
DISTRIBUTED DECORRELATION IN SENSOR NETWORKS WITH

APPLICATION TO DISTRIBUTED PARTICLE FILTERING

Michael Moldaschl1, Wilfried N. Gansterer1, Ondrej Hlinka2, Florian Meyer2, and Franz Hlawatsch2

1University of Vienna, Research Group Theory and Applications of Algorithms, Vienna, Austria

({michael.moldaschl,wilfried.gansterer}@univie.ac.at})
2Institute of Telecommunications, Vienna University of Technology, Vienna, Austria ({ohlinka,fmeyer,fhlawats}@nt.tuwien.ac.at)

ABSTRACT

Most distributed statistical signal processing methods assume condi-
tionally uncorrelated sensor measurements although this assumption
is often not satisfied. Here, we propose a distributed algorithm for
decorrelating the sensor measurements in a wireless sensor network.
The algorithm employs a matrix-valued Chebyshev approximation
to achieve an approximate decorrelation using only local computa-
tions and communication between neighboring sensors. We apply
the algorithm to consensus-based distributed particle filtering in a
target tracking problem with correlated measurement noises. Simu-
lations show that the decorrelation yields a substantial accuracy im-
provement while causing only a small communication overhead.

Index Terms— Distributed decorrelation, wireless sensor net-
work, Chebyshev approximation, distributed particle filtering, target
tracking.

1. INTRODUCTION

Distributed statistical signal processing in decentralized sensor net-
works arises in many applications [1–3]. Many methods such as
consensus-based estimators [4–6] or message passing algorithms [7]
rely on the assumption that the sensor measurements are condition-
ally uncorrelated. However, this assumption is often not satisfied.
An example is given by acoustic measurements corrupted by some
ambient sound such as wind or machine noise.

Here, we propose a distributed algorithm for (approximately)
decorrelating the sensor measurements. The algorithm is based on
a matrix-valued Chebyshev approximation of the inverse square
root of the global measurement covariance matrix. This approach
enables an approximate decorrelation using only local computations
at the individual sensor nodes (without a fusion center) and com-
munication between neighboring sensor nodes. Once the sensor
measurements have been decorrelated, distributed signal processing
algorithms assuming uncorrelated measurements can be applied.
As an example, we consider distributed sequential state estimation
using a consensus-based distributed particle filter [5].

This paper is organized as follows. In Section 2, we state the sys-
tem model and the decorrelation problem to be solved. A survey of
existing decorrelation schemes, both centralized and distributed, is
given in Section 3. The proposed distributed decorrelation algorithm
is described in Section 4 and applied to distributed particle filtering
in Section 5. Simulation results are presented in Section 6.

2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a wireless sensor network composed of K sensors. Sen-
sor k ∈ {1, . . . ,K} acquires a random scalar measurement xk.

The covariance matrix of the all-sensors measurement vector x ,

This work was partially supported by the Austrian Science Fund (FWF)
under grants S10608 and S10603.

(x1 · · · xK)⊤ is C , E{(x−µ)(x−µ)⊤} ∈ R
K×K, where µ ,

E{x}. The expectation is usually conditioned on some unknown pa-
rameter or state vector θ; however, this will not be indicated by our
notation at this point.

In many applications, entries Ck,k′ = E{(xk−µk)(xk′ −µk′)}
of C for sensors k and k′ that are spatially distant from one another
tend to be (approximately) zero [8]. Let us define the neighbor set
Nk of sensor k as the set of all sensors k′ 6= k such that Ck,k′ 6= 0.
We assume that sensor k is able to communicate with all sensors
k′∈Nk; this is consistent with the fact that, typically, these sensors
are spatially close to sensor k. Thus, a nonzero off-diagonal element
of C implies that the corresponding element of the adjacency matrix
of the communication graph [9] is also nonzero. In other words, the
support of the adjacency matrix contains the support of C. Further-
more, we assume that sensor k knows the kth row of C (or, equiv-

alently, the kth column of C; note that C = C⊤). This means that
sensor k knows all its covariances with other sensor measurements.
However, it does not have to know covariances Cl,l′ with l, l′ 6= k.

