test suite, casmi also has unit tests to check internal functions of the interpreter.
The unit tests are simple C++ tests, which are compiled into its own binary unittest, with use of
some simple helper functions from the boost test library. Executing tests also means invoking
this binary.

There are unit tests for creating and comparing all different types of values, such as Int,
String or List, but they also contain tests for types, where types are merged and compared.

5.2 Adding Test Cases

It is very easy to add test cases to the test suite of casmi, just create a .casm-file in the tests

directory. When executing the test suite, casmi is invoked with every file in this directory. By

29

default only the return code of casmi is checked, which is assumed to be 0.
It is also possible to specify that the execution of a file should fail, through a single line

comment in the first line of a file:

1 // error annotation @4
2

3 rule main = {
4 call (1) ("hallo", "welt")
5 program(self) := undef
6 }

Listing 5.1: This test case expects an error on line 4

For listing 5.1 casmi should raise an error on line 4 in the type inference unit. It is essential
that this is a single line comment on line 1. The test suite does not understand a multi-line
comment or if this comment is not on the first line. The test will fail, if either the exit code or
the line which raised the error, is different from the declared value.

Exit codes

It is important to note that casmi sets the exit code after the failing component. casmi has
following different exit codes:

exit code 0
Exit code is 0, if no error occurred during execution.

lexer for exit code 1
These are errors in the lexer, for example an unclosed string or comment, as well as illegal
or unrecognized characters in the input file.

parser for exit code 2
All errors in the parser or structure of the program use exit code 2.

annotation for exit code 3
Exit code 3 is returned by all errors which are detected in the type inference unit. See
chapter 4 for possible type annotation errors.

interpreter for exit code 4
All errors in the interpreter return exit code 4, such as division by zero or if the loading
of external functions fails. Some annotation checks can only be performed at runtime, so
these checks also return exit code 4 on error.

Checking the output

The test suite is also capable of checking the output of casmi, not only the exit code. For this
purpose an .expected file with the same filename and path has to be created as the dedicated
.casm file. Then the output of casmi is written into a trace file and compared to the expected
output, which must be equal. After the comparison, the trace file is deleted. -k can be used as

30

parameter for running the test suite to keep the file on disk, which is very useful for debugging
purposes.

Listing 5.2 and 5.3 demonstrate the check of the program output.

1 CASM helloWorld
2

3 init main
4

5 rule main = {
6 print "Hello World!"
7 program(self) := undef
8 }

Listing 5.2: tests/basic/hello-world.casm

1 Hello World!
2 1 step later...

Listing 5.3: tests/basic/hello-world.expected

Symbolic execution mode

The test suite also tests the symbolic execution mode, symbolic is used in the comment on the
first line to switch to this execution mode for this file.

1 // symbolic
2

3 function a: -> Int
4 function b: -> Int initially { 0 }
5

6 rule main = {
7 straceon
8

9 if a = 2 then {
10 b := 1
11 } else {
12 b := 2
13 }
14

15 program(self) := undef
16 }

Listing 5.4: tests/symbolic/eq1.casm

Since symbolic execution can lead to multiple execution paths and therefore to various dif-
ferent outputs, it is not more sufficient to have a single .expected file. All these outputs can
be checked with the test suite, but the .expected-files use a slightly different naming conven-
tion. If eq1.casm is the filename, then eq1_.expected will be the expected output if no fork
happened while executing. tests/symbolic/eq1_I.casm and tests/symbolic/eq1_E.casm are the
expected output files, for listing 5.4. It is also possible to specify a function prefix and use pa-
rameter --symbolic_f with the line //symbolic_f, prefix PRE for a test case. The prefix

option can also be used with symbolic.

31

5.3 Executing the Test Suite

The test suite should be as seamless and maintainable as possible, so just running make builds
the program and runs all tests. Following output will be shown, if all tests run without errors:

1 executed 309 tests, 309 succeeded, 0 failed

Listing 5.5: Test suite output

If a test case fails, the file path and the error message from the test case will be shown:

1 exit code 0 expected but got 4
2 tests/basic/hello-world.casm failed
3

4 executed 309 tests, 308 succeeded, 1 failed

Listing 5.6: Test suite with a failed test case

make test executes all the tests alone including the unit test, while make only just builds
the program.

It is also feasible to start the test suite with ruby testsuite (make test does that inter-
nally). Where the test suite also accepts files or directories as parameters. Then the test suite
only executes the given files and all the files in the given directories. This feature is very handy
for developing, to check only single or specific test cases. If no parameters are given, the test
suite will execute all test cases in the tests directory.

