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Abstract

The longest common subsequence (LCS) problem is one of the classic problems in
string processing. It is commonly used in file comparison, pattern recognition, and
computational biology as a measure of sequence similarity. Given a set of strings, the
LCS is the longest string that is a subsequence of every string in the set. For an arbitrary
number of strings the LCS problem is NP-complete. Heuristic approaches are needed
to process datasets of hundreds of sequences, each thousands of character in length, that
are common place in computational biology.

This master thesis presents a parallel hybrid metaheuristic combining an Ant Colony
Optimization with a Local Search. The heuristic is designed from the ground up to
exploit the capabilities of many-core processor architectures, such as Graphics Pro-
cessing Units (GPUs). The Ant Colony Optimization constructs numerous solutions
simultaneously and the Local Search employs a highly parallel enumeration to explore
neighborhoods.

The algorithm was implemented using OpenCL, a framework for parallel programming
of heterogeneous systems. The result is a single program that is capable of running
on two different processor architectures, on CPUs and on GPUs. A number of micro
benchmarks are performed to highlight the different performance characteristics of the
tested architectures and to show that the algorithm scales linearly with the number of
processor cores used.

Finally the implementation is benchmarked on a dataset commonly used in the LCS lit-
erature. It will be shown that the presented approach outperforms previously described
methods based on Ant Colony Optimization in terms of solution quality.
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Kurzfassung

Die Berechnung der Longest Common Subsequence (LCS) ist ein klassisches Problem
der Stringverarbeitung, das unter anderem in der Mustererkennung und Textverarbei-
tung Anwendung findet. In der Bioinformatik wird die LCS als Maß für die Ähnlich-
keit von DNS- und Proteinsequenzen verwendet. Von mehreren Zeichenketten soll die
längste gemeinsame Teilfolge gefunden werden. Bei variabler Anzahl von Zeichenket-
ten erweist sich das Problem als NP-schwer. Da die in der Bioinformatik auftretenden
Probleminstanzen hunderte von Sequenzen mit mehreren tausend Zeichen umfassen,
werden heuristische Verfahren benötigt um Instanzen dieser Größe effizient verarbeiten
können.

In dieser Arbeit wird eine parallele Hybridheuristik zur Berechnung der LCS präsentiert.
Die Heuristik kombiniert einen Ant Colony Optimization Algorithmus mit einer Loka-
len Suche und ist für die Ausführung auf massiv paralleler Hardware (wie beispielswei-
se gängige Graphikkarten) optimiert. Im Ant Colony Optimization Algorithmus werden
zahlreiche Lösungen zeitgleich und unabhängig voneinander erstellt und die Lokale Su-
che verwendet ein hoch paralleles Enumerationsverfahren um die Nachbarschaften zu
erkunden.

Für die Implementierung des Algorithmus wurde OpenCL verwendet, eine Program-
mierschnittstelle für heterogene Parallelrechner. Das entwickelte Programm ist sowohl
auf der Graphikkarte (GPU) als auch auf dem Hauptprozessor (CPU) ausführbar. In
einer Reihe von Benchmark-Tests werden die Unterschiede der beiden Prozessorarchi-
tekturen hervorgehoben und gezeigt, dass die Implementierung mit der Anzahl der Pro-
zessorkerne linear skaliert.

Abschließend wird die Implementierung an gängigen Instanzen aus der LCS Literatur
getestet. Es konnte gezeigt werden, dass die vorgestellte Hybridheuristik bessere Lö-
sungen liefert als bestehende Verfahren, die auf Ant Colony Optimization beruhen.
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CHAPTER 1
Introduction

In computational biology, sequence alignment is a fundamental technique to measure
the similarity of biological sequences, such as DNA and genome sequences. A high
sequence similarity often implies molecular structural and functional similarity and can
be used to determine if (and how) sequences are related. Finding the longest common
subsequence (LCS) is one way to measure the similarity of sequences. It was proposed
by Wagner and Fischer in 1974 [81] and is, from the computer science point of view,
one of the classical problems in string processing.

Given a set of strings, the LCS is the longest string that is a subsequence of every string
in the set. The longest common subsequence can be obtained by deleting characters
from the strings until a common substring remains. The relative positions of the re-
maining elements is unchanged. Figure 1.1 shows an example of 3 sequences and their
LCS.

S 1  =  A T G G C C C A G G  T G C A G C T G C A  G T C T A G A G A G
S 2  =  G T C A A G C C T T  C G G A G A C C C T  G T C C C T C A C C
S 3  =  T A C T A C T G G A  G C T G G A T C C G  G C A G C C C G C C

L C S ( S 1 ,  S 2 ,  S 3 )  =  A C G G G C T G T C A

Figure 1.1: Three DNA sequences and their longest common subsequence.
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Table 1.1: Common structures in computational biology and their approximate size
ranges. [58, 83]

Biological Data Alphabet (⌃) |⌃| Typical Sequence Length
Protein A,C, . . . ,W 20 ⇠ 102 � 104

RNA A,C,G, U 4 ⇠ 10� 104

Genome gene1, gene2, . . . , genek ⇠ 104 ⇠ 10� 104

DNA A,C,G, T 4 ⇠ 104 � 1011

Apart from being used in computational biology [6, 41, 48], the LCS has a wide vari-
ety of applications in computer science. Traditional applications can be found in data
compression [75], file comparison [32], and database query optimization [69]. In re-
cent years it has also been used for circuit area minimization in FPGA synthesis [7],
document reconstruction [67], malware detection [36], and character recognition [52].

Due to its classical nature and diverse areas of application, the LCS problem is well
studied and has attracted a lot of research efforts over the last 30 years. Many algo-
rithms have been proposed for calculating the LCS efficiently but most of them focus
on exact methods and/or restrict the number of strings to a fixed number, usually two.
This makes them impractical when dealing with large numbers of long strings that are
common place in computational biology. Heuristic methods are needed when dealing
with hundreds of sequences, each thousands of character in length. Table 1.1 summa-
rizes the properties of strings found in computational biology.

The sheer volume of data that is produced by modern genome sequencing machines
each day and the exponentially expanding size of biological sequence databases makes
parallel algorithms increasingly important [88]. When the computation is parallelized,
larger instances can be solved by assigning more processor cores to the problem and
distributing the work among them.

In recent years, graphics processing units (GPUs) have become a widely used platform
for parallel computing for a number of reasons. Their theoretical processing power is
larger than that of CPUs. They are more efficient than CPUs in terms of floating-point
operations (FLOPS) per watt, and cheaper (FLOPS per euro) [65]. Unlike FPGAs or
vector-processors they are mass market products and therefore readily available. Al-
most every desktop computer has a dedicated GPU card and all modern cell phones and
consumer CPUs include a GPU co-processor on the processor die.

In this thesis, a parallel algorithm for calculating the longest common subsequence of
multiple strings on GPUs will be presented. The thesis is structured as follows. At
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the beginning a formal definition of the LCS problem will be given (Chapter 2) and
related work will be presented (Chapter 3). Chapter 4 will give a brief overview of
the metaheuristics that were used in the implementation of this work and other related
metaheuristics. It is followed by an overview of GPU programming in Chapter 5. There
the differences to CPUs will be highlighted and various programming models will be
discussed with an emphasis on the programming framework OpenCL.

Chapter 6 will present the algorithm that was designed for this master thesis. It solves
the longest common subsequence problem with a parallel hybrid metaheuristic com-
bining an Ant Colony Optimization with a Local Search. The implementation of this
algorithm is a single program capable of running on either CPU or GPU. This will allow
meaningful comparison of the performance of the algorithm on these two architectures.
The program will be tested on a series of micro benchmarks (Chapter 7) and a dataset
commonly used in the literature. The thesis concludes in Chapter 8 and gives an outlook
for future work.
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CHAPTER 2
Problem Definition

According to [1, 17], the longest common subsequence problem can be defined as fol-
lows.

Let A = [a1, a2, . . . , al] be a sequence of l elements, i.e., a string. The elements of the
string are members of a finite alphabet ⌃, a

i

2 ⌃, 8i = 1, 2, . . . , l.

A sequence B = [b1, b2, . . . , bk] is a subsequence of A, (B � A), if there exists
a strictly increasing sequence of indices [i1, i2, . . . , ik] such that A[i

j

] = B[j] holds,
8j = 1, 2, . . . , k  l.

Given a finite set S of n strings S = {S1, S2, . . . , Sn

}, C is a common subsequence, if
C � S

i

, 8i = 1, 2, . . . , n.

The longest common subsequence of S is the common subsequence of maximum
length. The problem can be expressed as an optimization problem of the form

maximize |C|
subject to C � S

i

, 8i = 1, . . . , n.
(2.1)

with |C| being the length of the common subsequence C. The longest common sub-
sequence does not have to be unique, i.e., there can be more than one common subse-
quence with maximum length.
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2.1 Complexity
In case of two strings and an alphabet of fixed size, an exact solution to the longest
common subsequence problem can be found in polynomial time using dynamic pro-
gramming. Bergroth et al. [1] did an extensive comparison of algorithms for the longest
common subsequence problem with two strings (LCS2). In this case the time complex-
ity is O(l1l2), with l1 and l2 being the length of the strings.

Maier [55] and Paterson et al. [66] showed that for an arbitrary number of strings the
LCS problem is NP-complete, even with binary alphabet. NP-complete means that there
is no known algorithm that can compute the optimal solution of every input instance in
polynomial time. Given a solution, it is however possible to check the correctness of
this particular solution in polynomial time [22].
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CHAPTER 3
Related Work

Over the last 30 years many algorithms that compute the LCS of multiple strings have
been proposed. Most of the earlier work focuses on exact methods; the majority is
based on dynamic programming. Due to the high complexity of the problem these
approaches scale badly and are not applicable when dealing with large-sized datasets
that became common in recent years. Especially when the number of strings to compare
grows, exact approaches reach their limits fast. Focus has now shifted towards heuristic
approaches that can deal with the hundreds of gigabytes of data that are generated by
genome sequencing machines each week [89]. Approximative and heuristic algorithms
have been developed that find reasonably good solutions in a short amount of time.

3.1 Algorithms Based on LCS2
The various algorithms used to compute the LCS of two strings can be extended to
handle multiple strings. The greedy and the tournament algorithms [71] find the LCS
by comparing strings pairwise. Both algorithms have time complexity O(n2l2), with n
being the number of strings and l being the string lengths.