Let C1/2 denote a square root of C, i.e., any K×K matrix that

satisfies C1/2 (C1/2)⊤=C. Note that C1/2 is not unique, since the

matrix C1/2Q, where Q is any orthonormal K×K matrix, is also
a square root of C. In what follows, we assume that C (and, hence,

C1/2) is nonsingular, and we denote the inverse of C1/2 by C−1/2.
Then, it is well known [10] that the vector y ∈R

K defined as

y , C
−1/2

x (1)

is uncorrelated and normalized in the sense that its covariance matrix
equals the identity matrix I. Furthermore, we assume that scalars
a, b are known such that 0 < a ≤ λmin ≤ λmax ≤ b, where λmin

(λmax) is the smallest (largest) eigenvalue of C.

We can now state the distributed decorrelation problem to
be solved: Using only communication with neighboring sensors
k′ ∈Nk, and based on knowledge of only xk and the kth row of C,
sensor k calculates the kth component yk of the decorrelated mea-

surement vector y = C−1/2x. As a result of this calculation, each
sensor k has a new measurement yk, where all yk, k ∈ {1, . . . , K}
are uncorrelated with unit variances.

3. SURVEY OF DECORRELATION ALGORITHMS

Before presenting the proposed distributed decorrelation algorithm,
we review existing centralized and distributed algorithms. To the
best of our knowledge, none of them is suitable for distributed decor-
relation in the setting described in Section 2.

A first class of centralized decorrelation algorithms explicitly

computes C−1/2 and then calculates y according to (1). We note that

the matrix-vector multiplication C−1/2x in (1) cannot be straight-
forwardly done in a distributed manner because, in contrast to C,

the support of C−1/2 is generally not contained in the support of the

in Proc. IEEE ICASSP 2014
Florence, Italy, May 2014, pp. 6158–6162

Copyright 2014 IEEE

adjacency matrix of the communication graph. An iterative com-

putation of C−1/2 can be based on a coupled inverse Newton iter-
ation [11], the Schur-Newton method [12], or the Newton-Raphson
method [13]. Decorrelation algorithms that approximately compute

C−1/2 from a training set of samples of x have been proposed
in [14] and [15]. The Cholesky decomposition [16] can be used to

compute the lower triangular square root C1/2, which can in turn be

used to solve the system of equations C1/2y = x (cf. (1)) for y.

Finally, any algorithm for calculating sign(A) , A(A2)−1/2 [17]
(here, a symmetric square root is used) for a nonsingular matrix A
can be used to calculate the inverse square root of a matrix. In fact,
if A is chosen as a 2×2 block matrix with first block row (0 C) and

second block row (I 0), then sign(A) has first block row (0 C1/2)

and second block row (C−1/2 0). One type of iterative algorithms
for computing sign(A) is based on the Padé approximants [18].

Another class of centralized decorrelation algorithms avoids ex-

plicit calculation of C−1/2 or C1/2 and computes y in (1) by ap-
plying operations directly to x. Various algorithms based on Krylov
subspace methods or the Chebyshev approximation have been pro-
posed to transform uncorrelated vectors into correlated vectors [19].
These algorithms can also be used for decorrelation by replacing

the approximation of C1/2 with an approximation of C−1/2. The
Krylov-type algorithms require global aggregation functions (either
for a scalar product or for a QR factorization), which can be cal-
culated in a distributed way using, e.g., consensus algorithms [20].
However, the consensus algorithms must be executed in every it-
eration of the decorrelation algorithm, which can lead to excessive
communication requirements.

A distributed Karhunen-Loève transform for decorrelation in sen-
sor networks is proposed in [21]; however, the algorithm requires a
fusion center. A truly decentralized decorrelation algorithm is the
sparse matrix transform described in [22], which uses Givens rota-
tions to iteratively eliminate the largest off-diagonal element of C.
However, this method requires a search over the entire network in
each iteration. Moreover, each sensor needs to be able to communi-
cate with all other sensors.