32

CHAPTER 6
Evaluation

Performance was the major reason why the development of casmi was started. casmintr, the first
prototype of a CASM interpreter, was not fast enough. The aim was to be 10 to 100 times faster
than casmintr, which was written in Python. C++ was chosen as the programming language for
casmi, because of the strong focus on performance.

6.1 Benchmarks

To compare the performance of the two interpreters, the same CASM program is executed with
both casmi and casmintr. Each interpreter is invoked 10 times with the same file to receive an
average execution time. Only the average execution times of the two interpreters are compared.

The next table shows execution times of 15 different real-world programs. These are all
programs, which are run in the test suite. The second column shows the execution time in
seconds for casmi, while column 3 shows the time for casmintr. Column 4 shows the time for
casmintr divided by the time needed for casmi. All tests were executed on a desktop computer
with 64-bit Fedora 18 using GCC 4.7.2 and Python 2.7.3, the CPU is an Intel Core i5-3570K
@3.4 GHz with 16 GiB RAM.

Since casmintr is written in Python, the interpreter has a startup overhead compared to casmi.
Therefore tests/basic/hello-world.casm was used as a micro benchmark for measuring startup
time of the interpreter, which is about 0.090 seconds for casmintr. The fifth column shows the
factor between casmi and casmintr without the startup time of casmintr.

33

file name casmi [s] casmintr [s] Factor Factor*
tests/examples2/0.casm 0.035 6.879 194.688 192.141
tests/examples2/1.casm 0.029 6.871 236.931 233.827
tests/examples2/2.casm 0.036 8.393 235.318 232.794
tests/examples2/3.casm 0.032 10.203 318.844 316.031
tests/examples2/4.casm 0.031 6.356 205.022 202.118
tests/examples2/5.casm 0.032 8.781 274.406 271.594
tests/examples2/6.casm 0.021 6.900 333.855 329.500
tests/examples2/7.casm 0.028 8.917 314.707 311.530
tests/examples2/8.casm 0.037 8.365 226.072 223.640
tests/examples2/9.casm 0.037 10.304 276.009 273.598

tests/examples2/10.casm 0.026 8.608 326.899 323.481
tests/examples2/11.casm 0.022 6.817 309.879 305.788
tests/examples2/12.casm 0.019 6.572 345.894 341.157

examples/sad.casm 3.076 1077.123 350.208 350.179
tests/examples/proof35.mir.casm 0.026 0.123 4.658 1.241

All files except sad.casm run in symbolic mode, so potential performance problems in both
modes should be detected through these benchmarks. sad.casm is an arithmetic-intensive pro-
gram, which runs much longer than most other programs for translation validation. 0.casm
to 12.casm are used in instruction set simulation and contain typical CASM code fragments.
proof35.mir.casm was used as benchmark too, to also have a very short-running file.

6.2 Performance Analysis

The tests reveal big performance differences between casmi and casmintr. All files except
proof35.mir.casm are more than 190 times faster than casmi, 7 of the 15 used benchmarks are
more than 300 times faster in casmi. sad.casm is a big file with more than 18,500 lines of code,
which lasts for about 18 minutes in casmintr and 3.076 seconds in casmi. sad.casm indicates
that the performance advantage of casmi is also given for long running programs.

The benchmarks illustrate that startup time does not have a big impact on the comparison,
however the very short program proof35.mir.casm with only 60 lines of code shows a big dif-
ference between the two factors. This is also by far the file with the smallest performance
difference. The reason for this is that the execution time is so small that casmi cannot be much
faster.

The interpreters spend most of the execution time interpreting, when further analyzing the
execution time of sad.casm in casmintr and casmi. Although casmintr spends 2 seconds for
parsing and 25 seconds for type annotation, this is only a small portion compared to the overall
execution time of 1077 seconds. The same is still true for casmi, which spends 0.01 seconds
parsing and 0.03 for type annotation, so the rest of the 3.076 seconds are spent on interpreting.
One should focus on interpreting for further improving the execution speed.

The big difference for parsing is a bit unexpected, since casmi and casmintr both use lex/yacc-
like tools for lexing and parsing and therefore the code looks similar. The performance differ-

34

ence seems to be mostly caused by the used library and programming language. Type inference
uses a completely different algorithm in casmi, which explains the big difference here. casmintr
traverses the AST and annotates nodes until all nodes in the tree are stable, while casmi only
annotates specific parts of the tree again.

35

CHAPTER 7
Conclusion

As demonstrated in this thesis, casmi is a better performing and a better tested successor of cas-
mintr, the first prototype of CASM. casmi is in all benchmarks, except the very short proof35.mir.casm,
at least 190 times faster than casmintr. Therefore the aim, being 10 to 100 times faster than cas-
mintr could be fulfilled.

