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ABSTRACT

We use the Gaussian information bottleneck (GIB) to investigate the
optimal rate-information trade-off for signal compression in linear
Gaussian models and we provide a novel interpretation of the GIB
in terms of the eigendecomposition of the Wiener filter. We further
study mean-square-error-optimal rate-distortion compression pre-
ceded by a linear filter. Choosing this filter as square root of the
Wiener filter is shown to be rate-information optimal. Finally, we
extend our results to jointly stationary Gaussian random processes.

Index Terms— Gaussian information bottleneck, rate-distortion
theory, Wiener filtering, channel output compression

1. INTRODUCTION

Rate-distortion (RD) theory characterizes the ultimate trade-off be-
tween compression and distortion in source coding. A different ap-
proach is taken by the information bottleneck method (IBM) [1],
which replaces signal distortion as fidelity measure with the mutual
information between the compressed source and a relevance variable.
The IBM has been successfully applied to various problems in ma-
chine learning [2], computer vision [3], biomedical signal process-
ing [4], and communications [5, 6]. It is also inherently better suited
than RD quantization for channel output compression in a communi-
cation system [7].

In this paper, we study the rate-information trade-off obtained
with IBM and RD quantization for the case of jointly Gaussian vec-
tors. More specifically, we show that the Gaussian information bot-
tleneck (GIB) [8], which achieves the optimal trade-off, is closely
related to minimum mean-square error (MSE) estimation. Further-
more, we show that the optimal GIB trade-off can also be accom-
plished by linear filtering followed by MSE-optimal source coding.
Somewhat surprisingly, the optimal linear filter here is given by the
square root of the Wiener filter. This is in contrast to the result
of Sakrison [9], who showed that for noisy Gaussian source cod-
ing problems with MSE distortion the optimal filter is a Wiener fil-
ter. Our results also explain why direct MSE-optimal source coding
(i.e., without filtering) in general does not achieve the optimal rate-
information trade-off (as observed in [7]). Finally, we extend our
results to the case of jointly stationary Gaussian random processes.

The equivalence of the GIB and MSE-optimal source coding
with prefiltering is practically important because it implies that RD
coding theorems directly apply to the GIB.Furthermore, this equiv-
alence allows existing quantizer designs for MSE-optimal quantiza-
tion to be reused for rate-information-optimal quantization.

The remainder of this paper is organized as follows. Section 2 in-
troduces the problem setup considered in this work. In Section 3, we
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review the IBM and the closed-form solution for the GIB. Section 4
explores the relation between the GIB and MSE-optimal quantiza-
tion. In Section 5, we generalize our results to stationary Gaussian
processes. Conclusions are provided in Section 6.

Notation: We use boldface uppercase and lowercase letters for
matrices and vectors, respectively, and upright sans-serif letters for
random quantities. We denote expectation by E{·} and the identity
matrix by I. N (µ,C) is shorthand for a multivariate Gaussian with
mean µ and covariance C. We use [x]+ , max{0, x}, log+x ,
[log x]+, and we denote an N × N diagonal matrix with diagonal
elements ai by diag{ai}Ni=1. All logarithms are to base 2.

2. PROBLEM SETUP

We consider the linear model

y =Hx+ n, (1)

where x ∈ RN is a Gaussian random vector distributed according to
N (0,Cx) and H ∈ RM×N is a deterministic matrix. Furthermore,
n ∈ RM is independent of x with distribution N (0,Cn). Thus,
Cy = HCxH

T + Cn. Our interest in (1) is rooted in commu-
nications (where H and n represent channel and additive Gaussian
noise, respectively); however, due to [10, Theorem 4.5.5], any two
zero-mean, jointly Gaussian random vectors x and y can be repre-
sented as in (1). Thus, all results presented in this paper hold for this
general case.

