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Abstract. The capability of UML profiles to serve as annotation mechanism has
been recognized in both industry and research. Today’s modeling tools offer pro-
files specific to platforms, such as Java, as they facilitate model-based engineer-
ing approaches. However, the set of available profiles is considerably smaller
compared to the number of existing Java libraries using annotations. This is be-
cause an effective mapping between Java and UML to generate profiles from
annotation-based libraries is missing. In this paper, we present JUMP to over-
come this limitation, thereby continuing existing mapping efforts by emphasiz-
ing on annotations and profiles. We demonstrate the practical value of JUMP by
contributing profiles that facilitate reverse-engineering and forward-engineering
scenarios for the Java platform. The evaluation of JUMP shows that profiles can
be automatically generated from Java libraries exhibiting equal or even improved
quality compared to profiles currently used in practice.

Keywords: Java Annotations·UML Profiles·Model-Based Engineering·Forward
Engineering·Reverse Engineering

1 Introduction

Since the introduction of the UML profile mechanism, numerous profiles have been
developed [38], many of which are available by the OMG standardization body [36].
Even in industry, the practical value of profiles has been recognized as today’s modeling
tools offer already predefined stereotypes covered by such profiles. They are considered
as a major ingredient for current model-based software engineering approaches [6] by
providing features supplementary to the UML standard metamodel. This powerful capa-
bility of profiles can also be exploited in terms of an annotation mechanism [42], where
defined stereotypes show similar capabilities as annotations in Java. Hence, deriving
stereotypes from established programming libraries to produce corresponding profiles
at the modeling level is desirable. For instance, IBM’s Rational Software Architect pro-
vides profiles for certain Java libraries. By applying such profiles, high-level platform-
independent models (PIMs) are refined into models specific to a platform (PSMs),
where the platform refers to the library from which the profile was derived. Turning
this forward-engineering (FE) perspective into a reverse-engineering (RE) one, existing
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programs can be represented as UML models that capture annotations by applying the
corresponding profiles. Therefore, platform-specific profiles and their application are
beneficial from both perspectives. In a reverse-engineering step, model analyzers can
exploit captured stereotypes to facilitate comprehension [10], whereas profiled UML
models, i.e., models to which profiles are applied, pave the way for model transformers
to generate richer program code in a forward-engineering step [42].

Problem. However, to date, an effective conceptual mapping between UML and Java
as a basis for an automated process to generate profiles from libraries that use annota-
tions is still missing. As a result, profiles need to be manually developed, which is only
achievable by a huge effort when considering the large number of possible annotations
in Java. In the ARTIST project [4], we are confronted with this problem, as we work
towards a model-based engineering approach for modernizing applications by novel
cloud offerings, which involves representing PSMs that refer to the platform of exist-
ing applications, e.g., the Java Persistence API (JPA), when considering persistence,
and the platform of “cloudified” applications, e.g., the Objectify library3, when con-
sidering cloud datastores. For instance, JPA annotations at the modeling level facilitate
distinguishing between plain association and composition relationships and precisely
deciding on multiplicities, which is in general not easily to grasp [7]. UML models pro-
filed by Objectify annotations enable generating method bodies even from a structural
viewpoint. These examples highlight the practical value of platform-specific reverse-
engineering and forward-engineering tools, which are developed in the ARTIST project.

Contribution. In this paper, we present a fully automatic transformation chain for
generating UML profiles from Java libraries that use annotations. For that reason, we
propose an effective conceptual mapping between the two technical spaces [25, 30].
Thereby, we continue the long tradition of investigating mappings between Java and
UML [15,23,28,33]. Though, in this work, we also consider Java annotations and UML
profiles in the mapping process. This necessitates overcoming existing heterogeneities
that, e.g., refer to the target specification of Java annotations and other peculiarities of
how Java annotation types are declared. To operationalize the conceptual mapping, we
employ model transformation techniques [12] as a basis for our approach JUMP, which
allows developers to “jump” from annotation-based Java libraries to UML profiles. We
collect all the automatically generated profiles and make them publicly available in
terms what we call the UML-Profile-Store [43], thereby complementing OMG’s collec-
tion of standardized profiles with supplementary profiles for the Java platform.

Structure. In Section 2, we motivate the practical value of platform-specific profiles
by a typical JUMP use-case and we give the background for UML Profiles and Java An-
notations in terms of metamodels. We present JUMP in Section 3 by providing insights
into our proposed conceptual mapping and elaborating effective solutions to overcome
existing heterogeneities of the two languages. In Section 4, we discuss our prototyp-
ical implementation based on the Eclipse ecosystem, while in Section 5, we evaluate
JUMP. In particular, we (i) compare our methodology how to represent annotations
and annotation types in UML with methodologies used in current modeling tools and
(ii) evaluate the quality of automatically generated profiles compared to profiles used
in practice. Finally, in Section 6, we discuss related work and conclude in Section 7.