4. THE PROPOSED ALGORITHM

The proposed distributed decorrelation algorithm uses a Chebyshev
approximation of matrix functions, which will be reviewed first. The
Chebyshev approximation provides a nearly optimal polynomial ap-
proximation for any continuous function in an interval [a, b] [23–25].
More precisely, the error of the best polynomial approximation of
degree N (which is in general very difficult to find) is smaller by a
factor of at most 4+ ln(N) than the error of the Chebyshev approx-
imation with the same degree [25].

4.1. Chebyshev Approximation

A function f(z) : R → R can be approximated in the interval [a, b]
by the polynomial

f (N)(z) ,

N
∑

i=1

γiTi−1(z
′)−

γ1
2

,

where

γi =
2

N

N
∑

j=1

cos

(

(i−1)
π(j−1/2)

N

)

f

(

1

α
cos

(

π(j−1/2)

N

)

+
α

β

)

,

(2)
Ti(z) denotes the Chebyshev polynomial of degree i [26], and

z′ , αz − β with α ,
2

b−a
, β ,

a+ b

b−a
(3)

(note that z′ ∈ [−1, 1] for z ∈ [a, b]). The coefficients γi in (2)
can be computed efficiently via a discrete cosine transform. Fur-
thermore, since polynomials involve only powers, multiplications
by scalar factors, and additions, they can be extended to (square)
matrix arguments in a straightforward manner. In [19], the above
Chebyshev approximation has been generalized to a matrix function
g(Z):RK×K → R

K×K as follows:

g(Z) ≈ g(N)(Z) ,

N
∑

i=1

γiTi−1(Z
′)−

γ1
2
I , (4)

where Z′ , αZ−βI with α and β as defined in (3). For N → ∞,

g(N)(Z) converges to g(Z) for all matrices Z satisfying a ≤ λmin ≤
λmax ≤ b, which implies that α and β are related to the smallest
eigenvalue λmin and largest eigenvalue λmax of Z [19].

Using the matrix function g(Z) , Z−1/2, we can rewrite (1) as
y = g(C)x. Inserting the Chebyshev approximation (4) then yields

y ≈ y
(N)

,

[

N
∑

i=1

γiTi−1(C
′)−

γ1
2
I

]

x =
N
∑

i=1

γi ti −
γ1
2
x ,

(5)

with C′ , αC− βI, the vectors ti , Ti−1(αC− βI)x ∈ R
K,

and the coefficients γi given by (2) with f(z) = z−1/2. Based on
the well-known recursive calculation of the Chebyshev polynomials
Ti(·) [26], the ti can be calculated recursively as

ti = 2(αC−β I) ti−1 − ti−2 , i∈ {3, 4, . . . , N} , (6)

with initialization

t1 = x , t2 = (αC−β I)x . (7)

We finally note that the Chebyshev approximation in (5) can be

written as y(N)=Ax, where A ,
∑N

i=1 γiTi−1(αC−βI)− γ1
2
I

is a symmetric matrix. Thus, in the approximation of y = C−1/2x =
(C1/2)−1x , C1/2 is a symmetric matrix square root.

4.2. Distributed Decorrelation Algorithm

The approximate computation of y according to (5)–(7) requires re-
peated multiplication by the matrix αC − β I. Since the support
of this matrix is contained in the support of the adjacency matrix
of the communication graph (cf. Section 2), and since each sensor
k needs to obtain only the kth component of the resulting vector

y(N), all matrix-vector multiplications can be performed in a decen-
tralized way using only local computations and communication with
neighbors. Furthermore, the vector summations in (5) and (6) are
performed locally, i.e., the kth component summation is performed
at the kth sensor without any intersensor communication. The re-
sulting distributed decorrelation algorithm can be stated as follows.