The greedy algorithm chooses two strings S1 and S2 that yield the longest LCS of all
string pairs (S

i

, S
j

). The algorithm removes strings S1 and S2 from the set of strings and
adds their longest common subsequence LCS2(S1, S2) as a new string. The algorithm
then proceeds recursively:

Greedy(S1, S2, . . . , Sn

) = Greedy(LCS2(S1, S2), S3, . . . , Sn

)
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The tournament algorithm is similar to the greedy one but combines
⌅
n

2

⇧
pairs in each

recursive step:

Tournament(S1, S2, . . . , Sn

)

= Tournament(LCS2(S1, S2), LCS2(S3, S4), . . . , (LCS2(S
n�1, Sn

))

3.2 Exact Approaches
Many exact algorithms for solving the LCS problem are based on dynamic program-
ming, see for example Hirschberg [28] or Irving and Fraser [35]. They have a time
complexity of O(ln) which means they are exponential in the number of strings. Over
the years various improvements have been proposed and the time complexity has been
reduced to O(ln�1). One improvement that is often used in practice is reducing the
search space by pre-computing dominant points [82].

Parallel implementations of exact approaches were developed, like the FAST_LCS by
Chen et al. [15] and the current state-of-the-art algorithm by Wang et al. [83]. By par-
allelizing the computation, larger instances can be solved by assigning more processor
cores to the problem and distributing the work among them. In practice these imple-
mentations are applicable for finding the LCS of around ten strings (n = 10), with more
strings their run-time becomes impractical.

A different exact approach is to use integer linear programming techniques as proposed
by Singireddy in his master thesis [73]. The complexity remains O(ln).

3.3 Approximation Approaches
Approximation algorithms find near-optimal solutions to NP-hard problems within af-
fordable time [17]. Unlike heuristics (Chapter 4) they have provable guarantees for
solution quality and run-time.

The first approximation algorithm for the LCS was Long Run [40]. Long Run constructs
the longest string containing only a single character that is a valid subsequence in all
strings. For each character a 2 ⌃, let c

a

be the minimum number of occurrences of a
in all strings S1, S2, . . . , Sn

. Long Run returns a string of character ↵ 2 ⌃ of length c
↵

where c
↵

is maximal. Because its solution is restricted to strings of a single character it
is not good enough for practical use.
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The approximation ratio gives the factor by which the length of the guaranteed solution
is at most smaller than the optimal solution. Therefore, a ratio of 1 would describe an
exact approach. Long Run has an approximation ratio of |⌃|, according to [77], which
makes it not very useful in practice, even on datasets with small alphabets such as DNA
sequences (|⌃| = 4).

The Expansion Algorithm by Bonizzoni et al. [5] and the Best Next for Maximal Avail-
able Symbols (BNMAS) algorithm [31] are approximation algorithms that are not re-
stricted to single character solutions. Still, they guarantee the same approximation ratio
as Long Run.

3.4 Heuristic Approaches
Like approximation algorithms, heuristic algorithms are used to find near-optimal solu-
tions to NP-hard problems. They differ from approximation algorithms in the way that
heuristics cannot provide guarantees regarding the solution quality or run-time. Their
focus is on finding a solution that is “good enough” quickly. An overview of commonly
used heuristic solution techniques is given in Section 4.

Hinkemeyer and Julstrom [27, 43] proposed a Genetic Algorithm (GA) for computing
the LCS of an arbitrary number of strings. They compared the algorithm to Irving and
Fraser’s dynamic programming approach [35] and reported shorter runtime for the GA.
However, their results could not be reproduced by Jansen and Weyland [39], who did a
theoretical analysis of the performance of evolutionary algorithms for the LCS problem.

In his master thesis Chiang [16] proposed a different GA, but its performance was below
the state-of-the-art approach of this time, an Ant Colony Optimization (ACO) by Shyu
and Tsai [72]. Weng et al. [86] created a hybrid algorithm based on Chiang’s GA
and Shyu and Tsai’s ACO and reported a slight improvement in run-time and solution
quality over the ACO. Shyu and Tsai’s ACO will be described in detail in Section 6.1.

One heuristic that has often been applied successfully to the LCS problem is Beam
Search. The first use of Beam Search for the LCS was in 2007 by Blum and Blesa [3].
Their Probabilistic Beam Search produced solutions that were better than or similar
to the Expansion Algorithm in much shorter time. An improved version of the Beam
Search that added an additional method for pruning the search space was presented by
Blum et al. in 2009 [3] and outperformed all other approaches (including Expansion
Algorithm and Shyu and Tsai’s ACO) in terms of solution quality and run-time.

In 2010 Blum et al. [2, 4] presented a hybrid algorithm that combines Beam Search
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with Ant Colony Optimization. The so called Beam-ACO uses Beam Search as the
construction function of the ACO. The Beam-ACO provides better solutions than Beam
Search alone, especially when applied to DNA sequences. Its run-time depends on the
size of the alphabet; for DNA sequences (|⌃| = 4) it is worse than plain Beam Search,
for protein sequences (|⌃| = 20) it is faster.

Beam search is also used to generate the initial solution in Lozano and Blum’s low-level
integrative hybrid metaheuristic [54]. This hybrid algorithm uses a Variable Neighbor-
hood Search (VNS) that applies an iterated greedy algorithm and a greedy randomized
procedure in its improvement phase. In each iteration of the VNS a large contiguous part
of the solution (up to 10 percent) is deleted and re-constructed by the greedy randomized
procedure. The solution quality of this approach is similar to the Beam-ACO and the
authors hint at further work combining the two; using the Beam-ACO as a construction
heuristic for the VNS.

Other recently published heuristics are the MLCS-APP by Wang et al. [84], which
is based on the A* search algorithm, and the Deposition and Extension algorithm by
Ning [60]. Their solution quality is on par with the 2009 Beam Search from Blum
et al. [3] but they are out-classed by later work.

The Pro-MLCS algorithm [89] was presented by Yang et al. in 2013 and is a parallel
progressive algorithm. This approach can return an approximate solution quickly and
progressively generates better solutions until it reaches the optimal one. In their work
the authors present a shared-memory and a distributed-memory version of the algorithm.
The parallel implementation achieves near linear speedup with long strings and retains
the progressiveness property; it finds better solutions in a shorter time when given more
hardware resources. Given the same time to execute, its solution quality is comparable
to that of MLCS-APP.

The current state-of-the-art heuristic is the Hyper Heuristic presented by Tabataba and
Mousavi in [77]. At its core the Hyper Heuristic uses a Beam Search with two differ-
ent candidate heuristic functions. Neither of the heuristic functions alone has a clear
advantage over the other in all experimentally tested cases, so the Hyper Heuristic uses
both. It applies the functions with a small beam size to find out which of the candidate
heuristics performs better on this particular instance. Because of the small beam size
this initial step executes quickly. Then the candidate heuristic that yields better results
is executed a second time, this time with the full beam width.
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CHAPTER 4
Heuristic Solution Techniques

Metaheuristics are designed to find near-optimal solutions fast by exploring large so-
lution search spaces efficiently. Therefore, they are often used for solving hard opti-
mization problems. Metaheuristics are not problem-specific, they make few assump-
tions about the underlying problem and can be applied to a wide variety of optimization
problems.

This chapter will give a brief overview of the metaheuristics that were used in the imple-
mentation of this work (Chapter 6) and other related metaheuristics. For a more detailed
introduction to metaheuristics see [78].

4.1 Ant Colony Optimization
Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging behavior
of ants. Ants are simple, identical individuals, working together as a highly structured
social organism [19]. They have no way of direct communication and are bad sighted,
some sub-species even completely blind [30]. Still, ants as a collective are able to
accomplish complex tasks such as finding the shortest path between a food source and
their nest.

Ants communicate indirectly through pheromones they deposit on the ground. This
mechanism of indirect coordination between agents via modification of their environ-
ment was termed stigmergy by Grassé [24], who observed it on termites. The amount of
pheromones an ant deposits depends on the length of the path it travelled and the amount
of food it discovered. Pheromones act as a chemical trail that guides other ants, which
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Figure 4.1: The double bridge experiment. When the branches are of equal length (a),
the ants use one branch or the other in approximately the same number of experiments.
When the branches are of different length (b), the ants converge towards the shorter
branch in the majority of the experiments. [21, 53]

in turn deposit additional pheromones, intensifying and reinforcing the trail. Over time
pheromones evaporate, which allows ants to “forget” previous trails and explore new
ones.

The process of finding the shortest path by real ants has been highlighted by the double
bridge experiment (Figure 4.1) by Deneubourg et al. [19, 23]. The first experiment
connects the ants’ nest to the food source by two bridges (branches) of equal length
(Figure 4.1(a)). In the beginning, when there are no pheromones, ants choose both
branches with an equal likelihood. Due to random fluctuations, a few more ants would
choose one branch over the other leading to an increase of pheromones deposited on
this branch. This creates a positive feedback loop and soon almost all ants use only one
branch.

In the second experiment, the branches connecting the nest and the food source are of
different length, one being twice as long as the other (Figure 4.1(b)). The initial lack of
pheromones leads the first ants again to choose randomly between the two branches on
their way from the nest to the food source. Over time the shorter branch accumulates
more pheromones than the longer as it allows ants to travel faster and therefore more
frequently. Eventually almost all ants use the shorter branch. In both experiments there
is a small percentage of ants that ignores the established pheromone trail used by the
majority of ants and “explores” the other branch.
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Algorithm 4.1: Ant Colony Optimization
1 initialize pheromone trails
2 while termination condition not met do
3 foreach ant do
4 construct ant solution using pheromone trail information
5 end
6 Local Search // optional

7 update pheromone trail
8 end

The Ant System proposed by Dorigo in his PhD thesis [20] in 1992 was the first ant-
inspired algorithm for solving a combinatorial optimization problem. Similar to how the
shortest path problem is solved by real ants, Ant System uses artificial ants to solve the
traveling salesman problem. This technique was later generalized into a metaheuristic,
called Ant Colony Optimization [21].

Algorithm 4.1 shows the template algorithm for Ant Colony Optimization. First the
pheromone trails are set to an initial value (line 1). Unlike it is the case with real ants,
the initial pheromone value ⌧0 of the trails in an ACO is not necessarily zero. Within the
inner loop (lines 3-5), each ant constructs a complete solution to the problem using the
pheromone information and a heuristic function.