Our goal is to find the optimum compression z of y, characterized
by the conditional distribution p(z|y), which has minimum compres-
sion rate while preserving as much information about x as possible.
This trade-off is characterized by the information-rate function or,
equivalently, by its inverse, the rate-information function. In the fol-
lowing, I(x; z) denotes the mutual information of x and z [11].

Definition 1 Let x− y− z be a Markov chain. The information-rate
function I : R+ →

[
0, I(x; y)

]
is defined as

I(R) , max
p(z|y)

I(x; z) subject to I(y; z) ≤ R; (2)

the rate-information function R :
[
0, I(x; y)

]
→ R+ is defined as

R(I) , min
p(z|y)

I(y; z) subject to I(x; z) ≥ I. (3)

3. OPTIMAL RATE-INFORMATION TRADE-OFF

3.1. IBM and GIB

The IBM considers the Markov chain x − y − z, where x is the rel-
evance variable, y is an observation, and z is a compressed represen-
tation of y. The joint statistics between x and y are assumed to be
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known. The method then solves the variational problem

min
p(z|y)

I(y; z)− βI(x, z) (4)

over all stochastic mappings p(z|y) of y to z. The parameter β in (4)
trades compression rate I(y; z) against relevant information I(x, z).
Initially, the IBM was considered only for discrete random variables
[1]; here, a solution to (4) can be obtained only numerically via an
iterative algorithm. In [8], a closed-form solution for the case where
the relevance variable x ∈ RN and the observation y ∈ RM are
jointly Gaussian random vectors was derived. The key observation
here is that the optimal mapping is of the form

z = Ay + ξ , (5)

where A is a deterministic matrix and ξ is an N (0, I)-distributed
random vector that is independent of x and y. This implies that the
compressed random vector z is again jointly Gaussian with x and
y. The matrix A is completely determined by the auto- and cross-
covariance matrices of x and y, denoted by Cx, Cy, and Cx,y, re-
spectively. For prescribed β,A is given by

A = diag{αi}Mi=1V
T, αi =

√
[β(1−λi)− 1]+

λivT
i Cyvi

. (6)

Here, V =
[
v1 · · ·vM

]
, and vT

i and λi ≥ 0 are the left eigenvectors
and corresponding eigenvalues of the matrix

W = Cy|xC
−1
y = I −CT

x,yC
−1
x Cx,yC

−1
y . (7)

3.2. GIB and Wiener Filter

We next provide a novel reformulation and interpretation of the GIB
for the linear model (1). Since here Cy|x = Cn, the matrix W in
(7) can be shown to equal W = Cn

(
HCxH

T + Cn

)−1
, which

is seen to be the MSE-optimal Wiener filter for estimating n from y.
Furthermore,W = I −W , where

W =HCxH
T(HCxH

T +Cn

)−1

is the Wiener filter for estimating Hx from y, i.e., it minimizes the
MSE E{‖W y−Hx‖2}. Note thatW has the same left eigenvectors
vT
i asW and its eigenvalues are given by µi = 1−λi. The fact that

the GIB matrixA in (6) involves the square root of λi and µi already
hints at the relevance of the square-root Wiener filter in this context.

We next calculate the information-rate function for (1). In order
to simplify the analytical treatment, we whiten and decorrelate the
observation y. The whitened vector ỹ = C

−1/2
n y has covariance

C ỹ = S + I with the signal-to-noise (SNR) matrix

S = C−1/2
n HCxH

TC−1/2
n . (8)

Using the eigendecomposition

S = UΓUT with Γ = diag{γi}Mi=1 ,

it follows that the elements of

y′ = UTỹ = UTC−1/2
n y (9)

are uncorrelated with covariance Cy′ = Γ + I . Note that S is
symmetric and positive semi-definite and hence U is orthonormal
and γi ≥ 0, i.e., the mode SNRs are nonnegative.