DISTRIBUTED DECORRELATION ALGORITHM

Sensor k performs the following steps:

Step 1 (Initialization):

a) t1,k=xk (cf. (7)) is broadcast to all neighbor sensors k′∈Nk.

b) t2,k =
[

(αC−β I)x
]

k
(cf. (7)) is calculated and broadcast

to all neighbor sensors k′∈Nk.

c) y
(2)
k = γ2 t2,k+γ1 (t1,k−xk/2) (cf. (5)) is calculated locally.

Step 2 (Iteration): For i=3, 4, . . . , N :

a) ti,k =
[

2(αC−β I) ti−1−ti−2

]

k
(cf. (6)) is calculated and,

if i ≤ N −1, broadcast to all neighbor sensors k′∈Nk.

b) y
(i)
k = y

(i−1)
k + γi ti,k (cf. (5)) is calculated locally.

The result of this algorithm at sensor k is y
(N)
k , which is the kth

element of the Chebyshev approximation of y in (5), i.e., y
(N)
k =

∑N
i=1γi ti,k − γ1

2
xk ≈ yk. The algorithm requires knowledge (at

sensor k) of xk and of the kth row of C (see Steps 1b and 2a). Other
quantities used in Steps 1b and 2a are xk′ and ti−1,k′ for k′∈ Nk;
these have been received from the neighbor sensors. The coefficients
γi do not depend on x and can thus be precomputed at each sensor.

At iteration i∈ {1, 2, . . . , N−1} (here, i=1 and i=2 refer to the
initialization in Step 1), sensor k broadcasts ti,k to its neighbors k′∈
Nk. Thus, during the entire iterative decorrelation process, sensor k
broadcasts N−1 real numbers to its neighbors.

The approximation error ε , ‖y(N)− y‖2 =
∥

∥

∑

∞

i=N+1 γi ti
∥

∥

2

is dominated by |γN+1|‖tN+1‖2 [27]. Using the approximation

ε ≈ |γN+1|‖tN+1‖2, the relative error ε , ε/‖x‖2 can be ap-

proximated locally at each sensor as ε ≈ |γN+1|‖tN+1‖2/‖x‖2 ≤
|γN+1| < |γN | for sufficiently large N . Therefore, the N required
to achieve a desired value ε̄0 of ε̄ can be determined locally at each
sensor as the smallest N for which |γN | < ε̄0. The obtained value
of N is identical for all k. In our numerical experiments, we always
observed that ε is well approximated by |γN | as long as the accu-
racy does not approach machine precision. In Section 6.2, we will
illustrate this approximation for a target tracking scenario.

All sensors need to use the same approximation interval [a, b] in
order to operate with the same values α and β in (3). As mentioned
in Section 2, the approximation interval [a, b] has to include the spec-
trum of C, i.e., 0 < a ≤ λmin ≤ λmax ≤ b. The closer a and b
are to λmin and λmax, respectively, the faster converges the Cheby-
shev approximation. The problem of distributed estimation of λmin

and λmax is beyond the scope of this paper; we just note that dis-
tributed eigensolvers have been proposed recently [28, 29]. Estima-
tion of λmin and λmax requires additional intersensor communica-
tion. However, this preparatory step is needed only once, provided
that C does not change.

5. APPLICATION: DISTRIBUTED PARTICLE FILTERING

Distributed particle filters (DPFs) are powerful methods for dis-
tributed sequential Bayesian state estimation in wireless sensor
networks [6]. DPFs that employ consensus algorithms are especially
advantageous because they are robust to sensor and communica-
tion link failures and can obtain a global estimate at each sensor.
All consensus-based DPFs (with one exception [30]) rely on the
assumption that the measurement noises at the various sensors are
mutually uncorrelated.

In this section, we address the case of correlated measurement
noises and use our distributed decorrelation algorithm to enable the
application of standard consensus-based DPFs. We consider the DPF
of [5] as a concrete example. The resulting DPF is different from
the DPF for correlated measurement noises proposed in [30], which
assumes that the inverse covariance matrix (known as the precision
matrix) has the same support as the adjacency matrix.