The solution construction (line 4) can be seen as a stochastic greedy procedure. Start-
ing from an initially empty solution, solution components are added until a complete
solution is derived. In each step the next component i is chosen from a set of candidate
components i 2 Cand with respect to a probabilistic transition rule:

p
i

=
[⌧

i

]↵ · [⌘
i

]�P
j2Cand

[⌧
j

]↵ · [⌘
j

]�
(4.1)

The pheromone factor ⌧
i

represents the past experience of choosing component i as part
of a solution. This value will change over time as pheromones are deposited and evap-
orate. The heuristic factor ⌘

i

evaluates the attractiveness of adding component i to the
solution by a greedy procedure. The definition of the pheromone and the heuristic factor
is highly dependent on the problem and the chosen pheromone structure. Parameters ↵
and � are used to control the balance of the influence of pheromone and heuristic fac-
tors in the transition probability p

i

. A higher value for ↵ increases the importance of the
pheromone factor, favoring exploitation. Exploration of the search space is encouraged
by a higher value for �.
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Pheromone update (line 7) is done in two steps. In the first step, all the existing
pheromone trails are decreased by multiplying them by a factor of 1 � ⇢, with ⇢ be-
ing the evaporation rate:

⌧
i

 (1� ⇢)⌧
i

, ⇢ 2 [0, 1] (4.2)

Pheromone evaporation allows ants to forget older decisions and to focus on recent
constructions.

In the second step of pheromone update, pheromones �⌧ k
i

are deposited, giving positive
feedback:

⌧
i

 ⌧
i

+�⌧ k
i

(4.3)

(4.4)�⌧ k
i

=

(
c
k

/c⇤ if ant k uses component i in its solution
0 otherwise

Pheromones are deposited on the components that are part of the solutions that were
found by the ants. This increases the probability of selecting a component in later
iterations of the algorithm.

The amount of pheromone �⌧ k
i

deposited is proportional to the quality of the solution c
k

found by the k-th ant. It is usually normalized between 0 and 1 by defining it as a ratio
between the value c

k

and the optimal solution c⇤. If the optimal solution is unknown, an
estimated upper bound or the best value found so far can be used as c⇤.

Different strategies for selecting the ants that participate in the pheromone depositing
step have been proposed:

• In Dorigo’s original Ant System algorithm, all ants deposit pheromones for the
solutions generated in the current iteration.

• Dorigo also proposed the first improvement to the Ant System, the Elitist Ant
System. In addition to the solutions of the current iteration, the best solution
found since the start of the algorithm deposits pheromones as well. This reinforces
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the best solution and was shown to find better solutions in a lower number of
iterations in computer simulations [20].

• The Rank-based Ant System proposed by Bullnheimer et al. [10] orders the
ants according to their solution quality, assigning them a rank. The amount of
pheromones deposited decreases with the rank of an ant. Only a limited number
of ants, the ! highest ranked ones, and the best solution found so far deposit
pheromones.

• MAX �MIN Ant System as proposed by Stützle and Hoos [76] strongly ex-
ploits good solutions. Only a single solution deposits pheromones, either the best
solution found so far or the best solution found in this iteration. To avoid early
convergence and stagnation the pheromone trail values are limited to an interval
[⌧

min

, ⌧
max

]. This reduces the relative differences between pheromone trails and
ensures good diversification.

4.2 Genetic Algorithms
Genetic Algorithms [29] have been developed by Holland in the 1970s. Like ACO
they are population-based and were inspired by nature. They simulate the evolution
of species through survival of the fittest (“selection”), sexual reproduction (“recombina-
tion”), and random changes in the DNA (“mutation”). One main application for Genetic
Algorithms is the field of combinatorial optimization. Algorithm 4.2 shows the general
structure of a Genetic Algorithm based on [78].

Algorithm 4.2: Genetic Algorithm
1 generate P (0)
2 t 0
3 while termination condition not met do
4 evaluate P (t)
5 P 0(t) select(P (t))
6 recombine P 0(t)
7 mutate P 0(t)
8 evaluate P 0(t)
9 P (t+ 1) replace (P (t), P 0(t))

10 t t+ 1
11 end

A population of candidate solutions is usually randomly generated, see Algorithm 4.2
line 1. In each iteration the fitness of all individuals in the current population is eval-
uated (line 4). Fitness is a measure for the quality of the solution represented by the
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individual. A subset P 0 of the population is selected and used as a starting point for
the next generation (line 5). Usually two parent individuals from the population P 0

are taken to create one or two descendants, which are then added back into the popula-
tion P 0. Fitter individuals have higher probability of being chosen to advance to the next
generation. New individuals are created by recombining existing individuals (line 6).
Descendants share some characteristics of their parents. Mutations, i.e., small localized
changes to the solution are applied to some individuals in the population P 0 with a cer-
tain probability (line 7). This guarantees diversity and avoids pre-convergence to a local
optimum, in which the whole population becomes too homogenous. At the end of an
iteration a replacement scheme is applied to determine, which individuals are passed on
to the next iteration (lines 8-9). The algorithm stops, when the termination condition is
met (line 3). Possible termination conditions could be reaching a predefined number of
iterations or exceeding a given time limit. For a more detailed introduction to Genetic
Algorithms see [29].

4.3 Local Search
Local Search (Algorithm 4.3) is a single-solution based metaheuristic intended to find
the local optimum within a given neighborhood. A neighborhood structure N is a func-
tion N : S ! 2S mapping each solution s 2 S with S being the set of feasible solutions
to a set of neighbors, the so-called neighborhood N(s) of s. The neighborhood def-
inition depends strongly on the optimization problem and its representation. Its main
characterizing property is locality: small changes made in the representation must result
in small changes in the solution.

Algorithm 4.3: Local Search
1 generate a start solution s
2 define a neighborhood structure N(s)
3 while termination condition not met do
4 choose s0 2 N(s) according to step function
5 if s0 is better than s then
6 s s0

7 end
8 end

Local Search starts with a candidate solution s and iteratively moves (“walks”) from
one solution to another in the solution space. In each step a number of related solutions
according to the neighborhood N(s), i.e., the neighbors of s, are examined, see line 4.
If the chosen solution s0 2 N(s) is an improvement over s, it is accepted as the new
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current solution, see lines 5-7. The local optimum is found, when no solution s0 2 N(s)
yields an improvement over s.

Selecting a new neighbor s0 is done via a step function. The step function can pursue
one of the following strategies:

• First improvement chooses the first neighbor that is better than the current solu-
tion.

• Best improvement evaluates all possible neighbors in N(s) and chooses the one
that yields the best improvement to the current solution.

• Random selection selects a random neighbor.

With first improvement or best improvement as the step function, the algorithm can
reach the point where no further improvement can be made because the local optimum
is reached; this can be used as termination condition (line 3). When random selection
is used, it is not possible to state whether the local optimum is reached. Therefore,
common termination criteria are exceeding a time limit, reaching a predefined number
of iterations or not improving the best solution for a given number of iterations.

4.3.1 Variable Neighborhood Descent
Variable Neighborhood Descent [26] (Algorithm 4.4) defines a deterministic search
through multiple neighborhood structures. Different neighborhood structures have dif-
ferent local optima. Thus the search space can be enlarged according to the number
of neighborhoods. Because searching through multiple neighborhoods finds the local
optimum according to all those neighborhoods. The set of neighborhood structures
N1ik

max

is ordered and the algorithm iterates over the neighborhood structures one
after the other. If an improvement was found a new current solution is chosen and
the search is restarted within the first neighborhood, see lines 6-8. Otherwise the next
neighborhood is searched for an improvement. Therefore, the ordering has a big impact
on performance and commonly the neighborhood structures are ranked in increasing
order of their size. Since it is a deterministic search, only first improvement and best
improvement are valid step functions.
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Algorithm 4.4: Variable Neighborhood Descent
1 generate a start solution s
2 define neighborhood structures N

i

, i = 1, 2, . . . , k
max

3 k  1
4 while k  k

max

do
5 choose s0 2 N

k

(s) according to step function
6 if s0 is better than s then
7 s s0

8 k  1
9 else

10 k  k + 1
11 end
12 end

Algorithm 4.5: Variable Neighborhood Search
1 generate a start solution s
2 define neighborhood structures N

i

, i = 1, 2, . . . , l
max

3 while termination condition not met do
4 l  1
5 while l  l

max

do
6 choose s0 randomly from N

l

(s)
7 s00  LocalSearch(s0) or VariableNeighborhoodDescent(s0)
8 if s00 is better than s then
9 s s00

10 l  1
11 else
12 l  l + 1
13 end
14 end
15 end

18



4.3.2 Variable Neighborhood Search
Variable Neighborhood Search [26] (Algorithm 4.5) is a stochastic search method based
on multiple neighborhood structures to escape local optima. Similar to the Variable
Neighborhood Descent it iterates through a set of neighborhood structures N

i

. At each
iteration it performs three steps: shaking (line 6), local improvement (line 7), and move
(lines 8-13). A new neighbor s0 of the best known solution s is chosen randomly ac-
cording to the current neighborhood structure N

i

, i.e., s is “shaken” to generate a new
starting point for the Local Search or VND, respectively. When the local optimum s00

found is not an improvement over s, the algorithm moves to the next neighborhood
N

i+1. If s00 marks a better solution, the search starts again in the first neighborhood N1

with s00 being the new best solution s. The search stops when the termination condition,
for example a time limit or a given number of iterations, is reached (line 3).

4.4 Hybrid Metaheuristics
Metaheuristics have been applied to a wide variety of real-life and theoretical optimiza-
tion problems providing good results. Hybrid algorithms yield further improvements
by combining a metaheuristic with other techniques. For many optimization problems
hybrid approaches represent the current state-of-the-art.

In [78] four different possible combinations for metaheuristics are discussed:

• Combining metaheuristics with other metaheuristics: Population based meta-
heuristics are well suited for exploring a large search space (i.e., diversification).
Single-solution based metaheuristics on the other hand start from a given solution
and exploit the neighborhood in the search space (i.e., intensification). Combin-
ing the two results in a search algorithm that is balanced between intensification
and diversification of the search.