3 https://code.google.com/p/objectify-appengine



2 Motivation and Background

To motivate the practical value of platform-specific profiles, we introduce a typical
JUMP use-case. Then, we discuss the concepts of Java’s annotation mechanism and
briefly introduce UML’s profile mechanism to establish the basis for our approach.

2.1 Application of Platform-Specific UML Profiles

A typical JUMP use-case is directed to scenarios in the context of reverse-engineering
(RE) and forward-engineering (FE). They are of particular relevance for migration
projects, which aim at reinterpreting existing reengineering processes [26] in the light
of advanced model-based engineering approaches [17]. In this respect, UML profiles
play an important role as they enable models annotated with platform-specific infor-
mation [39]. To demonstrate a concrete use-case, we selected the JPA and Objectify
profile from the area of data modeling. The idea is to replace the former profile by the
latter one, thereby realizing a change of the data access platform as typically required
by “moving-to-the-cloud” scenarios. Figure 1 depicts an excerpt of the PSMs of a typ-
ical eCommerce web application, where the platform refers to the selected profiles.
From the JPA-based PSM, a sliced PIM is generated that sets the focus solely on the
domain classes, i.e., annotated with JPA stereotypes, which are intended to be modi-
fied. Even better, this generated PIM interprets JPA stereotypes in terms of native UML
concepts. As a result, the accuracy of the PIM is improved because it explicitly cap-
tures identifiers, compositions, and more precise multiplicities. These improvements of
the PIM demonstrate the practical value of considering platform-specific information
in the context of a model-based RE scenario. Furthermore, they leverage the refinement
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of the PIM towards an Objectify-based PSM without the need to identify mappings be-
tween the pertinent platforms. From the produced Objectify-based PSM, program code
can be generated by also interpreting applied stereotypes in the context of a FE sce-
nario. For instance, method bodies for CRUD operations can be generated for domain
classes as they are indicated by the respective stereotypes and generated code elements
can be automatically annotated. Clearly, JUMP acts as an enabler for both RE and FE
scenarios by providing the required platform-specific profiles.

2.2 Mechanisms for Annotations in Java and Profiles in UML

Before annotations can be applied on code elements, they need to be declared in terms
of annotation types. A rough overview of the main concepts behind annotations in Java
is given in the metamodel depicted in Figure 2a. We extracted this metamodel from the
JLS7 [37]. AnnotationTypes declare the possible annotations for code elements
and may have, similar to Java interface declarations, optional modifiers. They are
identified by a name. AnnotationTypes may themselves be subject for annota-
tions. Most importantly for the context of this work is the target annotation that is
represented in the metamodel as an attribute for simplicity reasons. It indicates the
code elements that are valid bases for an application of an AnnotationType. The
body of an annotation type declaration consists of zero or more AnnotationType-
Elements for holding information of AnnotationType applications. They are de-
clared in terms of method signatures with optional modifiers, a mandatory type
and name, and an optional default value that is returned if no custom value is set.

With the introduction of UML 2, the profile mechanism has been significantly im-
proved compared to the beginnings of UML [18]. In particular, a profile modeling
language has been incorporated in the UML language family to precisely define how
profiles are applied on UML models. Figure 2b depicts the core elements of UML’s
Profiles package and relates them to the Classes package of UML. As the Ste-
reotype metaclass specializes the Class metaclass, it inherits modeling capabil-
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ities such as properties. Defined stereotypes reference the metaclasses that are ex-
tended by the Extension relationships. The ExtensionEnd realizes the reference
from the extended metaclass back to the Stereotype. Similar to Annotation-
Types, Stereotypes are identified by a name property, and modified by an op-
tional visibility and the mandatory isAbstract property.

To demonstrate the relationship between annotations and stereotypes, we set the
focus on the Order class of the JPA-based PSM in Figure 1. Listing 1.1 shows the
application of the Entity annotation type to the Order class whereas Listing 1.2
depicts the respective declaration at the programming level.