5.1. System Model

We consider sequential Bayesian estimation of a random, time-

varying state vector θn = (θn,1 · · · θn,M)⊤. The state evolves
according to θn = an(θn−1,un), where an(· , ·) is a generally
nonlinear function and un is driving noise. At time n, θn is sensed
by K sensors according to the sensor measurement models

xn,k = hk(θn) + vn,k , k ∈ {1, . . . ,K} . (8)

Here, xn,k ∈ R is the local measurement of sensor k, hk(·) is a
generally nonlinear local measurement function, and vn,k is local
measurement noise. We assume that at any time n, the random vari-

ables vn,k , k ∈ {1, . . . ,K} are jointly Gaussian, zero-mean, and
possibly correlated; however, vn,k and vn′,k′ are assumed indepen-
dent at different times n 6= n′. Combining all local measurement
models (8) yields the global (all-sensors) measurement model

xn = h(θn) + vn , (9)

where xn , (xn,1 · · · xn,K)⊤, h(·) , (h1(·) · · · hK(·))⊤, and

vn , (vn,1 · · · vn,K)⊤ ∼ N (0,Cv). The noise covariance matrix
Cv is also the conditional covariance matrix of the global (all-
sensors) measurement vector xn given θn, i.e., E

{

(xn−µ)(xn−

µ)⊤
∣

∣θn

}

= Cv , with µ , E{xn|θn} = h(θn). As in Section 2,

we define the neighbor set of sensor k as Nk ,
{

k′ 6=k
∣

∣ [Cv]k,k′ 6=

0
}

, and we assume that sensor k knows the kth row of Cv and is

able to communicate with all sensors k′∈ Nk.

5.2. Distributed Particle Filtering

After application of our distributed decorrelation algorithm with
C = Cv to the sensor measurements xn,k, k ∈ {1, . . . ,K}, each
sensor k has a new local measurement yn,k . Because C = Cv

is the conditional covariance matrix of xn given θn, the yn,k are
(approximately) conditionally uncorrelated given θn. Ignoring the
approximations introduced by our algorithm, the decorrelated mea-

surement vector yn , (yn,1 · · · yn,K)⊤ can be written as

yn = C
−1/2
v xn

(9)
= C

−1/2
v

[

h(θn) + vn

]

= h
′(θn) + v

′

n ,

with the new measurement function h′(θn) , C
−1/2
v h(θn) and

the new—decorrelated and normalized—measurement noise vec-
tor v′

n , C
−1/2
v vn ∼ N (0, I). Note furthermore that yn|θn ∼

N
(

C
−1/2
v h(θn), I

)

.

Because the measurement noises v′n,k contained in the new mea-
surements yn,k are uncorrelated, any standard DPF assuming un-
correlated measurement noises can now be used. In the consensus-
based DPF presented in [5], in particular, each sensor k runs a local

particle filter that computes a global state estimate θ̂n based on the
all-sensors measurement vector yn. For this, sensor k needs to know,

besides the new local measurement yn,k, the kth component h′

k(·),
[

h′(·)
]

k
of the new measurement function h′(·) = C

−1/2
v h(·) [5].

We have
h′

k(·) = d
⊤

k h(·) , (10)

where d⊤

k denotes the kth row of C
−1/2
v . Note that dk also equals

the kth column of C
−1/2
v , because our distributed decorrelation algo-

rithm implicitly constructs a symmetric inverse square root C
−1/2
v .

Evaluation of (10) presupposes that sensor k knows dk and the
original measurement functions hl(·) of all other sensors. A dis-
tributed calculation of dk can be based on the following considera-
tion. With δl, l ∈ {1, . . . ,K} denoting the lth unit vector of length

K (i.e., [δl]i = δil), we have C
−1/2
v δl = dl. If our distributed

decorrelation algorithm is applied to input vector δl (instead of x),
then sensor k obtains the kth component of the lth column dl, [dl]k ,

which is simultaneously the lth component of the kth row, [d⊤

k]l.
Thus, if our distributed decorrelation algorithm is executed K times,
using δl as input at the lth execution, with l = 1, . . . ,K, sensor k
obtains all K components of dk .