• Combining metaheuristics with exact methods: Exact methods such as linear
programming techniques and branch and bound can be used to calculate upper
and lower bounds for solutions, thereby reducing the search space of the meta-
heuristic. Moreover, partial solutions from exact methods can be used as initial
solutions for metaheuristics. Exact methods can also be used to fully explore
larger neighborhoods in single-solution based metaheuristics, trading efficiency
for effectiveness.

• Combining metaheuristics with constraint programming [74]: Constraint pro-
grams specify in a declarative way the structure of a feasible solution for a given
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problem. A solver for constraint programs can be used in the same way as ex-
act methods to generate partial solutions and bounds. Constraint programs are
well suited to express transformations of solutions, such as the recombination and
mutation in Genetic Algorithms (Section 4.2).

• Combining metaheuristics with machine learning: Techniques from data min-
ing and machine learning can be used to gather knowledge from the history of
the search. Acquired positive and negative knowledge guides the search of the
metaheuristic and improves its efficiency and effectiveness.

Furthermore, hybrid algorithms can be categorized in a coordinate system along two
axis: low-level/high-level and relay/teamwork. Two algorithms can be combined in a
way that one algorithm implements a function of another algorithm. This is called low-
level hybridization. In high-level hybrid algorithms the algorithms remain separate and
self-contained. In relay hybridization the algorithms run in sequence, using the output of
the previous as input for the next algorithm. Cooperating algorithms that run in parallel
are called teamwork hybrids.

High-level relay hybrids are often used in practice. A common hybridization is using
a greedy heuristic or an ACO to create the initial population for a Genetic Algorithm.
High-level relay hybrids are also used to further exploit solutions (i.e., intensification
of the search) and finding local optima (e.g., VND, Local Search) within metaheuristics
(e.g., GA, ACO) that specialize in making good global decisions (i.e., diversification of
the search).

When, as it is the case for this thesis, a population based metaheuristic (ACO) is com-
bined with a single-solution based metaheuristic (Local Search), the latter can be applied
to:

• The whole population: This guarantees to find the local optimum within the
whole population but comes at a great computational cost.

• The best solution of the population: This approach is fast, but the best solution
within the population need not necessarily provide the best starting point for the
local improvement.

• A subpopulation: This is a compromise between the other two approaches but
raises the problem of finding a good subpopulation.
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CHAPTER 5
Graphics Processing Units

Graphics Processing Units (GPUs) have become a compelling platform for computa-
tionally expensive tasks. In recent years their capabilities expanded beyond that of
special purpose graphics accelerators and they are now usable for scientific computing.
Critical factors for this advancement were the addition of IEEE-compliant floating-point
operations and support for error correcting code (ECC) memory [59]. The key strength
of GPUs compared to CPUs is in raw performance. The theoretical peak performance
of GPUs is an order of magnitude larger than that of CPUs and the gap continues to
widen (Figure 5.1).

While GPUs are now capable of general purpose computation, they do require the use
of new special purpose programming models. Their underlying architecture is vastly
different from CPUs. Therefore, programs and algorithms have to be redesigned to
exploit their potential performance.

Application areas where GPUs have been used successfully tend to have the following
characteristics [64]: Their computational requirements are large, parallelism is substan-
tial, and throughput is more important than latency. Typical examples (besides appli-
cations in the field of computer graphics) are physics simulations, image processing
applications, and statistical modeling.

The remainder of this chapter gives a brief overview of the architecture of state-of-the-
art GPUs and explains programming paradigms.
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Figure 5.1: Peak performance in gigaFLOPS (billion FLoating-point Operations Per
Second) for CPUs and GPUs. [46, 65]

5.1 Architecture
The architecture of modern GPUs is very different from that of modern CPUs mainly
because their goals are different. CPUs are designed to make the execution of single-
threaded programs as fast as possible. They employ sophisticated branch prediction and
speculative execution units that try to guess, what instructions might be executed next.
Large caches are used to mitigate memory access latencies by storing recently used
data, assuming it will be used again. All of this control logic and cache memory takes
up a huge percentage of the die area of modern CPUs, while the actual computing units,
ALUs (Arithmetic Logic Units) and FPUs (Floating-Point Units), account for only a
fraction of that. Since speculative control logic and caches do not contribute to the peak
performance of the chip, it has been argued [62] that they are not the most efficient use
of processor die space.

GPUs, on the other hand, started out as accelerator chips for computer graphics. Tasks
such as texture mapping, polygon rendering, and vertex processing are inherently paral-
lel. Adding more cores to do work independently is a natural way of increasing perfor-
mance. GPUs are designed for maximum floating-point performance and use most of
their transistors for computation instead of caching and speculative execution. Another
advantage of GPUs is that chip designers are not bound by backwards compatibility;
there is no standardized instruction set like x86 on desktop PCs, which allows radical
changes from one generation to the next.
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Figure 5.2: NVIDIA’s Fermi GPU architecture. A GPU consisting of 16 streaming
multiprocessors, a shared L2 cache and interfaces to the host and onboard memory is
shown in (left). A single streaming multiprocessor is shown in (right). [8]

Figure 5.2 shows a high-level block diagram of a modern GPU architecture, the Fermi
by NVIDIA [8, 87]. The GPU consists of 16 multiprocessors, which are similar to
the processor cores found in CPUs. Each multiprocessor has 32 streaming processors,
16 load/store units and 4 special function units that handle intrinsic instructions such
as sine, square root or interpolation. A single streaming processor has a full 32-bit
precision integer arithmetic logic unit (ALU) and an IEEE 754-2008 compliant floating-
point unit (FPU), which allows the execution of one 32-bit integer or floating-point
operation per clock cycle.

Multiprocessors execute instructions in an SIMD (Single Instruction Multiple Data)
way, i.e., the same instruction is executed simultaneously for multiple different data
elements. Fermi is a so-called 32-wide SIMD architecture and therefore executes an
instruction on 32 data elements at once before moving to the next instruction. The in-
struction itself can take multiple clock cycles to complete, because there are for example
fewer than 32 load/store units.

Executing instructions in an SIMD fashion has an impact on the way branches are han-
dled. When the thread of execution diverges within a program, the multiprocessor has
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Figure 5.3: Handling a branch on a 32-way SIMD GPU: Elements for which the current
branch condition does not hold, are masked out (shown as dashed boxes) and are not
affected by the computation. [8]

to execute both parts of a branch one after another (Figure 5.3). The elements, which
are not part of the currently executed branch, are masked out. Therefore, they are not
affected by the current computation. In the worst case, the execution of all 32 elements
diverges, which slows down execution by a factor of 32, compared to the ideal case of
all elements executing the same instruction at once.

Multiprocessors have hardware support for hundreds of threads and execute them in
a time-sliced fashion. In the absence of large caches, a large number of ready to run
threads is used to hide memory access latency. When one thread stalls on a memory
fetch, the multiprocessor simply switches to the next one.

5.2 Programming Models
Early experiments on graphics hardware for non-graphics computational tasks were
done using OpenGL [70] directly. OpenGL is an API designed for realtime 2D and
3D graphics processing. Therefore, all programs have to be expressed in terms of oper-
ations on graphical primitives.

Larsen and McAllister [50] showed in 2001 how matrix multiplication could be done
on consumer graphics hardware. They encoded matrix elements as colors of two-
dimensional textures and used texture blending to perform arithmetic on them. Due to
limitations of the hardware at that time they could only operate on fixed point numbers
of 8-bit precision. Thompson et al. [79] showed that, for large matrices (1500 ⇥ 1500
elements), the GPU outperformed the CPU by a factor of 3.2.

In 2004 higher-level programming languages started to emerge, among them Brook [9]
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and Sh [56], that tried to abstract from the graphics part but still exposed many imple-
mentation details of the underlying graphics hardware. There was only limited use for
those languages but they influenced later languages.

The first widely used general purpose programming languages for GPUs are CUDA
(Compute Unified Device Architecture) [68] and OpenCL (Open Computing Language).
CUDA was developed by NVIDIA and draws many ideas from Brook. It is proprietary
technology and works exclusively on GPUs produced by NVIDIA. Despite this CUDA
is widely used in the industry and in research [33]. OpenCL was created by Apple and
has since become an open standard. The programming model of the two is quite similar
and almost all features in one language have a corresponding equivalent in the other.
The biggest difference is that CUDA targets GPUs only whereas OpenCL supports het-
erogenous computing on a broad spectrum of different types of processors.

A wide variety of libraries and domain specific languages build on top of OpenCL and
CUDA. Accelerate [13] for example is an embedding in Haskell and provides a purely
functional array language that is compiled to CUDA, OpenCL and multi-core CPUs.
Efforts were made to embed array languages in the dependently typed programming
language Agda [14]. This would provide static bounds checks at compile time and
eliminate a very common source of bugs entirely.

5.2.1 OpenCL

OpenCL [25] is a framework for programming heterogenous computing platforms. It
was initially developed by Apple Inc. In 2008 a first proposal was submitted to the
Khronos Group, which is an international consortium that manages open standards such
as OpenGL. The Kronos Group has since published three versions of the OpenCL stan-
dard: version 1.0 in 2008, version 1.1 in 2010, and version 1.2 in 2011.

The goal of OpenCL is to provide a uniform abstraction for programming all the differ-
ent processors found in modern computers, including CPUs, GPUs, DSPs and dedicated
accelerators (like the Cell BE [44] that was used in the Playstation 3 and IBM’s Road-
runner supercomputer). There are efforts to compile OpenCL programs directly into
hardware circuits designs, which can then be synthesized and uploaded onto FPGAs [37,
63].

The OpenCL framework consists of two parts, the OpenCL API and the OpenCL pro-
gramming language, which are described in the following sections.
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Figure 5.4: The OpenCL platform model. [25]

The OpenCL API

An OpenCL application consists of two parts: a program that runs on the CPU (the host)
and a part of the program that runs on the OpenCL devices. The program that runs on
the host can be written in any programming language that provides OpenCL bindings
whereas the part of the program that runs on the OpenCL devices must be written in the
OpenCL Programming Language. The host fulfills organizing functions and only few
computational intensive tasks are done by the host.

The host queries for available OpenCL devices and adds them to a context. A device
can be a GPU, a CPU or any other OpenCL compatible processor (Figure 5.4). Each
compute device has one or more compute units. A compute unit is analogous to a pro-
cessor core on a CPU or a multiprocessor in a GPU. Compute units have local memory
and one or more processing elements. Processing elements do the actual computation,
they correspond to streaming processors on GPUs.