We next derive the optimum rate-information trade-off in terms
of the whitened and decorrelated vector y′. This exploits the fact that

UTC
−1/2
n is invertible and hence the whitening and decorrelation

has no effect on the mutual information, i.e., I(y; z) = I(y′; z). The
Wiener filters in the whitened domain read

W̃ = C−1/2
n WC1/2

n = (S + I)−1

= U
(
Γ + I

)−1
UT = Udiag{λi}Mi=1U

T,

and

W̃ = C−1/2
n WC1/2

n = S(S + I)−1

= UΓ (Γ + I)−1UT = Udiag{µi}Mi=1U
T,

(10)

where we used λi = 1/(γi+1) and µi = γi/(γi+1). Furthermore,
these expressions reveal that V T = UTC

−1/2
n . It follows that

V TCyV = Γ + I = diag
{
λ−1
i

}M
i=1

and hence (cf. (6))

A = diag{αi}Mi=1U
TC−1/2

n , αi =

√
[βµi − 1]+. (11)

The parameter β in the variational problem (4) thus restricts the ac-
tive modes to those with mode SNR γi > 1/(β − 1) (equivalently,
µi > 1/β). We can now formulate the following result.

Theorem 1 The optimum rate-information trade-off for (1) is char-
acterized by the parametric equations

I(β) =
1

2

M∑
i=1

log+
(
β − 1

β

(
1 + γi

))
, (12)

R(β) =
1

2

M∑
i=1

log+
(
(β − 1)γi

)
, (13)

where each choice of the parameter β ∈ (1,∞) corresponds to a
point on the rate-information and information-rate function.

Proof : Due to the joint Gaussianity of all vectors, we have [11]

I(y; z) = I(y′; z) =
1

2
log detCzC

−1
z|y′ , (14)

I(x; z) =
1

2
log detCzC

−1
z|x . (15)

The result follows by inserting into these expressions the covariance
matrices

Cz = ACyA
T + I = diag{αi}Mi=1 (Γ + I)diag{αi}Mi=1 + I,

= diag
{
α2
i (γi + 1) + 1

}M
i=1

,

Cz|y′ = I , andCz|x = ACnA
T + I = diag

{
α2
i + 1

}M
i=1

. �

4. GIB VERSUS RD-OPTIMAL COMPRESSION

4.1. Linear Filtering and RD Quantization

It has been observed in [7] that MSE-optimal RD quantization in gen-
eral does not achieve the optimal rate-information trade-off. This can
be explained by the fact that the GIB exploits the joint statistics of x
and y, whereas RD-optimal quantization uses only the statistics of y.
We demonstrate below that extracting the part of y most relevant for
x requires linear filtering prior to RD quantization. We note that [9]
showed that noisy source coding, i.e., minimizing the compression



rate subject to a constraint on the MSE between the source and the
quantizer output,

min
p(z|y)

I(y; z) subject to E{‖z− x‖2} ≤ D,

leads to MSE-optimal RD quantization of the Wiener filter output.
We next investigate MSE-optimal RD quantization preceded by

a filter in the whitened and decorrelated domain, i.e., we consider
(cf. (9))

w = F y′ ∼ N
(
0, diag

{
f2
i (1 + γi)

}M
i=1

)
(16)

where F = diag{fi}Mi=1, and we solve

min
p(z|w)

I(w; z) subject to E{‖z− w‖2} ≤ D.

While the RD trade-off for MSE-optimal source coding is well under-
stood, we next assess the associated rate-information trade-off (recall
that the relevant information equals I(x; z)).

Theorem 2 The rate-information trade-off for MSE-optimal quanti-
zation of the filtered vector w is characterized by

I(ϑ,F ) =
1

2

M∑
i=1

log+
(

1 + γi
1 + ϑ γi

f2i (1+γi)

)
, (17)

R(ϑ,F ) =
1

2

M∑
i=1

log+
(
f2
i (1 + γi)

ϑ

)
. (18)

Here, the waterlevel parameter ϑ ∈ [0,∞) is determined by the
distortion D.