Listing 1.1: Application of Entity
package . . . ;
import javax .persistence .Entity ;

@Ent i ty (name = "Order" )
p u b l i c c l a s s Order {

. . .
}

Listing 1.2: Declaration of Entity
package javax .persistence ;
import java .lang .annotation .∗ ;

@Target (ElementType .TYPE )
p u b l i c @inter face Entity {
String name ( ) d e f a u l t "" ;

}

The corresponding UML-based representation is presented in Figure 3, which demon-
strates the stereotype application to the Order class and the Entity declaration by
a Stereotype. Similarly, at the package-level, the UML profile, which covers the
Entity stereotype needs to be applied to the Order’s package as a prerequisite for
the stereotype application. To ensure that the Entity stereotype provides at least sim-
ilar capabilities as the corresponding annotation type, the extension relationship ref-
erences the UML metaclass Type. Furthermore, the stereotype comprises a property
corresponding to the annotation type element name of the Entity.
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3 UML Profile Generation from Annotation-based Java Libraries

We start our investigation for generating UML profiles from annotation-based Java li-
braries by presenting the process of JUMP, as shown in Figure 4. The entry-point to
JUMP is Java Code that is translated into a corresponding Code Model, which is con-
sidered as a one-to-one representation of Java Code, i.e., the transition from a text-based
to a model-based representation expressed in terms of MOF [35]/EMF [14]. The Code
Model is the basis for generating a UML Profile, which facilitates to capture Java anno-
tation type declarations in terms of UML stereotypes (cf. middle of Figure 4). In turn,
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they serve as foundation to apply profiles as an annotation mechanism [42]. In case of
reverse-engineering Java Code (cf. left hand side of Figure 4), the Profiled UML Model
results from applying profiles to the generated UML Model, where the Code Model
covers the annotated elements that indicate to which elements of the UML Model the
corresponding stereotypes are applied. Similarly, in case of forward-engineering Java
Code (cf. right hand side of Figure 4), profiles are applied to the UML Model even
though, in this case, the Profiled UML Model serves as input for generating the Code
Model from which Java Code is extracted. Bridging the two technical spaces [25] we
are confronted with, i.e., GrammarWare (GW) [27] and ModelWare (MW) [30], is re-
quired for the two scenarios as well as JUMP.

3.1 Bridging Technical Spaces

Transforming plain Java code into a UML-based representation requires overcoming the
different encoding and resolving language heterogeneities. Concerning the first aspect,
the Java code needs to be encoded according to the format imposed by the modeling
environment [5]. Concerning the second aspect, a bridge between Java and UML based
on translations requires a conceptual mapping between the two languages. Instead of
directly translating plain Java code into a UML-based representation, the use of a two-
step approach is preferable [24], which is also applied by JUMP. In a first step, Java
Code is translated into a Code Model that uses Java terminology and structures con-
forming to the Java metamodel provided by MoDisco [9]. This Code Model is the basis
for generating UML profiles and input for the second step that is dedicated to resolving
language heterogeneities by relying on the correspondences between the Java and UML
metamodels.

3.2 Generating UML Profiles

To facilitate the generation of UML profiles, we present a conceptual mapping between
Java’s annotation concept and the concept of profiles in UML. Thereby, stereotypes play



a vital role for representing annotation types at the modeling level as they enable their
application in a controlled UML standard-compliant way. From a language engineer-
ing perspective, stereotypes only extend the required UML metaclasses and facilitate
defining constraints and model operations, such as model analysis or transformations,
because they can directly be used in terms of explicit types similar to a metaclass in
UML. Our proposed mapping is generic in the sense that any declared annotation type
can be represented by a stereotype.

Java Concept UML Concept
AnnotationType a add Stereotype s
   a.name   s.name = a.name
   a.annotationTypeElement   add Property p for each AnnotationTypeElement in a.annotationTypeElement
  switch(a.modifier)
    case : public   s.visibility = public
    case : abstract   s.isAbstract = false
    case : annotation an and 
              not an.type = Target

  apply Stereotype for an.type to s

    case : annotation an and
              an.type = Target

  add Property p for each ElementType in a.target
    p.name = "base_".concat(p.type) 
  add Extension e for each ElementType in a.target
    e.metaClass = p.type
    add ExtensionEnd f
      f.type = s

    switch(a.target)
        case : AnnotationType     p.type = Stereotype
        case : Constructor     p.type = Operation

    add Constraint {self.base_Operation.oclIsDefined() implies
      self.base_Operation.name =
      self.base_Operation.oclContainer().oclAsType(uml::Classifier).name}

        case : Field     p.type = {EnumerationLiteral, Property}
        case : LocaleVariable     p.type = Property
        case : Method     p.type = {Operation, Property}

    add Constraint {self.base_Property.oclIsDefined() implies
      self.base_Property.oclContainer().oclIsTypeOf(uml::Stereotype)}

        case : Package     p.type = Package
        case : Parameter     p.type = Parameter
        case : Type     p.type = Type

    add Constraint {self.base_Type.oclIsDefined() implies
      Set{uml::Stereotype,uml::Class,uml::Enumeration,uml::Interface} ->
      includes(self.base_Type.oclType())}

        case : none   -- no Property p needed 
        case : all     p.type =  {Class, Enumeration, Interface, Operation, Package,