The execution of instructions of the processing elements within a compute unit depends
on their underlying architecture. They either execute in an SIMD or SPMD (Single
Program Multiple Data) fashion, where each processing element has its own program
counter and executes the same program independently. With SPMD the actual sequence
of executed instructions can diverge within a compute unit, and as a result, branches and
loops do not have the same impact on performance as they do in SIMD (Section 5.1).

The part of the application that will be executed on devices is written in the OpenCL
Programming Language. It is usually bundled with the application as raw source code
and during the run-time of the application is compiled specifically for the device it is

26



ptg(0,0) Ly = 4

Lx = 4

Gx = 12

G y
= 

12

W
y

= 
3

Wx = 3

NDRange index space

Figure 5.5: A two-dimensional index space with 9 work-groups, arranged in a 3 ⇥ 3
grid, each of which has 16 work-items. The global index of the highlighted work-item is
(6, 5). It is part of work-group (1, 1) and its local index within this work-group is (2, 1).
[57]

going to be executed on. The resulting binaries are called kernels; they are the basic
unit of execution in OpenCL, similar to functions in other languages.

When a kernel is executed, it is invoked with an index space. One instance of the kernel
is run for each of the indices. A single instance is called a work-item and is identified
uniquely by its coordinates in the index space. In OpenCL the index space is one- to
three-dimensional. Work-items are organized into work-groups and can communicate
via shared memory and memory barriers with other work-items in the same work-group.
Every work-item has a global index and a local index within the work-group. Figure 5.5
shows a concrete example of an index space. All work items execute the same program
code. They operate on different data or diverge in their kernel program execution by
using their indices in offset and branch computations.

The host interacts with devices via a command-queue, which is used to issue commands
to the OpenCL context. Commands can be used to execute kernels or to manipulate
memory objects. Memory objects are regions of memory containing values that are
used for several operations by instances of the kernel. The host can create memory
objects of various sizes, transfer data between them, and copy data between them and
the host address space.
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Figure 5.6: The OpenCL memory model. [25]

OpenCL exposes the memory hierarchy of the device to the application programmer
and defines four distinct memory regions (Figure 5.6):

• Private memory can only be accessed by a single work-item. It is statically
allocated by the kernel and used for storing thread local variables.

• Local memory is memory shared by a work-group. It can be allocated statically
by the kernel or dynamically by host. The host can only allocate the memory
region, it has no read or write access to it. Memory consistency can be enforced
by using work-group-wide barrier synchronization.

• Global memory can be allocated by the host only. All work-groups have read
and write access to it. Depending on the capabilities of the device access to global
memory may be cached.

• Constant memory is a part of the global memory. The host allocates and ini-
tializes the memory region before a kernel is executed and its content remains
constant for the duration of the execution.
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The OpenCL Programming Language

The OpenCL programming language (OpenCL C) is based on the C programming lan-
guage [45] (to be more precise, on the C standard from 1999, also known as C99 [34]).
It is an extended subset of C99, which means, it removes some features and adds differ-
ent features. Features not supported in OpenCL C are function pointers, recursion, bit
fields and variable-length arrays.

OpenCL C adds the following features to C99: [57]

• Vector data types, i.e., literals and functions that allow writing portable vector
code.

• Address space qualifiers are used to specify the region of memory that is used
to allocate objects.

• Additions to the language for parallelism. Support for work-groups, work-
items and synchronization within work-groups via memory barriers.

• Image data type and functions for reading and writing images.

• Built-in functions for integer and floating point math, geometric, relational, and
atomic functions.

5.2.2 PyOpenCL
OpenCL bindings are available for most common programming languages, including
C++, C#, Java, Python, Ruby, and even Javascript. Most bindings are simple wrappers
around the standard C headers and provide little benefit over using them directly. Py-
OpenCL [47], a binding for the Python programming language [80], is different in that
it uses run-time code generation for the OpenCL kernels.

OpenCL kernel code can run on a wide variety of devices, but to run efficiently it needs
to take into account the specifics of the hardware it is actually running on. At run-time
properties that are crucial for performance such as the width of native vector types and
size of work groups and local memory can be queried. This information is used to
generate a version of the kernel code that is highly optimized for this particular device.

PyOpenCL provides an array class that implements the same interface as the numpy
Python library [61], which is widely-used for scientific computing. This class supports
element-wise operations and reductions that run on the GPU and are automatically tuned
for the device via run-time code generation. There are built-in functions for often used
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operations such as element-wise addition of two arrays and calculating the maximum
value in an array. PyOpenCL also provides extension points for user defined functions.

Integrated in PyOpenCL is a library for generating random numbers directly on the GPU
(based on RANLUX [38]) and a small templating language. The templating language
can be used for simple compile-time metaprogramming in OpenCL kernels. Kernels
can be parameterized with information about the dataset at hand, which results in more
specialized and efficient code.

PyOpenCL itself and all the Python code runs on the host. PyOpenCL loads kernels
written in OpenCL C (or generates code for them), compiles, and executes them. The
kernels can be executed on the GPU, not the Python code itself. This is different from
Copperhead [12], which is an embedded domain specific language that transforms an-
notated Python code and executes it on the GPU.

By using a dynamic language like Python on the host side, all the benefits commonly as-
sociated with scripting languages are gained: interactive development in a REPL (Read
Eval Print Loop) is possible, productivity is increased, and programs are easier to de-
bug. All of this has no negative impact on performance as the performance-sensitive
code that runs on the GPU is compiled OpenCL C code.
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CHAPTER 6
Implementation

The main part of this thesis was to design and implement a hybrid metaheuristic, namely
an Ant Colony Optimization (ACO) incorporating a Local Search procedure (LS) for
solving the longest common subsequence problem. Algorithm 6.1 shows the general
outline of the algorithm and highlights that apart from initialization, the entire algorithm
is capable of running in parallel on the GPU. The ACO is based on the work by Shyu
and Tsai [72], and will be presented in Section 6.1. A Local Search to further improve
the best solution found by the ACO is described in Section 6.2. The parameter settings
used in this thesis are listed in Table 6.1.

6.1 Ant Colony Optimization
Algorithm 6.1 starts off by calculating an upper bound c⇤ for the length of the expected
solution. For this it computes the optimal longest common subsequence of two ran-
domly selected strings (line 1). This part of the algorithm is not performance critical
and can be done on the CPU by any LCS2 algorithm, for example the ones mentioned
in Bergroth et al. [1].

During the initialization phase (lines 2-5) a number of data structures are allocated and
set up in GPU memory. First, the set of n input strings S = {S1, S2, . . . , Sn

} is copied.
If the strings are not of equal length, shorter ones are padded with a character o that does
not occur in any of the strings, o 62 ⌃. All strings are now of length len.

The pheromones are stored in a matrix of floating point numbers of size n ⇥ len, i.e.,
the same dimensions as the input strings. At the start of the algorithm, all pheromones
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Algorithm 6.1: Hybrid ACO-LS Algorithm
1 c⇤  |LCS2(S

x

, S
y

)| // CPU

2 copy strings to GPU memory // CPU

3 initialize pheromone trails & ant memory
4 BS  ;
5 i 0
6 while i < iterations do
7 reset ant memory
8 generate random numbers
9 foreach ant do

10 construct ant solution
11 end
12 IB  best solution of this iteration
13 if perform Local Search then
14 Local Search
15 end
16 update pheromone trail
17 if IB is better than BS then
18 BS  IB
19 end
20 i i+ 1
21 end
22 copy BS to main memory // CPU

are set to ⌧0. The value of each element ⌧
i,j

in the matrix represents the experience of
choosing the corresponding character S

i,j

as part of the solution in previous iterations.
Figure 6.1 shows an example of a pheromone matrix after 2000 iterations.

Let m be the number of ants. Each ant has its own “memory”, which it uses to keep
record of the progress during one iteration of the algorithm and where it stores its current
solution. The memory of each ant is a matrix of size n ⇥ len storing positions of
characters in S that are part of the solution. BS (best solution) is of the same shape
as the memory of one ant (n ⇥ len) and is used to store the best solution found so far.
Figure 6.2 shows a visualization of a solution stored in the memory of an ant.

At the beginning of each iteration the memory of all ants is reset (line 7). Each ant
has its own pool of pseudo random numbers that are pre-generated at the start of each
iteration (line 8) using a built-in function of PyOpenCL that implements the RANLUX
algorithm [38].
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Table 6.1: Parameter values used for the Ant Colony Optimization.

Parameter Value
↵ Pheromone influence 1.0
� Heuristic influence 2.0
⇢ Evaporation rate 0.004
⌧0 Initial pheromone value 0.5
⌧
min

Minimum pheromone value 0.01
⌧
max

Maximum pheromone value 0.99

d Number of candidates 10 for DNA (|⌃| = 4)
32 for protein (|⌃| = 20)

q0 Exploitation probability factor 0.9
q1 Exclusion probability factor 0.95
�

IB

Iteration-best pheromone factor 0.1
�

BS

Best-so-far pheromone factor 0.1

Constructing the ant solution is done in parallel for each ant (lines 9-11). An explanation
of the construction procedure follows in Section 6.1.1. All solutions found by the ants
in this iteration are compared and the best solution of the iteration, i.e., the longest one,
is stored in IB (line 12). The iteration’s best solution can be further improved by an
optional Local Search procedure (lines 13-15) that will be presented in Section 6.2.

The pheromone update is computed in line 16. Pheromones evaporate and the best
solution of this iteration IB and the overall best solution BS deposit pheromones. Sec-
tion 6.1.2 shows how the pheromone matrix is updated.

If a new best solution is found in the current iteration, it is stored in BS (lines 17-19).
The algorithm terminates after a fixed number of iterations (lines 6,20) and copies the
best solution found from the memory of the GPU into the main memory (line 22).

33



Figure 6.1: The pheromone matrix after 2000 iterations on the “DNA rat” dataset with 100 strings of length 600. Pheromone
intensities are within the interval [⌧

min

, ⌧
max

], the higher the value the better the experience of choosing the character in
previous iterations.

Figure 6.2: A snapshot of the memory of an ant, storing a solution found by the algorithm. Red dots indicate characters
that are part of the solution. The dataset used is “DNA rat” with 100 strings of length 600.
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6.1.1 Construct Ant Solution
Intuitively, the construction process of a solution can be seen as one ant walking along a
randomly assigned string, looking for “good” characters and incrementally constructing
a solution. In Algorithm 6.2 this process is formalized.

