

Matthias Templ, Bernhard Meindl Statistics Austria & Vienna Uni. of Techn. & data-analysis OG & World Bank & Sept 17, 2014

Eivissa, Spain

Methods and Tools for the Generation of Synthetic Populations

Matthias Templ (simulation of synthetic data)

1 / 20 | Sept 2014

- actual sizes of regions and strata need to be reflected;
- marginal distributions and interactions between variables should be represented correctly;
- hierarchical and cluster structures has to be preserved;
- Data confidentiality must be ensured;
- Pure replication of units from the underlying sample should be avoided;
- Sometimes some marginal distributions must exactly match known values.

- actual sizes of regions and strata need to be reflected;
- marginal distributions and interactions between variables should be represented correctly;
- hierarchical and cluster structures has to be preserved;
- Data confidentiality must be ensured;
- Pure replication of units from the underlying sample should be avoided;
- Sometimes some marginal distributions must exactly match known values.

- actual sizes of regions and strata need to be reflected;
- marginal distributions and interactions between variables should be represented correctly;
- hierarchical and cluster structures has to be preserved;
- Data confidentiality must be ensured;
- Pure replication of units from the underlying sample should be avoided;
- Sometimes some marginal distributions must exactly match known values.

- actual sizes of regions and strata need to be reflected;
- marginal distributions and interactions between variables should be represented correctly;
- hierarchical and cluster structures has to be preserved;
- Data confidentiality must be ensured;
- Pure replication of units from the underlying sample should be avoided;
- Sometimes some marginal distributions must exactly match known values.

- actual sizes of regions and strata need to be reflected;
- marginal distributions and interactions between variables should be represented correctly;
- hierarchical and cluster structures has to be preserved;
- Data confidentiality must be ensured;
- Pure replication of units from the underlying sample should be avoided;
- Sometimes some marginal distributions must exactly match known values.

Comparison of methods

advantages	disadvantages
synthetic reconstruction (and IPU, IPF, HIPF)	
 combination of different data 	continuous data cannot be
sources is possible	simulated
	complicated to consider the
	household structure
	zero-cells and zero-marginals
modelling & prediction	
the correlation structure is	 computation complex for
preserved	simulating multinomial
	variables
	results depend on the order
	of variables to be simulated
combinatorial optimization	
data structure is preserved	high computational costs
super-population models (Copulas)	
 computationally fast 	not possible to simulate
	complex microdata structures

Matthias Templ (simulation of synthetic data)

Model-based approach

... in reallity it is often even more complex.

Model-based approach

... in reallity it is often even more complex.

In general, the procedure consists of four steps:

- The setup of the household structure;
- the simulation of categorical variables;
- the simulation of continuous variables;
- (the splitting continuous variables into components.)

Stratification allows to account for heterogenities such as regional differences. **Sampling weights** are considered in each step to ensure high similarity of expected and realized values.

- The household structure is simulated separately for each combination of strata and household size.
- The number of households is estimated using the Horvitz-Thompson estimator.
- As few variables as possible (due to confidentiality reasons) are simulated using Alias sampling.
- This builds up a realistic structure of the few basic variables chosen.

Additional variables are then simulated using a regression-based approach.

- The household structure is simulated separately for each combination of strata and household size.
- The number of households is estimated using the Horvitz-Thompson estimator.
- As few variables as possible (due to confidentiality reasons) are simulated using Alias sampling.
- This builds up a realistic structure of the few basic variables chosen.

Additional variables are then simulated using a regression-based approach.

- multinomial logistic regression is applied on the sample data, having the variable to simulate as response and chosen variables of the sample as predictors.
- ► The predictor variables are those variables from the sample that are already simulated for the population.
- The parameters (regression coefficients) obtained from the model fit on the sample are then used to calculate the variable of interest on population level by a linear combination (determined by the estimated regression coefficients) of the already simulated variables.

- almost the same approach as before, but either a
 - a multinomial model with random draws from (previously builded) resulting categories or
 - a two-step regression model with random error terms is used to simulate the new variable

Random error (noise) by drawing from the residuals need to be added.

- almost the same approach as before, but either a
 - a multinomial model with random draws from (previously builded) resulting categories or
 - a two-step regression model with random error terms is used to simulate the new variable

Random error (noise) by drawing from the residuals need to be added.