                        Parameter, Property, Stereotype}

AnnotationElementType a add Property p
  a.name   p.name = a.name
  a.default   p.default = a.default
  switch(a.modifier)
    case : public   p.visibility = public
    case : abstract   -- no corresponding feature
    case : annotation an   apply Stereotype for an.type to p
 switch(a.type)
   case : PrimitiveType   p.type = uml::PrimitiveType for a.type
   case : Class   p.type = uml::Class 
   case : Class<T>   p.type = uml::Class 

  apply javaProfile::JGenericType Stereotype to p
   case : EnumType   p.type = uml::Enumeration
   case : AnnotationType   p.type = uml::Stereotype
   case : ArrayType   -- infer lower and upper bound multiplicities

Table 1: Mappings between Java Annotations and UML Profiles



AnnotationType→ Stereotype. The mapping presented in the upper part of Table 1
serves as a basis to generate a Stereotype from an AnnotationType. Thereby,
not only its signature needs to be considered but also Java’s Target meta-annotation.
It determines the set of code elements an annotation type is applicable to. The name
and, with two exceptions, the defined modifiers of an AnnotationType can
straightforwardly be mapped to UML. First, the abstract modifier would lead to
Stereotypes that cannot be instantiated if directly mapped. The problem is caused
by Java’s language definition. Although the abstract modifier is supported to facil-
itate one common type declaration production rule, it does not restrict the application
of AnnotationTypes. To ensure the same behavior on the UML level, we never
declare a Stereotype to be abstract. Second, because annotations are considered as
modifiers, it needs to be ensured that the Target annotation is properly treated. In fact,
the defined set of Java ElementTypes determines the required set of Extensions
to UML meta-classes that specify the application context of the stereotypes.

Generally, most Java ElementTypes correspond well to one or more UML meta-
classes. Still, constraints are required for some ElementTypes to precisely restrict
the application scope of the generated Stereotype according to their intention. UML
does not explicitly support a constructor meta-class. The workaround is to map the
Constructor to Operation and introduce a constraint that emulates the naming
convention for constructors in Java. Note that annotation types can have several target
types. Thus, before validating the OCL constraint, we have to check which target is ac-
tually used in the application. Similarly, the mapping of Java methods to UML requires
a constraint as a declared method of an AnnotationType, i.e., Annotation-
TypeElement, is mapped to a Property rather than an Operation in UML.
This is because such methods do not provide a custom realization but merely return
their assigned value when they get called. Properties in UML provide exactly this
behavior. Hence, the constraint ensures that stereotypes generated from annotation types
that target Java methods are applicable also to Property if they are contained by a
Stereotype. Finally, we use a constraint to overcome the heterogeneity of Java’s and
UML’s scope of Type. Consequently, stereotypes that extend Type are constrained
to those elements that correspond to the set of elements generalized by Java’s Type:
AnnotationType, Class, Enumeration and Interface. The clear benefit of
this approach is a smaller number of generated extension relationships between stereo-
types and meta-classes in the profile.

AnnotationTypeElement→ Property. AnnotationTypeElements are mapped
to Properties as depicted in the lower part of Table 1. Except for the fact that UML
properties cannot be defined as abstract, AnnotationTypeElements straightfor-
wardly correspond to Properties. As AnnotationTypes in Java cannot explic-
itly inherit from super-annotations, the abstract modifier is rarely used in practice.
To fully support all return types of AnnotationTypeElements, we introduce a
Stereotype to properly address the fact that java.lang.Class provides generic
capabilities, which is not the case for UML’s meta-class Class. Hence, we apply our
custom JGenericType stereotype to properties with return type Class<T>.



4 Implementation and Collected Profiles

To show the feasibility of JUMP, we implemented a prototype based on the Eclipse
ecosystem. We developed three transformation chains— JavaCode2UMLProfile, Java-
Code2ProfiledUML, and ProfiledUML2JavaCode—to realize JUMP and the RE and FE
scenarios introduced in Figure 1. For injecting Java Code, we employed MoDisco [9].
Hence, JUMP can be considered as a model discoverer to extract UML profiles from
Java libraries. To realize the FE scenario, we extended the Java-based transformer pro-
vided by Obeo Network4. The prototype and the collection of profiles that we have
generated for the evaluation of JUMP is available at the UML-Profile-Store [43]. It cov-
ers 20 profiles, comprising in total over 700 stereotypes. To share these profiles with
existing community portals, we submitted them also to ReMoDD [16].