Proof: The expression (18) for the rate R(ϑ,F ) = I(w; z) follows
from the inverse waterfilling argument [11, Section 13.3] applied to
the filtered vector w. The relevant information I(ϑ,F ) = I(x; z) in
(17) is calculated similarly as in (15), except that the mapping (5),
which is required to compute the covariance matrices, is replaced by
the “forward quantization channel” in [10, p.101]. �

Eliminating the waterlevel ϑ from (17) and (18) yields an ex-
plicit relation between relevant information I(ϑ,F ) and compres-
sion rate R(ϑ,F ). Assuming that the variances ωi , f2

i (1 + γi),
i = 1, . . . ,M , are sorted in descending order, we obtain

IF (R) =
1

2

M∑
i=1

log
1 + γi

1 + 2−2Ri(R,F )γi
,

where the rate allocated to mode i is given by

Ri(R,F ) =

[
R

l(R,F )
+

1

2
log

ωi
ωl(R,F )

]+
.

Here, ωl ,
∏l
i=1 ω

1/l
i is the geometric mean of ω1, . . . , ωl and

l(R,F ) = max {i : Rc,i(F ) ≤ R} denotes the number of active
modes, which increases at the critical rates

Rc,i(F ) =
1

2

i∑
k=1

log
ωk
ωi
. (19)

Direct MSE-optimal quantization of y corresponds to F = I
(i.e., no filtering) and noisy source coding [9] corresponds to F =
FW = Γ (I + Γ )−1 (i.e., Wiener filtering). Surprisingly, these two
approaches in general are suboptimal in terms of rate-information
trade-off. We next identify the uniformly rate-information optimum
filter F? that satisfies IF?(R) ≥ IF (R) for all F and any R.

Theorem 3 The optimum filter F? is given by the square root of the
Wiener filter (cf. (10)),

F? = F
1/2
W = Γ 1/2(I + Γ )−1/2 = diag{√µi}Mi=1

(20)

and achieves the same rate-information trade-off as the GIB.

Proof : The claim follows from observing that with F = F? and
ϑ = 1/(β − 1), (17) and (18) coincide with the optimal GIB trade-
off (12) and (13), respectively (recall that µi = γi/(γi + 1)). �

Lemma 1 The number of active modes satisfies

l(R, I) ≥ l(R,F?) ≥ l(R,FW), (21)

which in turn is equivalent to

Rc,i(I) ≤ Rc,i(F?) ≤ Rc,i(FW). (22)

The critical rates are furthermore related as

Rc,i(F?) =
Rc,i(I) +Rc,i(FW)

2
. (23)

Proof: The expression (23) can be verified directly from (19). The
left-hand side inequality in (22) follows from [7, Lemma 9] which
together with (23) implies the righ-hand side inequality. The double
inequality (21) follows from the definition of l(R,F ) in terms of the
critical rates. �

4.2. Discussion and Illustration

We note that any scaled version of F? is also rate-information opti-
mal. If the nonzero mode SNRs are identical, i.e., if γi ∈ {γ, 0},
then we have FW =

√
γ/(γ + 1)F? and hence in this case MSE-

optimal noisy source coding is rate-information optimal. However,
for widely different mode SNRs γi,FW and other suboptimum filters
perform substantially worse. In particular, the performance loss

∆IF (R) , IF?(R)− IF (R) =
1

2

M∑
i=1

log
1 + 2−2Ri(R,F )γi
1 + 2−2Ri(R,F?)γi

of any filter F can be bounded as

∆IF (R) ≤ 1

2

M∑
i=1

log(1+γi)−
1

2
log

f2
1 (1+γ1)

2

f2
1 (1+γ1) + f2

2 γ1(1+γ2)
.

