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Abstract—Active magnetic bearings offer many advantages
compared to conventional bearings. But due to economic reasons
their field of application is relatively small. Self-sensing magnetic
bearings can contribute to a significant decrease of the system
costs, of course at limited accuracy in position detection com-
pared to systems with sensors.
The later on described INFORM method is one approach to self-
sensing magnetic bearings. The position depending reluctance
is measured through high frequent voltage injections and the
resulting current slope. This paper discusses how different
evaluation methods capable of calculating the current slope
from the raw measurement data, differ in sensitivity and noise
rejection. Therefore first the theoretical background of the used
self-sensing method is explained. Next the error propagation of
different evaluation methods is analysed and finally compared to
measurements.

I. INTRODUCTION

Major field of research for self-sensing magnetic bear-
ings is to improve the position detection to facilitate more
accurate and stable position control algorithms. This paper
focuses on how different evaluation methods for the INFORM-
measurement affect the position detection accuracy.
The INFORM method is well known from self-sensing syn-
chronous electrical drives [1]. Basic idea is to measure the
inductance of a phase coil by injection of high frequent
voltage impulses and measuring the resulting slope of the
phase current. If the reactance of the iron path and leakage
fluxes are neglected, then the coil inductance solely dependents
on the air-gap between rotor and stator. Hence the INFORM
method can be used for self-sensing magnetic bearings as
proved in several studies [2][3].
A first study on the statistical behaviour of INFORM position
detection [4] showed that the resolution was approximately
one tenth of the air gap. This means that the quality of self-
sensing position measurements has to be improved if used in
highly unstable system like a active magnetic bearing with
bias flux.

II. THE INFORM METHOD

The so called INFORM method (Indirect Flux Detection
by Online Reactance Measurement) was originally developed
for the rotor position detection of synchronous drives [1]
and is well known for the sensorless control of synchronous
drive applications. It relies on measuring the position by
high frequency voltage injection pulses. If the iron path

and leakage fluxes are neglected, then the coil inductance
is solely dependent on the air-gap between rotor and stator.
Assuming a three pole stator arranged in Y-shape, then the
coil inductance can be calculated from:

L(x)|y=0 =
µ0N

2A
3
2

(
l0 − x

2

) (1)

with the number of coil turns N , the air gap area A,
the nominal air gap length l0 and the displacement x at
y = 0. If the inductances of the three coils are known, the 2D
radial displacement (x,y) can be calculated. In the following
paragraph it is described how these inductances are obtained.

A. 3-Active Working principle

In the used prototype, the so called 3-Active INFORM is
implemented. It is a enhanced variant of the classical IN-
FORM. The INFORM pulse sequence is produced according
to [5], which is a combination of three active test voltage space
phasors, approximating arbitrary voltage space phasors within
a certain limit. Hence, INFORM measurement information
and desired space phasors according to current control can
be realized at the same time.
The zero-voltage space vector u0 is generated if all three
ON-times are equal within a PWM cycle. The corresponding
voltage and current curves are shown in figure 1.
Using equation 2, the coil inductance can be calculated out

of the known dc link voltage and the measured current slope
(rs = 0Ω).

u = L · di(t)
dt
→ L = u · ∆τ

∆i
(2)

When the coil inductances are known the position can
be calculated using calculation rules basing upon the
mathematical model described in [5].

III. THEORY OF ERROR PROPAGATION

IV. OBTAINING THE INCLINATION

In order to obtain a high Signal to noise ratio (SNR) for the
current slope measurement, the current curve is oversampled
several times. Result is a measurement vector with a sample
series of the phase current curves. In a first approach the

ISMB14, 14th International Symposium on Magnetic Bearings, Linz, Austria, August 11-14, 2014 685



Figure 1. Voltage and current curves in 3-Active PWM modus

single measurement points can be seen as not correlative with
equidistant time stamps. The following chapters will describe
four different methods to obtain the position dependent
inclination of the current slope.

A. Mean-difference method

The first is to average all the points of the first half of the n
measurement points to the mean value x̄1, and all points of the
second half to x̄2 as shown in figure 2. Goal is to fit these two

Figure 2. Sample points for the mean-difference calculation rule

measurement points in a linear approximation function which
can be described by:

x = a+ bt (3)

As the offset value a is not of interest, the focus relies only
on the calculation of the slope coefficient b. The current slope
can be calculated by:

b =
x̄2 − x̄1
n
2 · ts

(4)

with the number of samples n and the sampling rate time ts.

B. Linear regression method

Second considered method is a linear regression. A linear
curve is fitted into the measurement vector by minimizing the

sum of the squares of the errors. The slope coefficient b can
be calculated by

b =
SStx

SStt
=

∑n
i=1(ti − t̄)(xi − x̄)∑n

i=1(ti − t̄)2
(5)

SStx is the empirical covariance of t and x and SStt the
empirical variance of t. For the sake of simplicity the mean
time t̄ is set to zero (see figure 3).