5 Evaluation

The evaluation of JUMP is twofold. First, we compare it with existing modeling tools
regarding their representational capabilities for dealing with the declaration and appli-
cation of Java annotation types. Second, we compare UML profiles automatically gen-
erated by JUMP with UML profiles delivered by IBM’s Rational Software Architect.
Thereby, our focus is on estimating the quality of the generated UML profiles.

5.1 Methodological Evaluation

As several commercial and open-source modeling tools provide modeling capabilities
for UML and the Java platform, the aim of this study is to investigate on their methods
for dealing with the application and declaration of annotations. For that reason, we set
the focus on a Java-based reverse-engineering example that includes annotations and
their declarations. We aim to answer the following research question (RQ1).

RQ1: What are the methods of current modeling tools to represent Java annotation
types and their applications in UML and what are the practical implications?

To answer RQ1, we define a set of comparison criteria that mainly address (i) how
the conceptual mapping between Java and UML for annotations is achieved by cur-
rent modeling tools and (ii) the generative capabilities of these tools regarding profiles.
Based on the defined criteria, we evaluate six representative modeling tools and JUMP.

Comparison Criteria. As there are different approaches on how annotation types
and their applications are represented at the modeling level, the first and the second
comparison criteria (CC1 and CC2) refer exactly to these extensional capabilities. The
third criterion (CC3) refers to the support of generative capabilities regarding profiles.

−CC1 : How are Java annotations applied to UML models?
−CC2 : How are Java annotation type declarations represented in UML?
−CC3 : Is the generation of UML profiles from Java code supported?

Selected Tools. We selected six major industrial modeling tools that claim to sup-
port reverse engineering capabilities for Java and UML, as summarized in Table 2.

Evaluation Procedure. We defined a simple reference application [43] that declares
4 http://marketplace.eclipse.org/content/uml-java-generator



a Java class to which we applied an annotation type from an external library. For the
purpose of importing the application, we activated the offered functionality of the mod-
eling tools required for a reverse-engineering scenario from Java to UML. While some
of the modeling tools are delivered with standard configurations, other modeling tools
allow configurations to change the reverse-engineering capabilities by using specific
wizards. Moreover, some modeling tools go one step further and allow modifications
on the transformation scripts used for the import of Java code. We evaluated the capa-
bilities of the modeling tools offered in the standard settings and explored the different
wizard configurations if supported, but we restrained from modifying transformation
scripts.

Results. The results of our comparison are summarized in Table 2. Regarding the
mapping between Java annotations and UML, we identified that the investigated mod-
eling tools apply one of three significantly different approaches: (i) annotations are
considered as a built-in feature of the modeling tool, (ii) a generic profile for Java is
provided, which enables capturing annotations and their type declarations, and (iii)
profiles are offered, which are specific to a Java library or even an application with cus-
tom annotation type declarations. Modeling tools with built-in support for annotations
allow their application to arbitrary elements and so to UML elements. Clearly, such
an approach facilitates to capture Java annotations, though the type declaration of the
annotation in terms of a UML element and its application are not connected. The gener-
icity of this approach, which goes beyond UML models, is clearly one reason for such
a behavior. Providing a generic profile for Java means that the modeling tool emulates
the representational capabilities of Java, which includes annotations. Although with this
approach, the connection of annotation type declarations and their applications can be
ensured, the native support of UML for annotating elements with stereotypes is still ne-
glected. However, explicitly defined stereotypes for declared annotation types facilitate
their reuse in a UML standard-compliant way and allow model operations to directly
exploit them. With specific profiles for Java annotation types, these drawbacks can be
overcome. While all evaluated modeling tools provide support for generating profiled
UML class diagrams, none of them is capable of generating profiles from Java code.