We next consider the filters F (n) = F nW = diag{µni }Mi=1 to
illustrate the transition from the unfiltered case (n = 0) to rate-
information optimal filtering (n = 1/2) and Wiener filtering (n =
1). We assume M = 10 and mode SNRs γi = 2−ci, i = 1, . . . ,M ,
with c chosen such that C = 1

2

∑M
i=1 log(1 + γi) = 1. Fig. 1 shows

the information-rate curve IF (n)(R) for various n. Direct quantiza-
tion without filtering (n = 0) is seen to perform worst among the
curves shown because it uses too many modes and allocates too lit-
tle rate to the strongest modes (cf. Lemma 1). As n increases, the
information-rate trade-off improves and is identical to the GIB opti-
mum for n = 1/2. Increasing n beyond 1/2 deteriorates the rate-
information performance. Noisy source coding with Wiener filtering
(n = 1) performs slightly poorer than the optimal solution since ac-
cording to Lemma 1 too few modes are used, i.e., too much rate is
allocated to the strongest modes. Interestingly, the information-rate
curve is no longer concave for n > 1/2. Finally, we note that in
general, the relative order in terms of information-rate performance
for various n depends on the distribution of the mode SNRs γi.
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Fig. 1. Information-rate curve IF (n)(R) for various n.

5. EXTENSION TO STATIONARY RANDOM PROCESSES

We next briefly outline the extension of our results to the case
where x[k] and n[k] are independent stationary Gaussian pro-
cesses with power spectral densities (PSDs) Sx(θ) and Sn(θ) and
y[k] =

∑∞
k′=−∞ h[k

′] x[k−k′] + n[k], with h[k] the impulse re-
sponse of a linear time-invariant filter. For a finite time interval of
duration N , this model reduces to (1) with H a Toeplitz matrix
induced by h[k] and all covariance matrices being Toeplitz as well.

We can then obtain asymptotic frequency-domain versions of all
results derived above by using mutual information rate I(x, y) ,
limN→∞

1
N
I(x; y) and by invoking the following Lemma, whose

proof is along the lines of [12, Corollary 4.1] but is omitted due to
lack of space.

Lemma 2 Consider a series of N × N Wiener-type Toeplitz ma-
trices whose eigenvalues λN,k have asymptotic eigenvalue spectrum
S(θ) with S(θ) = ϑ only on a set of measure zero and let g(·) be a
continuous positive function. Then

lim
N→∞

1

N

∑
λN,k:λN,k>ϑ

g(λN,k) =
1

2π

∫
θ:S(θ)>ϑ

g
(
S(θ)

)
dθ.

In particular, MSE-optimal source coding of the filtered observa-
tion w[k] =

∑∞
k′=−∞ f [k

′] y[k−k′] with PSD

Sw(θ) =
∣∣F (θ)

∣∣2 (∣∣H(θ)
∣∣2Sx(θ) + Sn(θ)

)
,

leads to the rate-information trade-off (cf. (17), (18))

I(ϑ, F ) =
1

4π

∫ π

−π
log+

(
1 + Γ (θ)

1 + ϑ Γ (θ)

|F (θ)|2(1+Γ (θ))

)
dθ,

R(ϑ, F ) =
1

4π

∫ π

−π
log+

(∣∣F (θ)
∣∣2(1 + Γ (θ)

)
ϑ

)
dθ.

Here, F (θ) and H(θ) denote the frequency responses of the filter
f [k] and the channel h[k] and we used the SNR spectrum

Γ (θ) =
∣∣H(θ)

∣∣2Sx(θ)/Sn(θ).

The optimal filter is given by

F?(θ) =

√
Γ (θ)

1 + Γ (θ)
.

6. CONCLUSION

In this work, we established the link between MSE-optimal RD com-
pression and the GIB, proving that linearly pre-filtered RD compres-
sion is equivalent to the GIB provided that a square-root Wiener fil-
ter is used. We derived closed form expressions for calculating the
ultimate Gaussian rate-information trade-off, both for random vec-
tors and stationary processes. Our results are practically useful since
they allow MSE-optimal quantizers to be used for rate-information-
optimal quantization. All results presented in this work can easily be
extended to the complex case.
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