Finally, if the original measurement functions hk(·) of all sensors
are not known to each sensor a priori, they have to be distributed,
e.g., through flooding or routing. In most applications, a closed-
form, parametric expression of the functions hk(·) is available, so
that only certain parameters of the hk(·) (e.g., the sensor locations)
have to be transmitted. Note that the calculation of the kth row of

R
M

S
E

N

DPF
DPF-D
CPF

1 4 8 12 16 20
0.0

0.2

0.4

0.6

0.8

Fig. 1. RMSE of DPF-D (proposed), DPF,
and CPF versus number of Chebyshev itera-
tions N .

|γN|
ϑ

N

100

10−5

10−10

10−15

0 50 100 150 200 250

Fig. 2. Decorrelation error ϑ and mag-
nitude of Chebyshev approximation coeffi-
cient |γN | versus number of Chebyshev iter-
ations N .

K

N

0 1000 2000 3000 4000100

101

102

103

104

Fig. 3. Estimated number of Chebyshev it-
erations N for decorrelation error ϑ= 10−4

versus network size K. The red curve shows
the average.

C
−1/2
v and the dissemination of the original measurement functions

hk(·) are preparatory steps that have to be executed only once (pro-
vided that Cv and the hk(·) do not change with time n).

6. NUMERICAL EXPERIMENTS

We present simulation results assessing the performance of the DPF
described in Section 5.2 and the accuracy of the proposed distributed
decorrelation algorithm.

6.1. DPF Accuracy

We consider a target tracking problem based on a network of K = 25
sensors, which are deployed on a jittered grid within a square region
of size da×da with da = 40. The system model (target dynamics
and measurement model) is identical to that used in [6], except that
the measurement noises at different sensors are mutually correlated
according to the spatial correlation model of [8]. This model defines
Cv∈R

25×25 as

[Cv]k,k′ =











σ2
k , k=k′

σkσk′ exp(−ηd2k,k′) , k 6=k′, dk,k′ ≤ dc

0 , k 6=k′, dk,k′ >dc ,

(11)

where dk,k′ is the spatial distance between sensors k and k′, and dc
is the maximum correlation radius (i.e., the measurement noises of
two sensors whose distance exceeds dc are uncorrelated). Simulta-
neously, dc is also the communication range. We set σ2

k = 0.01 for
all k, η=0.007, and dc =20.

We study the performance of the DPF with decorrelation as de-
scribed in Section 5.2 (abbreviated DPF-D), of the original DPF
of [5] without decorrelation (abbreviated DPF), and of a centralized
PF (CPF) that processes all sensor measurements at a fusion cen-
ter (here, no decorrelation is needed). Both DPF and DPF-D use
10 consensus iterations. For the Chebyshev approximation used in
our decorrelation algorithm, we set a = λmin and b = λmax, where
λmin (λmax) is the smallest (largest) eigenvalue of Cv. Fig. 1 shows
the root-mean-square error (RMSE) of the estimated position of the
target obtained with DPF-D versus the number of iterations N used
for decorrelation. The RMSE was computed by averaging over the
25 sensors, 200 time instants, and 5000 simulation runs. As a ref-
erence, the RMSEs of DPF and CPF (which are independent of N)
are also shown. We see that the RMSE of DPF-D is significantly
lower than that of DPF, and it approaches that of CPF within ap-
proximately N = 20 iterations. For distributed decorrelation with
N =20, each sensor has to broadcast 19 real numbers to its neigh-
bors. For comparison, we note that for execution of the DPF (with-
out decorrelation) using 10 consensus iterations, each sensor has to
broadcast 140 real numbers to its neighbors. Thus, the additional
amount of communication required for decorrelation is moderate.