Name Version Availability
Visual Paradigm
www.visual‐paradigm.com 10.2

commercial
free community edition Built‐in Tool Feature Class ‐

Rational Software Architect
www.ibm.com/developerworks/rational/products/rsa

8.5.1
commerical
free for academice use

Specific Profiles Stereotype ‐

Magic Draw
www.nomagic.com 17.0.4

commerical
free trial version Generic Java Profile Interface ‐

Enterprise Architect
www.sparxsystems.com 9.3

commerical
free for academice use Built‐in Tool Feature Interface ‐

Altova UML
www.altova.com/umodel.html 2013

commerical
free for academice use Generic Java Profile Interface ‐

ArgoUML
argouml.tigris.org 0.34 open‐source Generic Java Profile Interface ‐

JUMP 1.0.0 open‐source Specific Profiles Stereotype +

UML Profile
Generation

Mapping (Java ‐> UML)
Modeling Tool Annotation

Application
Annotation
Declaration

Table 2: Comparison Results



5.2 Quality Evaluation

As UML profiles are already offered by current modeling tools, the aim of this study
is to investigate their quality in comparison with profiles automatically generated by
JUMP. For that reason, we conducted a positivist case study [32] based on real-world
Java libraries to evaluate the commonalities and differences between generated profiles
and profiles used in practice by following the guidelines of Roneson and Hörst [41]. In
this study, we aim to answer the following research question (RQ2).

RQ2: How is the quality of UML profiles automatically generated from annotation-
based Java libraries compared to UML profiles used in practice?

To answer RQ2, we define the requirements of the case study, briefly mention the
used Java libraries, and specify the measures based on which the comparison is con-
ducted. Then, we discuss the results of our study not only from a syntactic perspec-
tive, but also from a semantic one. The rationale behind this two-step approach is that
even though a syntactical matching process for comparing the profiles provides already
valuable results, some interesting correspondences may still be uncovered because of
potential syntactical and structural heterogeneities [46] between the compared profiles
and the conservative matching strategy applied for the syntactical comparison.

Case-Study Design. To conduct this study, the source code of Java libraries that
exploit annotations is required. Furthermore, we require existing profiles that claim to
support the selected Java libraries at the modeling level. To accomplish an appropriate
coverage of different scenarios, the selected Java libraries ideally comprise different
intrinsic properties with respect to the design complexity and exploited language ele-
ments. Unfortunately, profiles specific to Java libraries in reasonable quality are rarely
available. Consequently, in the process of selecting the Java libraries for this study,
we were also confronted with the actual offering of modeling tools. IBM’s Rational
Software Architect (RSA) is obviously close to JUMP and offers several profiles of
well-known Java libraries mainly for code generation purposes. Thus, we conducted
this study by relying on profiles of RSA in version 8.5.1. We selected four established
Java libraries for which the source code is available and a corresponding RSA profile
in the same major version is offered: Java Persistence API (JPA), Enterprise Java Beans
(EJB), Struts and Hibernate. RSA offers them in a UML standard-compliant way. Con-
sequently, we could directly compare them without an intermediate conversion step.
All the case-study data including the Java libraries and the profiles are available at our
project web site [43].

Case-Study Measures. The measures used in the case study are based on model
comparison techniques [29]. Thus, we are interested in equivalent elements that reside
in our generated profiles and in the RSA profiles, elements that reside in both solutions
but still show differences in their features, and elements that are only available in one
of the compared solutions. The measures for estimating the quality of the generated
profiles are collected in a two-step matching process. While the first step automatically
collects measures based on syntactic model comparison, the second step relies on man-
ually processing differences produced in the first step to deal with semantic aspects.

In the syntactic model comparison, we compute the following measures for cer-
tain model elements. To determine element correspondences, we employ as match-
ing heuristic name equivalence, i.e., only if two elements have completely the same



name, they are considered to be corresponding. If an element has no name, such as the
Extension relationship, it is considered that the elements are corresponding if their
source and target elements correspond. Finally, fine grained comparison of the feature
values for the given elements is performed. Regarding model elements, we set the focus
on (i) Stereotypes that are common to both and unique either to JUMP or RSA,
(ii) differences regarding the Extensions of common Stereotypes, and (iii)
differences regarding the Properties such Stereotypes cover.

In the semantic model comparison, we take the syntactical differences as input and
aim at finding additional correspondences between elements which are hardly explored
by a pure syntactic comparison due to the conservative matching strategy. We investi-
gate unmatched elements, especially stereotypes, in our generated profiles and in the
RSA profiles, and reason about possible element correspondences beyond String equiv-
alences. Finally, in the semantic processing, we further evaluate the correspondences
found in the first phase due to the potential syntactical and structural heterogeneities.

