

29 - 31 May 2014 · Hamburg · Germany

BUNSENTAGUNG 2014

113th General Assembly of the German Bunsen Society for Physical Chemistry

Featuring an industrial symposium with accompanying exhibition and Karriereforum

BOOK OF ABSTRACTS

Physical Chemistry on the Nanometer Scale

www.bunsentagung.de

Charge transport properties of Fe-doped SrTiO₃ thin films upon DC voltage

Stefanie Huber², Günter Fafilek¹ and Jürgen Fleig¹

¹Institute of Chemical Technologies and Analytics, Vienna University of Technology

Getreidemarkt 9, 1060, Vienna

Email: stefanie.huber@tuwien.ac.at

Keywords: SrTiO3, thin films, impedance spectroscopy, DC blas

SrTiO₃ thin films are known to exhibit charge transport properties that differ from those of bulk material [1]. Moreover, they show pronounced resistance changes upon bias voltage [2]. Both phenomena are still only partly understood and are most probably caused by a non-trivial interplay of mixed conduction and interfaces in SrTiO₃ thin films. The scope of this study was to get a clearer picture of the processes caused by migrating charge carriers in thin layers under DC voltage.

The investigated thin Fe-doped SrTiO₃ films were deposited on Nb-doped SrTiO₃ by pulsed laser deposition. In order to permit an electrochemical characterization, microstructured La_{0.6}Sr_{0.6}CoO_{3.5} (LSC) top electrodes were used. Impedance measurements were performed in a temperature range from 350°C to 700°C with an applied bias up to a few 100mV.

Measurements without applied bias revealed a strong decrease in the conductivity of the SrTiO₃ layers compared to data for bulk samples. Under applied bias the conductivity further changed with a strong dependence on polarity (cf. Hebb-Wagner polarization). Moreover an additional, partly inductive impedance contribution could be observed at low frequencies. Corresponding current-voltage measurements showed a strong dependence of the curves on the measuring rate. Correlation of both measurement modes allows a detailed analysis of defect chemical changes and transport properties of polarized SrTiO₃ thin films.

[1] C. Ohly et.al., J.Europ.Ceram.Soc., 2001, 21,1673-1676

[2] R. Muenstermann et.al., Adv.Mater. 2010, 22, 4819-4822.