6.2. Decorrelation Accuracy

To investigate the accuracy of our decorrelation algorithm, we ap-
plied it to 4000 vectors xl ∈ R

25, l ∈ {1, . . . , 4000} randomly
drawn from N (0,Cv), with Cv as in Section 6.1. Based on the
resulting vectors yl, the decorrelation error was then measured by

ϑ , maxi,j

∣

∣[Ĉy− I]i,j
∣

∣, where Ĉy is the sample covariance ma-

trix of the yl, i.e., Ĉy , 1
4000

∑4000
l=1 (yl − µ̂y)(yl − µ̂y)

⊤ with

µ̂y , 1
4000

∑4000
l=1 yl. In Fig. 2, we see that ϑ decreases expo-

nentially fast with growing N up to about N = 200, where ϑ has
decayed to a residual of about 10−13. Interestingly, this behavior is
quite different from that of the RMSE of DPF-D in Fig. 1, which
flattens and becomes close to that of CPF for N larger than about
20, even though the decorrelation error is still quite large. Fig. 2 also
shows that the magnitude of the last Chebyshev coefficient |γN | is
quite close to ϑ until it gets close to machine precision. We recall
from Section 4.2 that this approximate equality of |γN | and ϑ, com-
bined with the fact that γN can be calculated locally by each sensor,
allows each sensor to estimate locally the number of iterations N
that is required for a desired accuracy.

We also simulated the decorrelation algorithm for larger networks
with K up to 3600. Here, we used the parameter η = 0.02 in (11)
in order to obtain positive definite matrices Cv . For each network
size K, we randomly generated 60 networks. In Fig. 3, the estimated
number of iterations N (estimated as described in Section 4.2) that
is required to achieve decorrelation error ϑ = 10−4 is displayed
for each network versus the network size K. In addition, the figure
shows the average of the estimated N over all 60 networks of a given
size. The actual N required to achieve ϑ= 10−4 was verified to be
close to the estimated N in all cases. Our results suggest that the
average number of Chebyshev iterations N required for ϑ = 10−4

grows roughly according to the square root of the network size K
(up to a factor and a constant term).

7. CONCLUSION

We presented a distributed decorrelation algorithm for sensor net-
works with mutually conditionally correlated sensor measurements.
Based on the approximation of a matrix function using Chebyshev
polynomials, the proposed algorithm requires only local computa-
tions and communication with neighboring sensors. We used the
algorithm to obtain a consensus-based distributed particle filter ca-
pable of processing correlated sensor measurements. Simulation
results demonstrated the good performance of the distributed par-
ticle filter with only a small amount of additional communication
required by the distributed decorrelation (in addition to the commu-
nication required by the distributed particle filter). The extension
of the proposed distributed decorrelation algorithm to vector-valued
sensor measurements is an interesting topic for future research.

8. REFERENCES

[1] F. Zhao and L. J. Guibas, Wireless Sensor Networks: An Information
Processing Approach. Amsterdam, The Netherlands: Morgan Kauf-
mann, 2004.

[2] S. Haykin and K. J. R. Liu, Handbook on Array Processing and Sensor
Networks. Hoboken, NJ: Wiley, 2009.

[3] G. Ferrari, Sensor Networks: Where Theory Meets Practice. Heidel-
berg, Germany: Springer, 2010.

[4] B. N. Oreshkin and M. J. Coates, “Asynchronous distributed parti-
cle filter via decentralized evaluation of Gaussian products,” in Proc.
FUSION-10, Edinburgh, UK, Jul. 2010.

[5] O. Hlinka, O. Slučiak, F. Hlawatsch, P. M. Djurić, and M. Rupp, “Like-
lihood consensus and its application to distributed particle filtering,”
IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4334–4349, 2012.

[6] O. Hlinka, F. Hlawatsch, and P. M. Djurić, “Distributed particle filtering
in agent networks: A survey, classification, and comparison,” IEEE
Signal Process. Mag., vol. 30, no. 1, pp. 61–81, 2013.

[7] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparamet-
ric belief propagation for self-localization of sensor networks,” IEEE J.
Sel. Areas Comm., vol. 23, pp. 809–819, Apr. 2005.