Results. We now present the results of applying JUMP to the four selected Java
libraries and compare them to the profiles offered by RSA. The full results are also
available at our project web site [43]. The absolute number of generated stereotypes
by JUMP and the provided ones by RSA are depicted in Figure 5a. Figure 5b summa-
rizes (i) the number of stereotypes generated by JUMP but not covered by the RSA
profiles, (ii) the number of stereotypes that are exclusively covered by the RSA pro-
files, and (iii) the number of stereotypes that are common to both. These results in-
clude correspondences between stereotypes detected throughout the syntactic and se-
mantic comparison. For instance, the EJB profile of RSA covers stereotypes that refer
to the @Local and @Remote annotations of the EJB library, though their signature
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additionally contains the substring “Interface”. Another example refers to the class
QueryHint in the JPA profile of RSA, which is in fact an annotation type in the JPA
library. In our solution, the QueryHint is represented by a stereotype even though it is
also valid to use a class instead, because the QueryHint can not actually be applied,
but can rather only be used inside of another annotation. Although some stereotypes
in the set of common ones show differences regarding the meta-classes they extend,
we granted them to be equal if the extended meta-classes are related by a generalization
relationship. We encountered this case in the EJB and the JPA library with respect to ex-
tensions of the meta-classes Type and Class. Stereotypes generated by JUMP extend
the more general meta-class Type because the scope of Java’s element type Type also
covers Enumeration, Interface and AnnotationType in addition to Class.

The comparison regarding extensions of stereotypes common to both JUMP and
RSA is summarized in Figure 5c. In a few cases, the RSA profiles comprise extensions
to the UML meta-class Association to allow stereotypes on associations between
elements rather than on properties contained by associations. Although both modeling
variants are valid, we adhere to the second one as it is more accurate w.r.t. the target
specifications of the original annotation type declarations.

Finally, in Figure 5d, the differences regarding the properties of common stereo-
types are presented. Except for the JPA profile, we cover all stereotype properties of the
RSA profiles. Consequently, our profiles are more complete. The main reason for miss-
ing properties in our JPA profile seems to be that RSA provides additional properties
for code generation purposes, but these properties are not covered by the JPA library.

Discussion. In this study, we have demonstrated that automatically generated UML
profiles from Java libraries comprise a more comprehensive set of stereotypes and fea-
tures compared to profiles used in practice for the purpose of supporting such libraries.
Clearly, the purpose of the developed profiles plays an important role. From a forward-
engineering perspective, one may argue that the set of stereotypes, which is actually
supported by the accompanying code generators is reasonable to capture at the mod-
eling level. In fact, RSA offers code generation capabilities specific to the profiles we
have evaluated in this study. However, for unsupported annotations, which have no cor-
responding stereotypes, code generators may only produce program code by conven-
tions without allowing developers to intervene in this generation process at the model-
ing level. From a reverse-engineering perspective, we would lose relevant information at
the modeling level if offered profiles provide less capabilities compared to the program-
ming level, which is, however, the case for RSA profiles. Hence, with a fully automated
approach, the quality of current profiles can be improved by providing more complete
stereotypes that precisely capture the intention of the original annotation types in terms
of target definitions, member declarations and return values of such members.

Threats to Validity. There are two main threats that may jeopardize the internal va-
lidity of this study. First, we consider only profiles from RSA. The main reason for this
procedure is that RSA applies a similar approach as JUMP and offers specific UML
profiles for Java libraries. Furthermore, RSA offers standard-compliant UML profiles
that conform to the same UML 2 metamodel implementation as used in JUMP. Second,
it may be possible that we missed correspondences between elements of the profiles in-
volved in the study. Several kinds of heterogeneities [46] exist that are real challenges



for model matching algorithms and, thus, may affect the results of our study. However,
by applying a two-step matching process which includes a syntactic as well as semantic
comparison phase, we tried to minimize the possibility of missing correspondences as a
result of different naming conventions and modeling styles. While in the first phase we
used a quite conservative matching strategy to avoid false positives, we applied a rather
liberal strategy in the second phase to avoid losing potential correspondences.

Concerning external validity, JUMP sets the focus on Java annotations. Many li-
braries embrace them and real-world cases provide validity for annotated Java code [39].
However, we cannot claim any results outside of Java.

6 Related Work

We investigated three lines of research: (i) mappings between Java and UML, (ii) gen-
eration of UML profiles and (iii) metamodel generation from programming libraries.

