

29 - 31 May 2014 · Hamburg · Germany

BUNSENTAGUNG 2014

113th General Assembly of the German Bunsen Society for Physical Chemistry

Featuring an industrial symposium with accompanying exhibition and Karriereforum

BOOK OF ABSTRACTS

Physical Chemistry on the Nanometer Scale

www.bunsentagung.de

ToF-SIMS investigations of oxygen tracer diffusion in Fe-doped SrTiO₃ and Sr-doped LaFeO₃ thin layers

Katharina Langer-Hansei¹, Stefanie Huber¹, Sandra Kogler², Herbert Hutter¹ and Jürgen Fleig¹

¹ Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria

Email: katharina.langer-hansel@tuwien.ac.at

Fe-doped SrTiO₃ and Sr-doped LaFeO₃ are mixed ionic and electronic conducting perovskite oxides. SrTiO₃ serve as a model material for large band gap mixed conductors with well understood bulk defect chemistry while properties of thin layers are still under strong investigation [1]. The second material, LaFeO₃, is a promising electrode material for solid oxide fuel cells (SOFC) in both oxidizing and reducing atmosphere [2], [3].

Accordingly, the transport and reactions kinetics of both materials are of high interest.

For this purpose thermally driven ¹⁸O₂ isotope exchange experiments and subsequent Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) analysis were performed. The diffusion profiles provide information on the tracer diffusion coefficient D* and the surface exchange coefficient k*.

In the case of Fe-doped SrTiO₃ interfacial space charge layers, which are characterized by depletion of the oxygen vacancies concentration and a spatially varying tracer diffusion coefficient, could be identified. For Sr-doped LaFeO₃, a novel approach allowed comparison of k* and D* values under reducing and oxidizing conditions. This shows that the surface exchange reaction under oxidizing and reducing conditions is similarly fast but the diffusion coefficients differ drastically.

- R. Merkie, J. Maier, Angew. Chemie, 2008, 120, 3936-3958
- [2] M. Kuhn, et.al., Solid State Ion., 2011, 195, 7-15
- [3] W. Wang, et.al., J. Electrochem. Soc., 2006, 153, 11, A2066-A2070