Figure 3. Sample points for the linear regression calculation rule

This simplifies equation (5) to

b =

∑n
i=1 tixi∑n
i=1 t

2
i

(6)

C. Reverse mean-difference method

The working principle of the calculation rules before was to
first take samples from the mid point and let the observation
horizon grow from "inside to outside" with an increasing
number n. The reverse approach is to first take the most
outer sample points and grow from "outside to inside" with an
increasing number n. Hence the calculation rule changes to

b =
x̄2 − x̄1

(nmax − n/2 + 1)ts
(7)

with the number of totally sampled points nmax

D. Reverse linear regression method

The reverse linear regression is similar to the above de-
scribed reverse mean-difference method, where first the outer
sample points are utilized growing from "outside to inside"
with an increasing number n. The resulting calculation rules
for b is very similar and just defers in the indices of the sum
operator:

b =

∑nmax

i=nmax−n tixi∑nmax

i=nmax−n t
2
i

(8)

V. ERROR PROPAGATION WITH MULTIPLE INPUTS

A. Basic considerations

Assuming small errors |∆x| << |x|, a common approach is
an approximation to a first-order Taylor series of the function
b(x) [6]. For a single input system the resulting equations
would be

b(x+ ∆x) = b(x) +
db(x)

dx
∆x (9)

b(x+ ∆x)− b(x) = ∆b =
db(x)

dx
∆x (10)
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with the input error ∆x and the output error ∆b.
If every measurement point is considered as independent and
mutually uncorrelated input variable, then the output error
yields to

∆b =
∂b(x)

∂x1
∆x1 +

∂b(x)

∂x2
∆x2 + ...+

∂b(x)

∂xn
∆xn (11)

Equation (11) describes how to calculate the resulting absolute
error. To evaluate how measurement uncertainties affect the re-
sult’s uncertainty, the very similar Gaussian error propagation
law offers an approach [6]:

Sb =

√√√√ n∑
i=1

(
∂b(x)

∂xi

)2

(Sxi
)2 (12)

where Sxi is the absolute standard deviation of each measure-
ment xi, and Sb the absolute standard deviation of the slope
coefficient b. For this law, the measurement noise needs to be
a Gaussian distribution. Figure 4 illustrates a histogram of a
typical current sample measurement. It can be seen that this
assumption is roughly fulfilled.

Figure 4. Histogramm of a measured current signal point in 3-Active PWM
mode

This was also already shown in a previous study [4].

B. Error propagation of the mean-difference method

To calculate how different numbers of samples used by the
mean-difference method affect the result, the Gaussian error
propagation law (12) has to be applied to the calculation rule
(4). This yields to

Sb =

√√√√ 2∑
i=1

(
∂

∂xi

x̄2 − x̄1
n
2 · ts

)2

(Sx̄1,2
)2 (13)

and further to:
Sb =

2

n · ts

√
2Sx̄1,2 (14)

with the number of utilized sample points n, the sampling
period time ts and the standard deviation of the two aver-
age points Sx̄1,2 . Thereby it was assumed that the standard
deviation for all measurement points is equal. The standard
deviation of the two points x1 and x2 yields from averaging

each with the half number of total sampling points. It can be
calculated with:

Sx̄1,2
=

1√
n/2

Sx (15)

with the standard deviation of a single measurement point Sx.
If equation 15 is applied to equation 14, the overall calculation
rule leads to:

Sb =
4√
n3 · ts

Sx (16)

C. Error propagation of the linear regression method

Equivalent to the mean-difference method the Gaussian
error propagation law (12) is applied to the calculation rule
(6). This yields to

Sb =

√√√√ n∑
j=1

(
∂

∂xj

∑n
i=1 tjxj∑n
i=1 t

2
i

)2

(Sxi
)2 (17)

and further to:

Sb =

√
1∑n

i=1 t
2
i

Sx (18)

Again under the assumption the standard deviation for all
sample points is equal.

D. Error propagation of the reverse mean-difference method

When the Gaussian error propagation low is applied to the
calculation rule 7, then the standard deviation of the reverse
mean-difference method consequently yields to:

Sb =
2√

n(nmax − n/2 + 1)ts
Sx (19)

with the number of sample points n used for the calculation,
and the total number of sampling points nmax.

E. Error propagation of the reverse linear regression method

When the Gaussian error propagation low is applied to the
calculation rule 7, then the standard deviation of the reverse
mean-difference method consequently yields to:

Sb =

√
1∑nmax

i=nmax−n t
2
i

Sx (20)

with the number of sample points n used for the calculation,
and the total number of sampling points nmax.

VI. EXPERIMENTAL RESULTS

To verify the theory, a set of slope gradient measurements
was recorded, where the inclination was calculated by the mi-
cro controller using the mean-difference, the linear regression
and their reverse variants. The signal to noise ratio SNR is
defined as

SNR = 10 · log
(

x̄2

V ar(x)

)
(21)

and used to compare the results of the theoretical model with
the measurements. The results for the inner to outer calculation
rules are shown in figure 5 the results for the reverse outer to
inner in figure 6.
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Figure 5. Comparison of the mean-difference / regression methods theoretical
and measured SNR

Figure 6. Comparison of the reverse mean-difference / regression methods
theoretical and measured SNR (nmax = 20)

VII. CONCLUSION

The curves show a good match between theory and mea-
surement. Two main conclusions can thus be drawn. First
the difference between the linear regression and the mean
difference method is neglectable. The linear regression shows
a little higher SNR with an increasing number of samples, but
this does not stand against the drastically increased computa-
tion time due to the necessary multiplications. Second it can
clearly be seen that the reverse approach is advantageous as
the consideration of only a few sample points is enough to
nearly reach the maximum SNR. Thus a lot of computation
time can be saved. Figure 7 summarizes the results
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