Mapping Java and UML. The elaboration on the mapping between Java and UML
has a long tradition in software engineering research [15, 23, 28, 33]. Round-trip engi-
neering for UML and Java has been extensively studied in the context of the develop-
ment of FUJABA [33]. One particular concept of UML that received much attention in
the context of Java code generation is the association concept [2,20,21]. However, none
of these mentioned approaches consider the transformation of annotation types and their
applications from Java to UML. The only exception is the mTurnpike approach [44] that
considers Java annotations at the modeling level. Thereby, round-trip transformations
between UML models and Java code are realized by considering stereotypes and an-
notations in the transformations. In contrast, JUMP sets the focus on the automated
generation of UML profiles that facilitate round-trip transformations or transformations
in general. Besides academic efforts, today’s modeling tools support the transformation
of Java code to UML models, and vice versa. Their current capabilities and limitations
w.r.t. JUMP are discussed in Section 5.1.

Generating UML Profiles. The only area we are aware of approaches that deal with
the automated generation of profiles, is concerned with bridging the gap between MOF-
based metamodels and UML’s profile mechanism, which is also related to the discussion
of an external DSMLs vs. internal DSMLs in UML. Several papers discuss the pros and
cons of these approaches(e.g., [42]) and their combination (e.g., [45]). The visualiza-
tion of domain-specific models in UML with profiles is discussed in [22]. Abouzahra
et al. [1] present an approach for interoperability of UML models and DSML models
based on mappings between the DSML metamodel and the UML profile. Brucker and
Doser [8] go one step further and propose an approach for extending a DSML meta-
model for deriving model transformations able to transform DSML models into UML
models that are automatically annotated with stereotypes. A related approach is pre-
sented in [47], where mappings between the UML metamodel and a DSML metamodel
are defined and processed to generate UML profiles for the given DSMLs.

Generating Metamodels. To the best of our knowledge, there is only one auto-
mated approach for generating modeling languages from programming libraries—all
other automated approaches that deal with exploring libraries, such as [9], set their fo-
cus on the generation of domain models rather than a language. API2MoL [11] deals



with generating metamodels based on Ecore [14] from Java APIs as well as models con-
forming to the generated metamodels for Java objects instantiated from the Java APIs,
and vice versa. As a result, an external Domain-Specific Modeling Language (DSML)
is generated from a Java API. While the general idea and motivation of the API2MoL
approach is comparable to JUMP, there is a significant difference on how the DSML is
realized. JUMP targets UML modelers that are familiar with UML class diagrams and
generates internal DSMLs by exploiting the language-inherent extension mechanism
of UML, i.e., UML Profiles. Furthermore, annotations are not explicitly considered in
the metamodel generation process of API2MoL. One possible reason for neglecting
them is that standard versions of current meta-modeling languages, such as Ecore, do
not support language-inherent extension mechanisms out-of-the-box [31]. Antkiewicz
et al. [3] present a methodology for creating framework-specific modeling languages.
While we aim for an automated approach, Antkiewicz et al. use a manual one to create
the metamodel and the transformations between model instances and instantiated ob-
jects of the frameworks. Again, annotations are not captured by the created languages.
When considering the term modeling language in a broader scope, research of related
fields consider ontologies as a kind of (meta-)model [19]. In particular, research on
ontology extraction from different artifacts is commonly subsumed under the term on-
tology learning [13]. We are aware of only one approach for extracting ontologies from
APIs [40], which neglects, however, also annotations.

To summarize, JUMP is—to the best of our knowledge—the first approach to gen-
erate standard-compliant UML profiles from Java libraries that exploit annotations.

7 Conclusion

With JUMP, we proposed an approach to close the gap between programming and mod-
eling concerning annotation mechanisms. Thereby, we set the focus on the “Java2UML”
case and demonstrated the feasibility of JUMP by generating high-quality UML pro-
files for numerous Java libraries and applied them in practical reverse-engineering and
forward-engineering scenarios. The results gained by our evaluation seem promising.
Still, a number of future challenges remain to further integrate programming and model-
ing. Some interesting differences between Java annotations and UML profiles remain to
be explored. On the UML side, inheritance between stereotypes is possible, a concept
that is not supported by Java for annotation types. Thus, the design quality of auto-
matically generated UML profiles can be enhanced by exploiting inheritance. On the
Java side, retention policies determine at which stages annotations are accessible. UML
stereotypes are considered only at design-time. Therefore, an interesting line of future
work is to support stereotype applications also during run-time, which becomes espe-
cially interesting for executable models, a research area that is currently experiencing
its renaissance by the emergence of the FUML standard [34]. Furthermore, we plan to
study the support of annotations in other programming languages, e.g., by investigating
attributes in C# and decorators in Python, and how these concepts corresponds to UML
profiles. Finally, as we set the focus in this work to platform-specific profiles, we plan to
extend this scope to profiles that capture annotations independent of platforms, thereby
shifting their application to a more conceptual level.
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