Algorithm 6.2: Construct Ant Solution
1 solution ;
2 randomly choose r, 1  r  n
3 u

i

 0, 8i : 1  i  n
4 while u

r

 |S
r

| do
5 Cand [u

r

+ 1, u
r

+ 2, . . . ,max(u
r

+ d, |S
r

|)]
6 foreach c 2 Cand do
7 ch character at position c in S

r

8 v  calculate next occurrences of character ch in all strings
9 calculate probabilistic transition factor pf(c)

10 end
11 q  random number , 0  q  1
12 choose c from Cand by probabilistic function p(v, q)
13 solution solution [ c
14 for i 1 to n do
15 u

i

 v
i

16 end
17 end

At the beginning of the solution construction algorithm, each ant is assigned a random
string S

r

(line 2). An array u is used to track the current position of the ant in all strings
(line 3 and Figure 6.3a). The ant walks along the assigned string S

r

(lines 4-17) from
left to right until it reaches the end of the string.

At first a number of characters as candidates is selected to be added to the solution
(line 5). From the current position of the ant u

r

, the next d characters to the right are
considered as candidates Cand (Figure 6.3a). For each of the candidate characters,
the position where the character occurs next (v

i

) is calculated for all strings (lines 7-8,
Figure 6.3b). This information will be used in the heuristic function of the probabilistic
transition factor pf .

35



u1 u1 v1

61 u v

u2 u2 v
2

62 u v

ur ur vr

6r u v
ar ar

un un vn
6n

61

62

6r

6nu v

[ur+1, ur+d] 

!

!

!
!

!

Figure 6.3: (a) The current position u of the ant in all strings and the range of potential
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+d]). (b) The next occurrences of the candidate character v. [72]

The probabilistic transition factor pf(c) determines the attractiveness of adding char-
acter c to the solution (line 9). It is calculated from previous experience in form of
pheromones ⌧ and the heuristic factor ⌘ 2 {⌘1, ⌘2} that is based on greedy local deci-
sions:

pf(c) =
[⌧

r,c

]↵ · [⌘
r,c

]�P
z2Cand

[⌧
r,z

]↵ · [⌘
r,z

]�
(6.1)

The greedy heuristic function used by Shyu and Tsai is based solely on the number
of characters that would have to be skipped if v

r

were to become part of the solution.
Non-chosen characters in all strings are simply summed up:

⌘1 =
1P

1in

(v
i

� u
i

)
(6.2)

The implementation of this thesis uses a different heuristic function. Like ⌘1 it tries to
skip as few characters as possible. In addition to that it also takes into account the num-
ber of remaining characters in each string. Preliminary tests showed that this function
gives superior results in all cases (Section 7.1.4):

⌘2 =
1

P
1in

(v
i

�u

i

)
(|s

i

|�u

i

)

(6.3)
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The probabilistic transition factor is used by the probabilistic function p to determine
which of the candidate characters, if any, is added to the solution (lines 11-13). A
random number q is taken from the pseudo random number pool of the ant and is used
to control exploitation, biased exploration and exclusion. Parameters q0 and q1, with
0  q0 < q1  1, are used to regulate the probability of choosing one of the three
strategies:

p(c, q) =

8
><

>:

1 if q  q0 and pf(c) = arg max
z2Cand

pf(z) (exploitation)

pf(c) if q0 < q  q1 (biased exploration)
0 otherwise (q > q1) (exclusion)

(6.4)

In the exploitation case, the candidate with the best probabilistic transition factor is
chosen, regardless of all others. When following the exclusion strategy, none of the
candidates is chosen and the ant updates its position u

r

to u
r

+ d + 1 without adding a
character to the solution, effectively skipping all the candidates. For biased exploitation
the probability of selecting a candidate character is proportional to its probabilistic tran-
sition factor. This is similar to the idea of roulette wheel selection [78] commonly used
in Genetic Algorithms.

6.1.2 Pheromone Updating
Following the MAX �MIN Ant System, the pheromones are updated in three steps
for all elements ⌧

i,j

of the pheromone matrix, 8i, j : 1  i  n, 1  j  len.

The first step is the pheromone evaporation:

⌧
i,j

 (1� ⇢) · ⌧
i,j

(6.5)

In the second step, the best solution found so far (BS) and the best solution found in the
current iteration (IB) deposit pheromones. The amount of pheromones is defined as the
ratio between the length of the solution and the conservative upper bound c⇤, calculated
earlier (Algorithm 6.1, line 1). This is a slight extension to the MAX �MIN Ant
System as proposed by Stützle and Hoos, where either BS or IB deposit pheromones.

⌧
i,j

 ⌧
i,j

+�⌧ IB
i,j

· �
IB

+�⌧BS

i,j

· �
BS

(6.6)
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(6.7)�⌧ IB
i,j

=

(
|IB|
c

⇤ if the j-th character in S
i

is part of IB
0 otherwise

(6.8)�⌧BS

i,j

=

(
|BS|
c

⇤ if the j-th character in S
i

is part of BS

0 otherwise

In the third and final step, the pheromone values are restricted to the interval [⌧
min

, ⌧
max

]:

(6.9)⌧
i,j

=

8
><

>:

⌧
max

if ⌧
i,j

> ⌧
max

⌧
min

if ⌧
i,j

< ⌧
min

⌧
i,j

otherwise

6.2 Local Search
The Local Search procedure takes a solution and tries to improve its quality, i.e., find a
solution with greater length. It starts off with the best solution found so far (BS) by the
ACO and explores its neighborhood N(BS) exhaustively. The neighborhood is defined
as follows. First, x adjacent characters are removed from the best solution BS. The
neighbors of BS are all feasible strings that fill the gap with a new character sequence
of length � 0. If the new character sequence is longer than x, an improved solution has
been found. New solutions are adopted following the first improvement strategy.

Algorithm 6.3: Local Search
1 while improve do
2 improve false
3 p 1
4 while p < |BS| � x do
5 improve improve _ enumerate(BS, p, x)
6 p p+ 1
7 end
8 end

Algorithm 6.3 shows the outer loop of the Local Search procedure. The search continues
as long as it yields further improvements to the solution (lines 1,2,5). In each iteration
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.

of the loop the whole solution is traversed (lines 3,4,6) and the function enumerate is
called for every position p in BS (line 5). The parameters passed are the solution BS,
the current position p, and x, which specifies the number of adjacent characters to be re-
placed with new characters. The function enumerate returns true if an improvement
to the solution was found and false otherwise.

As the name suggests, enumerate (Algorithm 6.4) explores the neighborhood ex-
haustively by complete enumeration. Performing this computationally expensive task
is possible through parallelization by distributing the validation of possible candidate
solutions among the numerous cores of the GPU. Each scheduled thread checks if a
candidate solution is valid in all strings. Breaking down the task of checking one so-
lution further and performing the check in all strings in parallel as well would expose
more parallelism but then each sub-task would be too fine-grained and the coordination
and thread creation overhead would outweigh the actual computational task.

In the first step of the algorithm (line 2) an interval of length w
i

, starting at position f
i

and ending at position g
i

, is calculated for all strings S
i

, 8i : 1  i  n. This interval
marks the gap in each string that is created when x characters are removed from the
solution BS, starting at position p in BS (Figure 6.4). On the left hand side each
interval is limited by the occurrence of the character at position p� 1 in BS and on the
right hand side by that of the character at position p+ x.
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Algorithm 6.4: Local Search - Enumeration
1 function enumerate(BS, p, x)
2 calculate w

i

for S
i

, 8i : 1  i  n
3 r  i, where w

i

= arg min
1in

w
i

4 if w
r

> ! then
5 return false
6 end
7 improve false
8 b bit array of length w

r

9 foreach b h0, . . . , 0i to h1, . . . , 1i do // parallel

10 if b is contained in S
i

, 8i : 1  i  n and |b| > x then
11 best b
12 improve true

13 end
14 end
15 if improve then
16 replace subsequence of BS from position p to p+ x� 1 with best
17 end
18 return improve

19 end

Without loss of generality, let r be the index of the interval with the smallest length
(line 3). Choosing r this way minimizes the run-time of the algorithm which is pro-
portional to the length of the selected interval. If the length of the shortest interval
(w

r

) is longer than ! characters, the enumeration is deemed too costly and is skipped
(lines 4-6). This sets an upper bound to the run-time. The value of ! is dependent on
the capabilities of hardware the program is executed on and will be discussed in more
detail at the end of this section.

All subsequences of the character sequence in the interval [f
r

, g
r

] are possible candidate
solutions (i.e., neighbors) for the Local Search. A candidate solution can be represented
by a bit array b of length w

r

with b = hb1, b2, . . . , bw
r

i and b
e

2 {0, 1}, 8e : 1  e  w
r

.
Bit b

e

set to 1 indicates that the character at position f
r

+ e� 1 is used in the candidate
solution, while set to 0 indicates that the corresponding character is left out.

All possible candidate solutions are enumerated in parallel, see line 9. A sequence of
characters t represented by the bit array b is considered to be a valid candidate solution
if and only if it is a subsequence of all intervals (t � [f

i

, g
i

], 8i : 1  i  n). If a
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candidate solution is valid and contains more characters than x, it is stored as the best
choice best (lines 10-13). If an improved sequence has been found by the enumeration,
the best solution found so far BS is updated and the function returns true (lines 15-18).

Given a bit array of length w
r

, it follows that there are 2wr possible candidate solutions
to explore. The hardware used for benchmarking the implementation of this thesis (see
Table 7.1) is capable of checking millions of possible solutions in a short time. A high
number of threads executing in parallel is needed to utilize all cores of the GPU, but once
all cores are fully saturated, doubling the number of threads also doubles the execution
time. For this setup, the upper bound ! was set to 25, which corresponds to exploring
over 33.5 million candidate solutions in parallel.

The number of characters to be replaced, as defined by x, has a direct impact on the
length w

r

. The more characters are skipped, the more likely it is that even the smallest
gap ([f

r

, g
r

]) is longer than ! and the enumeration is skipped. Following preliminary
tests, the value used for x in the rest of this thesis is randomly chosen from the inter-
val [2, 5] in each invocation of Algorithm 6.3.