[8] Z. Quan, W. J. Kaiser, and A. H. Sayed, “Innovations diffusion: A spa-
tial sampling scheme for distributed estimation and detection,” IEEE
Trans. Signal Process., vol. 57, no. 2, pp. 738–751, 2009.

[9] A. E. Brouwer and W. H. Haemers, Spectra of Graphs. New York, NY:
Springer, 2012.

[10] C. W. Therrien, Discrete Random Signals and Statistical Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice Hall, 1992.

[11] B. Iannazzo, “On the Newton method for the matrix pth root,” SIAM J.
Matrix Anal. Appl., vol. 28, no. 2, pp. 503–523, 2006.

[12] C. Guo and N. J. Higham, “A Schur-Newton method for the matrix
pth root and its inverse,” SIAM J. Matrix Anal. Appl., vol. 28, no. 3,
pp. 788–804, 2006.

[13] J.-A. Pineiro and J. D. Bruguera, “High-speed double-precision com-
putation of reciprocal, division, square root, and inverse square root,”
IEEE Trans. Computers, vol. 51, no. 12, pp. 1377–1388, 2002.

[14] S. C. Douglas and A. Cichocki, “Neural networks for blind decorrela-
tion of signals,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2829–
2842, 1997.

[15] S. Gazor and T. Liu, “Adaptive filtering with decorrelation for coloured
AR environments,” IEE Proc. Vision, Image, Sig. Process., vol. 152,
no. 6, pp. 806–818, 2005.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore,
MD: Johns Hopkins Univ. Press, 1996.

[17] N. J. Higham, Functions of Matrices. Philadelphia, PA: SIAM, 2008.

[18] C. Kenney and A. J. Laub, “Rational iterative methods for the matrix
sign function,” SIAM J. Matrix Anal. Appl., vol. 12, no. 2, pp. 273–291,
1991.

[19] T. Ando, E. Chow, Y. Saad, and J. Skolnick, “Krylov subspace methods
for computing hydrodynamic interactions in Brownian dynamics sim-
ulations,” J. Chem. Phys., vol. 137, no. 6, pp. 064106–1–064106–14,
2012.

[20] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215–233, 2007.

[21] M. Gastpar, P. L. Dragotti, and M. Vetterli, “The distributed Karhunen-
Loève transform,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5177–
5196, 2006.

[22] L. R. Bachega, S. Hariharan, C. A. Bouman, and N. Shroff, “Distributed
signal decorrelation in wireless sensor networks using the sparse matrix
transform,” Proc. SPIE 8058, pp. 80580V–1–80580V–15, 2011.

[23] K. Geddes, “Near-minimax polynomial approximation in an elliptical
region,” SIAM J. Numer. Anal., vol. 15, no. 6, pp. 1225–1233, 1978.

[24] M. J. D. Powell, “On the maximum errors of polynomial approxima-
tions defined by interpolation and by least squares criteria,” The Com-
puter Journal, vol. 9, no. 4, pp. 404–407, 1967.

[25] E. W. Cheney, Introduction to Approximation Theory. Providence, RI:
AMS Chelsea Pub., 1982.

[26] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. Boca Ra-
ton, FL: CRC Press, 2002.

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in Fortran 77, vol. 1. New York, NY: Cambridge
University Press, 1997.

[28] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” J. Comp. Syst. Sci., vol. 74, pp. 70– 83, Feb. 2008.

[29] H. Strakova and W. N. Gansterer, “A distributed eigensolver for loosely
coupled networks,” in Proc. 21st Euromicro Conf. Parallel, Distrib.,
Network-Based Process., Belfast, UK, pp. 51–57, Feb. 2013.

[30] O. Hlinka and F. Hlawatsch, “Distributed particle filtering in the pres-
ence of mutually correlated sensor noises,” in Proc. IEEE ICASSP-13,
Vancouver, BC, Canada, pp. 6269–6273, 2013.

