
A Generic REA Software Architecture based on
Fragments and Declarations

Bernhard Wally, Alexandra Mazak, Dieter Mayrhofer, and Christian Huemer

Vienna University of Technology, Institute of Software Technology and Interactive
Systems, Business Informatics Group, Favoritenstrasse 9–11, 1040 Vienna, Austria,

{wally, mazak, mayrhofer, huemer}@big.tuwien.ac.at,
http://www.big.tuwien.ac.at/

Abstract. The implementation of a domain agnostic software system
(such as an enterprise resource planning system or a trading information
system) based on the REA model requires a generic, yet highly adapt-
able software architecture. Building on top of well established academic
findings and proposals regarding the REA model we are proposing a
software model building on two main concepts: fragments and declara-
tions. Together they establish a single, flexible, extendible class hierar-
chy implemented purely on a database layer. Fragments and declarations
are implemented as associative arrays that are enriched with metadata,
providing clear access to attributes and their meta information. The sys-
tem’s flexibility is drastically increased by enabling the multi-typification
of REA entities.

Keywords: Enterprise Information Systems, Business Ontologies, Soft-
ware Engineering

1 Introduction

The REA model has been investigated on an abstract level [9,4,3], in terms of
software engineering approaches [10,6,7] and some attempts have been made to
implement real-life REA based business software in the past [6]. Some authors
have researched on rules and policies for the REA model [1,5,2] in order to pro-
vide advanced runtime configurations, constraint definition and checking, etc.
In our software architecture for the REA model we are seizing some of those
approaches and adapt them slightly to define a model that suits our needs and
feels very generic from a software engineering point of view. Our model is backed
by a domain independent data structure and provides a mechanism for the con-
figuration and execution of business models at runtime.

We also make heavy use of the “type object” pattern [8], which has been used
for describing REA models in the past. With respect to the typification method
in REA, we are using this pattern to also enable the possibility for runtime-
specification of more than one type on a single instance. We thus present a
technical solution to the multi-typification issue which, in our opinion, has not
received enough attention in the past.

http://www.big.tuwien.ac.at/staff/bwally/
http://www.big.tuwien.ac.at/staff/amazak/
http://www.big.tuwien.ac.at/staff/dmayrhofer/
http://www.big.tuwien.ac.at/staff/chuemer/
http://www.tuwien.ac.at/
http://www.isis.tuwien.ac.at/
http://www.isis.tuwien.ac.at/
http://www.big.tuwien.ac.at/
mailto:wally@big.tuwien.ac.at
http://www.big.tuwien.ac.at/


2

2 Runtime Modeling

It is an important aspect of long running systems to be able to adapt over time—
in order to accommodate changes in the environment, evolving user preferences,
etc. In case of an accounting model such as REA [9] this means to be able to
host varying and changing businesses with different requirements, entities and
business models. The traditional way in REA to model a certain business is to
declare it on a “type” and on an “instance” layer and use associations among
entities of both layers to define relationships and policies [5]. [6] extends this
concept by the notion of “aspects”, i.e. horizontal data and function capsules
that can be woven into virtually any domain concept by using methods of aspect
oriented programming.

Fig. 1. Overview of our class hierarchy (mix of class diagram and object diagram)—the
left part of the diagram displays “fragments”, the right part depicts the inheritance
tree of the “declarations”. Classes depicted in red are core classes, representing domain
independent entities of the REA model (not all REA concepts shown here) or other
entities situated at the REA model level; these classes are implemented in software. All
classes depicted in green are examples for those that are declared at runtime, backed by
a generic database, basically as associative arrays including metadata, i.e. they define
their named attributes and attribute types, and whether these attributes are required
or optional. Blue items depict specific objects (instances) of green class declarations,
and they can be realizations of multiple class declarations in a single instance (multi-
typification).

In our work we are reshaping things a little bit by making fragments first
class citizens of the REA modeling layer and by providing a generic solution
for the issue of multi-typification. We are introducing a database backed Meta-



3

Object Facility1 (MOF) compatible modeling scheme. In Fig. 1 we provide an
overview on our global software architecture by displaying a tiny domain specific
example.

We are using the REA model plus “fragments” as language definition on
layer M2, we are defining the domain specific business models on layer M1 and
we are instantiating the busines model entities on layer M0.

– The M2 layer is defined by the REA model in terms of an UML compatible
class diagram, plus we add a little modeling sugar by injecting the concept
of fragments to it.

– The M1 layer is used by business domain experts to declare their business
model by the notion of domain specific resources, events, agents, etc. En-
tities defined on this layer correspond to what is called an “interface” or
“pure virtual class” in software engineering terms: they declare their public
methods—in our case the indices of the underlying associative array.

– The M0 layer represents instantiations of M1 entities, i.e. the real resources,
events, agents, etc. It is crucial to note that each entity on the M0 layer
can be associated with multiple M1 entities, i.e. an agent can be both an
employee and a customer. Of course, the runtime instance must fulfill the
class declaration contract defined by all the M1 entities it is associated with.
In our current concept, a single M0 entity can be associated with at most
one kind of REA model entity, i.e. it is either a resource, or an agent, etc.
but within such a category it can be associated with multiple declarations
thereof.

2.1 Fragments

Fragments are reusable data capsules (i.e. in our current concept they do not
expose or possess any behavior) with the following main properties:

– Fragments are sets of attributes with a common context, such as e.g.:
• Identifiable (providing a string value to store unique identifiers),

• Schedulable (providing values for the duration and for the preparation
and wrap-up time), or

• GPSCoordinate (providing values for longitude, latitude and altitude).