- Developed with support of the International Household Survey Network, DFID Trust Fund TF011722 and data-analysis OG
- contains all mentioned methods
- highly object-oriented approach, similar to sdcMicro
- let you produce synthetic confidential data
- efficiently programmed to work for (very) large data sets
- parallel computing is automatically be applied

Example: EU-SILC

require(synthPop)
str(origData)

data.frame: 11725 obs. of 18 variables: \$ db030 : int 1123444555... \$ hsize 2 2 1 1 3 3 3 5 5 5 ... ## : int \$ db040 : Factor w/ 9 levels "Burgenland", "Carinthia", ...: 4 4 7 5 7 7 7 4 4 4 ... ## : int 72 66 56 67 70 46 37 41 35 9 ... \$ age \$ rb090 : Factor w/ 2 levels "male"."female": 1 2 2 2 2 1 1 1 2 2 ... : Factor w/ 7 levels "1","2","3","4",..: 5 5 2 5 5 3 1 1 3 NA ... ## \$ pl030 : Factor w/ 3 levels "AT"."EU"."Other": 1 1 1 1 1 1 3 1 1 NA ... \$ pb220a \$ netIncome: num 22675 16999 19274 13319 14366 \$ py010n 0 0 19274 0 0 ... ## : num \$ py050n 00000... ## : num \$ pv090n 00000... : num \$ py100n 22675 0 0 13319 14366 ... ## : num ## \$ py110n 0 0 0 0 0 0 0 0 0 NA ... : num ## \$ pv120n : num 0 0 0 0 0 0 0 0 0 NA ... \$ pv130n 0 16999 0 0 0 ... ## : num \$ py140n 0 0 0 0 0 0 0 0 0 NA ... ## : num \$ db090 : num 7.82 7.82 8.79 8.11 7.51 ... ## ## \$ rb050 · num 782 782 879 811 751

Create an object of class *dataObj* with function specifyInput().

inp

```
## ------
## survey sample of size 11725 x 20
##
Selected important variables:
##
## household ID: db030
## personal ID: pid
## variable household size: hhsize
## sampling weight: rb050
## strata: db040
## ------
```


(external) Population charateristics on EU-SILC variables as data frame or n-dimensional table (here a 2-dimensional table):

totalsRGtab

db040 ## rb090 Burgenland Carinthia Lower Austria ## female 146980 285797 828087 270084 797398 ## male 140436 ## db040 Salzburg Styria Tyrol Upper Austria ## rh090 female 722883 274675 619404 368128 ## male 702539 259595 595842 353910 ## ## db040 ## rb090 Vienna Vorarlberg female 916150 190343 ## male 850596 184939

Calibration to this given known totals:

addWeights(inp) <- calibSample(inp, totalsRG)</pre>


```
class(synthP)
```

```
## [1] "synthPopObj"
## attr(,"package")
## [1] "synthPop"
```

The resulting output object ("synthP") is of class *synthPopObj*. As already mentioned, various functions can be directly applied to objects of that class.

Simulation of categorical variables


```
synthP <- simCategorical(synthP, additional = c("pl030",
    "pb220a"), method = "multinom")
```

dealing with level pl030
dealing with level pb220a

synthP

```
##
##
   _____
##
  synthetic population of size
   8504755 x 10
##
##
## build from a sample of size
  11725 x 19
##
##
   _____
##
## variables in the population:
## db030, hsize, db040, age, rb090, db040.1, pid, weight, pl030, pb220a
```



```
# multinomial model with random draws
synthP <- simContinuous(synthP, additional = "netIncome",
    upper = 2e+05, equidist = FALSE)</pre>
```

To simulate components use simComponents(), to simulate finer regional variables (like districts), use simInitSpatial().

assume you have (again) external information (*n*-dimensional table), here e.g. marginals on region \times gender \times exonomic status. We add these marginals to the object and calibrate afterwards (next slide)

add margins
synthP <- addKnownMargins(synthP, margins)</pre>

```
# calibration by simulated annealing
synthPadj <- calibPop(synthP, split="db040", temp=1,
        eps.factor=0.00005, maxiter=200, temp.cooldown=0.975,
        factor.cooldown=0.85, min.temp=0.001, verbose=FALSE)</pre>
```

To speed up the computations, parallel computing is applied automatically.


```
synthP
##
##
  synthetic population of size
##
##
   8504755 x 20
##
## build from a sample of size
## 11725 x 20
##
   _____
##
## variables in the population:
## db030, hsize, db040, age, rb090, db040.1, pid, weight, pl030,
## pb220a,netIncomeCat,netIncome,py010n,py050n,py090n,
## py100n,py110n,py120n,py130n,py140n
```

Results

Results

Matthias Templ (simulation of synthetic data)

19 / 20 | Sept 2014

- margins of synthetic populations are calibrated
- all statistics can be very precisely estimated
- the synthetic populations are confidential
- code of synthPop is highly efficient
- many other methods are included
- large applications on data from world bank follow