41





CHAPTER 7
Tests

For testing the implementation, a subset of the dataset proposed by Shyu and Tsai in [72]
was used. This subset consists of DNA and protein sequences and has been used by
many of the recently published papers that present algorithms to solve the longest com-
mon subsequence problem [2, 54, 77, 86]. Shyu and Tsai randomly selected sequences
from the GenBank1 of the National Center for Biotechnology Information (NCBI) to
create their test set. The exact list of sequences they used is available online2 and the
sequences themselves can be downloaded with tools such as genbank-download3.

The test dataset consists of 20 sets of sequences in total. Half of them are DNA se-
quences with an alphabet size of |⌃| = 4 and the other half are protein sequences with
|⌃| = 20 different characters. For both types of sequences, there are ten sets of strings
with the following number of strings: n 2 {10, 15, 20, 25, 40, 60, 80, 100, 150, 200}.
Strings that were longer than 600 characters have been truncated, strings that were
shorter have been padded with a character that is not part of the alphabet. Therefore, all
strings used for testing have a length of 600.

Unless stated otherwise, each instance was tested with 20 runs on an idle machine. Two
machines were used for testing the implementation. Tests that run primarily on the
CPU were performed on a laptop with a quad-core processor. The tests that stress the
GPU were run on a desktop computer with an NVIDIA GPU. For details on the system
configuration of both machines see Table 7.1.

1
https://www.ncbi.nlm.nih.gov/genbank

2
http://tmue.edu.tw/~sjshyu/public/aco_lcs/accno-aco_lcs.html

3
http://simon.net.nz/articles/genbank-download/
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Table 7.1: The two system configurations used for the tests. The CPU is a quad-core
processor with Hyper-Threading (HT) technology. Therefore, to the operating system
and to OpenCL it appears to have 8 virtual cores.

CPU GPU
Manufacturer Intel NVIDIA
Model name i7-2820QM GeForce GTX 560 Ti
Market launch Early 2011 Early 2011
Operating system Mac OS X 10.8.3 Kubuntu 12.04 LTS
Driver version 1.1 310.14
OpenCL version 1.2 1.1
PyOpenCL version 2013.1 pre-release 2013.1 pre-release
Cores 4 (8 HT) 384 CUDA cores
Clock frequency 2300 MHz 1645 MHz
Available memory 8 GB 1 GB

All times reported are wall-clock times elapsed from the start of the first step of the
ACO, the pheromone initialization, to end of the last iteration of the ACO or LS, when
the final solution has been written to device memory (Algorithm 6.1, lines 3-21).

7.1 Micro Benchmarks
This section presents the results of a series of micro benchmarks. The benchmarks
were chosen to illustrate certain properties of the algorithm or the architecture (CPU or
GPU) the program is executed on. Results obtained from these benchmarks influenced
the parameter settings used for the comparison of the implementation with the work by
Shyu and Tsai (Section 7.2).

7.1.1 Multi-core Speedup
The first micro benchmark measures the possible speedup obtained, when the program
is run on a multi-core CPU, compared to execution on a single-core. The CPU used for
benchmarking uses Intel Turbo Boost Technology to speed up the execution of single
threaded applications. When an application uses only a single core and the other cores
are idle, it automatically over-clocks the busy core. For this test Turbo Boost was dis-
abled with a kernel extension that sets the appropriate CPU processor flags4. On Mac
OS X the number of cores can be restricted with the Instruments tool, which is part of
Apple’s development toolchain. Unfortunately similar tools do not exist for NVIDIA’s
OpenCL implementation so this can be tested on the CPU only.

4
https://github.com/nanoant/DisableTurboBoost.kext
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Figure 7.1: Speedup when executing the program on multiple CPU cores compared to
a single core. Using up to four physical cores the program achieves near linear speedup.
Enabling Hyper-Threading, shown as “4HT” in the figure, gives a total speedup of fac-
tor 5 using 8 virtual cores compared to a single core.

The CPU used for benchmarking is also capable of Hyper-Threading. Hyper-Threading
is Intel’s implementation of simultaneous multithreading, which makes each physical
processor core appear to the operating system and the application as two virtual pro-
cessor cores [49]. The operating system can schedule twice as many threads at once,
leaving the processor with more independent instructions that can be issued simulta-
neously. This allows the processor to better utilize all execution units and reduces the
performance penalty of pipeline stalls.

To test the performance on a varying number of cores the “DNA rat” dataset with 10
strings is taken for testing purposes using 500 iterations and 80 ants. The number of
ants is high enough to saturate all cores. As shown in Figure 7.1, the program is able
to achieve near linear speedup, also called ideal speedup. The speedup S

p

is the ratio
between the execution time on a single core T1 and on multiple cores T

p

(i.e., S
p

= T1
T

p

with p being the number of processors). Therefore, linear speedup means doubling the
number of processors halves the execution time of the program. In this specific case
the program executes 3.77 times faster using 4 cores than on a single core. Enabling
Hyper-Threading gives an additional speedup of 35%, allowing the program to execute
5.07 times faster than on a single core.
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Figure 7.2: The run-time of the program, in seconds, with varying number of ants. Note
that both axes are of logarithmic scale.

7.1.2 Parallel Execution of Threads

It is to be expected that running only a single thread at a time, in our case a single ant,
is a task where the GPU lags behind the CPU by a good margin. The GPU has a lower
clock speed and is not designed and optimized for this kind of workload. When the
number of threads is increased, the parallel architecture of the GPU should kick in and
the GPU should be able to outperform the CPU. The number of iterations in this test is
set to 100 and the dataset used is “DNA rat” with 10 strings.

When only a single core is used (i.e., the number of ants is 1), execution on the CPU
is 7.9 times faster than on the GPU, as shown in Figure 7.2 and Table 7.2. On the CPU,
execution time stays almost the same when the number of ants is increased from one
until it exceeds the number of physical processor cores (in this case 4). After that point
it increases linearly, when the number of ants is doubled, the execution time doubles.

On the GPU the execution time appears to raise in a stepwise pattern. The execution
time of the configurations between 32 and 256 ants is very similar (4.94 to 5.82 seconds).
This pattern can be observed again when the number of ants is doubled from 1024
to 2048. The run-time remains almost unchanged, increasing only by less than 2%,
from 12.49 to 12.70 seconds.

In terms of wall-clock execution time, the GPU is able to outperform the CPU when
there are more than about 1300 ants working in parallel and the CPU is running at full
capacity, with four cores and Hyper-Threading enabled. If the CPU is restricted to single
core execution, the GPU would be faster with 85 ants or more.
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Table 7.2: The run-time of the program, in seconds, with varying number of ants and
the respective speedup when executing on the GPU.

ants CPU time GPU time GPU speedup
1 0.20 1.54 0.13
2 0.21 1.80 0.12
4 0.22 2.18 0.10
8 0.24 2.72 0.09

16 0.32 3.52 0.09
32 0.50 4.94 0.10
64 0.85 5.03 0.17

128 1.52 5.34 0.28
256 2.86 5.82 0.49
512 5.48 7.16 0.77

1024 10.54 12.49 0.84
2048 20.45 12.70 1.61

7.1.3 Number of Ants vs. Number of Iterations

This scenario compares the impact of two parameters on the solution quality: the num-
ber of iterations and the number of ants. With Ant Colony Optimization, increasing
the number of iterations should lead to an increase in the solution quality. Pheromones
accumulated in earlier iterations guide the ants towards good solution components and
a balanced heuristic function ensures new solutions are explored. Figure 7.3(a) shows
this is indeed the case.

When the number of ants working simultaneously is increased, the search in the solu-
tion space is more diversified and a greater number of new solutions is found in each
iteration. Recommended values for the number of ants are between 10 and 50 [78]. As
Figure 7.3(b) shows, increasing the number of ants further, while keeping the iteration
count constant, does improve the solution quality even more.

The impact of the number of iterations on the run-time is independent of the device
the programs runs on. Individual iterations are performed sequentially, doubling the
number of iterations always doubles the execution time of the program. As shown in
Section 7.1.2 and Figure 7.4, the same consideration does not hold true for the number
of ants when the program is run on the GPU. On the GPU, increasing the number of
iterations from 32 to 2048 slows the program down by a factor of 32 (Figure 7.4(a)),
while an increase in the number of ants from 32 to 2048 slows it down by only a factor
of 2.6 (Figure 7.4(b)).
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Figure 7.3: The length of the solutions found by varying the number of iterations (a) and
ants (b), displayed as the range of mean ± standard deviation. Note the logarithmic
scale on the x-axis. The dataset is “DNA rat” with 10 strings.
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Table 7.3: The average length of the solutions found by two different heuristic func-
tions on DNA and protein datasets with varying number of strings (n). The heuristic
function used by Shyu and Tsai is listed as ⌘1 and compared with the heuristic function
of this implementation, ⌘2. In all cases ⌘2 provides better or equal results. Statistical
significance was tested with a Wilcoxon rank-sum test.

n 10 15 20 25 40 60 80 100 150 200

DNA ⌘1 181.2 164.2 149.5 150.9 139.2 132.1 121.7 120.8 108.8 104.7
⌘2 183.8 167.8 155.6 154.4 141.0 134.1 124.8 124.2 114.0 107.2

Protein ⌘1 66.5 56.5 54.0 50.9 46.5 43.7 42.5 41.8 41.5 40.6
⌘2 68.0 59.0 55.6 52.6 47.0 44.4 43.0 42.0 42.0 41.4

7.1.4 Heuristic Function
The implementation described in Section 6.1 uses a different heuristic function than the
one used by Shyu and Tsai. Their greedy function is solely based on the number of
characters skipped:

⌘1 =
1P

1in

(v
i

� u
i

)

The heuristic function of this thesis also takes into account the number of remaining
characters:

⌘2 =
1

P
1in

(v
i

�u

i

)
(|s

i

|�u

i

)

The impact of the new function ⌘2 is tested with 32 ants and 2000 iterations. As shown
in Table 7.3, the modified heuristic function ⌘2 consistently yields better results than ⌘1.
The results were tested for statistical significance using the SciPy [42] implementation
of the Wilcoxon rank-sum test. The obtained error probability is always less than 1.5%,
except in the instance “Protein 100” (12%).

7.2 Results
The implementation presented in this work uses OpenCL, which supports execution of
the same program on CPU and GPU, allowing a fair side-by-side comparison of the
algorithm on both architectures. This is in stark contrast to a lot of recently published
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papers that compare a parallel GPU implementation with a sequential one that runs only
on a single core of the CPU. A detailed critique of this practice can be found in Lee et
al. [51].