– They are flexible units that can be referred to by declarations, in order to
declare their capabilities in a generic and reusable way, and

– they are declared scope-free, i.e. they can be applied to both types and
instances.

Fragments define their own class hierarchy, with a common base class Fragment,
which in turn is a direct descendant of Entity. A single fragment can inherit ex-
plicitly from at most one other fragment—if it does not, it implicitly inherits from

1 http://www.omg.org/mof/

http://www.omg.org/mof/


4

Fragment. A fragment can also define identifiers referring to other fragments by
declaring a “composition” link, e.g. the CompanyInformation fragment might
define a property location which refers to a GPSCoordinate fragment.

2.2 Declarations

In order to distinguish REA concepts from our chosen software engineering ap-
proach we have decided to name REA entities “declarations”, as they might
be more restrictive in some cases and more flexible in other cases, than REA
itself—it is simply easier to refer to “REA concepts” on the one hand and to
“declarations” on the other hand.

Declarations offer a system for tree-based modeling of domain specific char-
acteristics with the help of a number of parallel trees: there exists a tree for
declaring agents, another tree for declaring resources, another one for declaring
events, etc. Reduced to its semantics, declarations correspond to the core REA
model, i.e. specific business domains are modeled by specifying resources, agents,
events, etc. For our approach it is however important to formalize REA concepts
in software engineering terms; as such the term “declaration” stands for a class
declaration just like in object oriented languages, i.e. declarations define a class
hierarchy and offer variables for instances and for classes (the latter correspond
to what is usually called “types” in the REA model). Each node (“declaration”)
of the tree can be associated with zero or more fragments by realizing a “com-
position” link, thus declaring the structured attribute contract the types and
instances of the runtime layer must adhere to.

Also, declarations can have associations with other declarations, e.g. an air-
craft maintenance technician can have the permission to maintain specific air-
craft types. In addition, such an association can have an association class at-
tached to it, and that class must be an instance of a fragment. For each instanti-
ation of such an association, a separate instance of the corresponding association
fragment is created and linked as an instance of the association class.

3 Conclusion

We have presented a generic software architecture for an REA based accounting
system that uses a variant of the type object pattern as the core modeling tech-
nique in order to allow separation of domain specific knowledge from the software
model. Our approach allows modelling on two interlinked parallel paths: frag-
ments and declarations. The latter make use of the former by composition links
as instance or class variables. A clear separation between the modeling layer and
the runtime layer is established, and on the runtime layer each instance can be
typified with multiple declarations, which enables a high grade of flexibility for
the runtime system. The class contract of fragments and declarations further
allows the structured definition of business rules on both the modeling layer and
on the runtime layer; through attribute and metadata inspection graphical user
interfaces can provide thorough assistance in the formulation of business rules.



5

We are currently evaluating our software architecture for usability (from a soft-
ware engineering point of view) and applicability with regards to the integration
of business rules.

4 Acknowledgements

This work was supported as part of the BRIDGE program of the Austrian Re-
search Promotion Agency (FFG) under grant number 841287—a joint research
effort of Vienna University of Technology and eventus Marketingservice GmbH.

References

1. Andersen, J., Elsborg, E., Henglein, F., Simonsen, J.G., Stefansen, C.: Compo-
sitional specification of commercial contracts. International Journal on Software
Tools for Technology Transfer 8(6), 485–516 (October 2006)

2. Gailly, F., Geerts, G.: Formal definition of business rules using REA business mod-
eling language. In: 7th International Workshop on Value Modeling and Business
Ontology, Proceedings. p. 7 (2013)

3. Gailly, F., Poels, G.: Towards ontology-driven information systems: Redesign and
formalization of the REA ontology. In: Abramowicz, W. (ed.) Business Information
Systems, Lecture Notes in Computer Science, vol. 4439, pp. 245–259. Springer
Berlin Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-72035-5_19

4. Geerts, G.L., McCarthy, W.E.: The ontological foundation of REA enterprise in-
formation systems. In: Annual Meeting of the American Accounting Association,
Philadelphia, PA. vol. 362, pp. 127–150. Citeseer (2000)

5. Geerts, G.L., McCarthy, W.E.: Policy-level specifications in REA enterprise infor-
mation systems. Journal of Information Systems 20(2), 37–63 (Fall 2006)

6. Hrubỳ, P., Kiehn, J., Scheller, C.V.: Model-Driven Design using Business Patterns.
Springer (2006)

7. Huňka, F.: Power-types in business process modeling. Journal of Applied Economic
Sciences (JAES) 8(1 (23)), 52–62 (Spring 2013)

8. Johnson, R., Woolf, B.: Type object. In: Martin, R.C., Riehle, D., Buschmann,
F. (eds.) Pattern Languages of Program Design 3, chap. Type Object, pp. 47–65.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1997), http:
//dl.acm.org/citation.cfm?id=273448.273453

9. McCarthy, W.E.: The REA accounting model: A generalized framework for ac-
counting systems in a shared data environment. The Accounting Review 57(3),
554–578 (July 1982)

10. Nakamura, H., Johnson, R.E.: Adaptive framework for the REA accounting model.
In: Proceedings of the OOPSLA’98 Workshop on Business Object Design and
Implementation IV (1998)

http://dx.doi.org/10.1007/978-3-540-72035-5_19
http://dl.acm.org/citation.cfm?id=273448.273453
http://dl.acm.org/citation.cfm?id=273448.273453

	A Generic REA Software Architecture based on Fragments and Declarations