CASM matured as a language with superior type annotation and became incompatible with
CoreASM. casmi also serves as a good starting point for further improvements of CASM, the
test suite is easily extensible and already introduced features are not so likely to break because
of existing tests and their good code coverage. It is also easy to add new functions or statements
to casmi.

Due to the implementation of type inference in casmi, most of the work is done that the
compiler can easily be rewritten in C++ using the annotated AST of casmi. The type inference
unit is not needed in its full extent for the interpreter alone. The compiler can reuse the lexer,
parser and type inference by using the AST of the interpreter. All existing test cases in the test
suite can also be used to check the correctness of the CASM compiler.

7.1 Further Work

For further performance improvements in casmi, a benchmark suite could be useful to compare
run times with older versions. Since casmi is a simple AST interpreter, there is still room for
improvements. The interpreter could use faster architectures such as threaded code [1] or a
JIT-compiler.

Since the missing syntactic differentiation between a list and a tuple constant was a tough
part while implementing type inference, these constants could be separated in a later version of
CASM. At the moment it is also possible to assign arbitrary integer values to an enumeration,
due to the automatic conversion of integers to an enumeration and vice versa. Enumeration types
and integer could be completely separated, therefore new built-in functions could be needed to
convert between these types.

37

The test suite does not allow to check the error message in test cases. This could be im-
plemented in future versions of the test suite and to make this check more robust, error codes
could be introduced in casmi to uniquely identify a message. Therefore changing error messages
would not break tests. However for the demands of CASM it was so far enough to check exit
code and the line for errors.

1 // error annotation @4 EC0024

Listing 7.1: Defining error code for a test case

38

Bibliography

[1] James R. Bell. Threaded code. Commun. ACM, 16(6):370–372, June 1973.

[2] Egon Börger and Joachim Schmid. Composition and Submachine Concepts for Sequential
ASMs. In Proceedings of the 14th Annual Conference of the EACSL on Computer Science
Logic, pages 41–60, London, UK, UK, 2000. Springer-Verlag.

[3] Roozbeh Farahbod. CoreASM Language User Manual. http://www.coreasm.org/
downloads/CoreASM-UserManual-DRAFT.pdf, 2006. Accessed: 2013-04-10.

[4] Roozbeh Farahbod and Vincenzo Gervasi. Design and specification of the coreasm exe-
cution engine. http://coreasm.svn.sourceforge.net/viewvc/coreasm/
engine-carma/trunk/doc/CoreASM-DesignDocumentation.pdf, 2005.
Accessed: 2013-04-10.

[5] Yuri Gurevich. Specification and validation methods. chapter Evolving Algebras 1993:
Lipari Guide, pages 9–36. Oxford University Press, Inc., New York, NY, USA, 1995.

[6] Roland Lezuo and Andreas Krall. A unified processor model for compiler verification and
simulation using asm. In Proceedings of the Third international conference on Abstract
State Machines, Alloy, B, VDM, and Z, ABZ’12, pages 327–330, Berlin, Heidelberg, 2012.
Springer-Verlag.

[7] Roland Lezuo and Andreas Krall. Using the CASM language for simulator synthesis and
model verification. In Proceedings of the 2013 Workshop on Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools, RAPIDO ’13, pages 6:1–6:8, New York, NY, USA,
2013. ACM.

[8] Alexandre Riazanov and Andrei Voronkov. The design and implementation of VAMPIRE.
AI Commun., 15(2,3):91–110, August 2002.

[9] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

39

http://www.coreasm.org/downloads/CoreASM-UserManual-DRAFT.pdf
http://www.coreasm.org/downloads/CoreASM-UserManual-DRAFT.pdf
http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/trunk/doc/CoreASM-DesignDocumentation.pdf
http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/trunk/doc/CoreASM-DesignDocumentation.pdf

	Introduction
	Compiler Verification
	Abstract State Machine
	Mission Description

	CASM
	Hello World
	Parallel and Sequential Composition
	Types
	Statements
	Operators
	Built-ins
	Program Execution

	Symbolic execution
	Symbolic Output
	Evaluating Expressions with Symbolic Values
	Symbolic Conditional Control Flow

	Type Inference
	Annotating Declarations
	Annotating Statements

	Correctness of Implementation
	Unit-Tests
	Adding Test Cases
	Executing the Test Suite

	Evaluation
	Benchmarks
	Performance Analysis

	Conclusion
	Further Work

	Bibliography