Based on the micro benchmarks of Section 7.1, two sets of parameters were chosen and
their performance was tested on CPU and GPU. The first parameter set is called setCPU
and is a conservative setting using 32 ants and 2000 iterations. As the name implies, it
is designed to perform well on the CPU.

The second set of parameters is optimized for execution on the GPU and therefore called
setGPU. This setting uses a high number of ants and a lower number of iterations (200).
The number of ants is restricted only by the amount of memory available. When oper-
ating on datasets with 10 to 100 strings, the number of ants is set to 3000. With larger
datasets, the number of ants has to be decreased to fit in the 1GB of memory available
on the GPU used for testing. The number of ants is set to 2000 with datasets of 150
strings and to 1500 with datasets of 200 strings.

All the other parameters used for the ACO are the same for both parameter sets and
listed in Table 6.1. The Local Search was configured to use a width of two to five
adjacent characters. Local Search is performed twice on the best solution found so far,
once after half of the iterations and once after the last iteration. Applying the Local
Search more often did not result in an increase in solution quality.

Tables A.1 to A.4 in Appendix A show the results of running the program with the pa-
rameter sets setCPU and setGPU on the CPU and the GPU, respectively. Table A.1
and Table A.2 use the “DNA rat” dataset while Table A.3 and Table A.4 use the “pro-
tein virus” dataset. The ACO was executed without Local Search for Table A.1 and
Table A.3. Table A.2 and Table A.4 show the results of the ACO using Local Search.

Running the program with the same parameters on the CPU and the GPU gives almost
the same solution quality. This is to be expected because the same program is run on
both devices.

Both parameter sets, setCPU and setGPU, produce solutions of similar quality. setGPU
gives slightly better solutions in general, the difference in terms of length of the solution
is up to 2 characters. The solution quality of the ACO alone is comparable to the results
reported by Shyu and Tsai in [72] for their ACO plus Local Search hybrid. On DNA
sequences the solution quality is equally good or slightly worse (Table A.7) and on
protein sequences it is consistently better (Table A.8).
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Table 7.4: The run-times (in seconds) when executing the program on the CPU and
on the GPU using the same parameter set setGPU on both architectures with varying
number of strings (n). The GPU speedup is provided for each instance and additionally
the average speedup and its standard deviation is shown in the last line.

DNA Protein
CPU GPU GPU CPU GPU GPU

n time [s] time [s] speedup time [s] time [s] speedup
10 43.6 25.9 1.68 89.8 48.0 1.87
15 52.8 42.3 1.25 102.7 63.7 1.61
20 164.2 75.7 2.17 126.3 85.5 1.48
25 214.5 107.0 2.00 149.8 110.9 1.35
40 316.7 169.9 1.86 220.0 177.3 1.24
60 502.1 251.6 2.00 316.7 250.8 1.26
80 984.9 420.6 2.34 480.2 320.4 1.50

100 777.7 382.5 2.03 588.4 401.9 1.46
150 1634.0 1056.5 1.55 786.2 670.1 1.17
200 684.5 477.6 1.43 768.9 698.8 1.10

Average speedup: 1.83 (0.35) Average speedup: 1.41 (0.23)

The Local Search used in this implementation has only a small impact on the solution
quality. The solution quality of the ACO alone and ACO plus Local Search combined
are compared in Table A.5 for DNA sequences and Table A.6 for protein sequences.
Only in three cases, the “DNA rat” dataset with n 2 {10, 15, 40}, Local Search improves
the solution quality in a statistically significant way. Therefore, the remainder of this
chapter discussing the run-time of the program will focus only on the ACO.

With regard to the run-time, the parameter sets obviously favor the architecture they
were designed for. Using setCPU on the CPU and setGPU on the GPU results in much
shorter run-times than switching the parameter sets on the architectures.

When both architectures use the parameter set setGPU, the GPU is on average 1.6 times
faster than the CPU (1.83 on DNA sequences, 1.41 on protein sequences), as shown in
Table 7.4. As a point of reference, Cagnoni et al. [11] report a speed gain of “1 to no
more than 5-6” for the GPU on almost identical hardware for their implementation of
a particle swarm optimization, “probably one of the algorithms that is most suitable for
parallelization on massively parallel architectures”.

Comparing the wall-clock time of the CPU using the setCPU parameters with the GPU
using the setGPU parameters, the CPU is faster in all tests. As shown in Table 7.5,
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Table 7.5: The run-times (in seconds) when executing the program on the CPU and
on the GPU using the same parameter set setCPU on both architectures with varying
number of strings (n). The GPU speedup is provided for each instance and additionally
the average speedup and its standard deviation is shown in the last line.

DNA Protein
CPU GPU GPU CPU GPU GPU

n time [s] time [s] speedup time [s] time [s] speedup
10 6.9 25.9 0.27 11.7 48.0 0.24
15 9.0 42.3 0.21 13.4 63.7 0.21
20 21.2 75.7 0.28 16.6 85.5 0.19
25 27.0 107.0 0.25 19.3 110.9 0.17
40 37.8 169.9 0.22 26.1 177.3 0.15
60 53.5 251.6 0.21 37.2 250.8 0.15
80 103.7 420.6 0.25 52.0 320.4 0.16

100 78.8 382.5 0.21 64.5 401.9 0.16
150 258.6 1056.5 0.24 131.9 670.1 0.20
200 132.0 477.6 0.28 175.0 698.8 0.25

Average speedup: 0.24 (0.03) Average speedup: 0.19 (0.04)

in the DNA tests the CPU is faster than the GPU by a factor of 3.5 to 4.85 and in the
protein tests by a factor of 4 to 6.8. This is because we compare the GPU to a multi-core
CPU, not just to a single core. Compared to a single core, the GPU would be up to 40%
faster in the DNA tests when the multi-core speedup shown in Section 7.1.1 is taken
into account.
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CHAPTER 8
Conclusion

In this master thesis a hybrid metaheuristic for calculating the longest common subse-
quence of multiple strings was presented. Based on the work by Shyu and Tsai [72]
a parallel Ant Colony Optimization (ACO) incorporating a Local Search (LS) was de-
veloped. The algorithm was designed for execution on modern multi-core CPUs and
massively parallel processor architectures such as graphics processing units (GPUs).

The ACO part of the implementation makes use of an improved heuristic function, al-
lowing the ACO alone to perform on par with Shyu and Tsai’s ACO + LS hybrid in
terms of solution quality. The highly parallel Local Search employed by this imple-
mentation cannot improve the solutions significantly. This approach can outperform the
work of Shyu and Tsai, but the overall performance still falls behind the state-of-the-art
approach, a Hyper Heuristic by Tabataba et al. [77].

Using OpenCL for the implementation of the algorithm allows a fair comparison of the
performance of CPU and GPU as the same program can be executed on both archi-
tectures. As tested on a multi-core CPU, the implementation of the ACO scales lin-
early with the number of cores and makes good use of virtual cores exposed by Hyper-
Threading. Tests on DNA datasets show that the same program executes on average 1.8
times faster on the GPU than on the multi-core CPU when the ACO uses thousands of
parallel ants and few iterations. When using a CPU optimized parameter set (with few
ants ant more iterations) this speedup shifts towards the multi-core CPU (average 4.2).
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8.1 Future Work
In this work the ACO is parallelized by performing the search procedure of the ants
in parallel. In each iteration of the ACO, the ants construct their solutions in tandem.
Having more ants leads to a higher level of parallelism, which in turn leads to higher
performance on parallel architectures such as GPUs.

Using a higher number of ants does not necessarily improve the solution quality of
ACOs in general beyond a certain point. There is little benefit in using more than a
couple of thousand ants, as seen in the micro benchmarks in Section 7.1.3 and reported
by Weiss [85]. Splitting ants into colonies that are able to operate independently of each
other is one approach to make use of a very high number of ants. The work of Delévacq
et al. [18] shows promising results with several ant colonies on GPUs.

The Local Search used in this work explores neighborhoods that only slightly improve
the solutions despite exploring the neighborhoods exhaustively. A promising approach
would be to design very large neighborhood structures that can be explored in parallel.
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APPENDIX A
Results

57



Table A.1: DNA rat - ACO. The average length of the longest common subsequence (LCS) in characters, the average run-
time in seconds, and the corresponding standard deviations. The dataset is “DNA rat” with a varying number of strings (n).
The parameter sets used, setCPU and setGPU, are explained in Section 7.2 and the general ACO parameters are listed in
Table 6.1. The two parameter sets were tested on both architecture (CPU and GPU).

CPU GPU
setCPU setGPU setCPU setGPU

n LCS time [s] LCS time [s] LCS time [s] LCS time [s]
10 183.7 (0.7) 6.9 (0.5) 184.5 (0.6) 43.6 (0.5) 183.8 (0.6) 99.1 (0.0) 185.3 (1.0) 25.9 (0.0)
15 167.7 (0.6) 9.0 (0.3) 169.5 (0.9) 52.8 (0.5) 169.8 (1.7) 141.8 (0.0) 168.7 (0.6) 42.3 (0.0)
20 155.4 (0.5) 21.2 (0.5) 155.2 (0.4) 164.2 (4.8) 155.1 (0.2) 448.8 (0.2) 155.6 (0.7) 75.7 (0.1)
25 154.5 (1.1) 27.0 (0.9) 155.4 (0.9) 214.5 (5.9) 154.1 (0.2) 588.3 (0.1) 155.6 (0.6) 107.0 (0.1)
40 141.0 (0.3) 37.8 (1.3) 142.7 (0.5) 316.7 (9.0) 141.2 (0.8) 877.9 (1.1) 142.3 (0.7) 169.9 (0.2)
60 134.1 (0.9) 53.5 (1.9) 135.4 (0.6) 502.1 (52.2) 133.8 (0.5) 1280.9 (0.4) 135.3 (0.8) 251.6 (0.6)
80 124.8 (0.9) 103.7 (2.5) 127.2 (0.8) 984.9 (90.0) 126.7 (1.3) 2433.6 (1.3) 127.5 (0.9) 420.6 (1.2)

100 124.0 (0.6) 78.8 (3.4) 125.4 (0.7) 777.7 (77.8) 124.8 (0.5) 1983.7 (2.3) 125.6 (0.8) 382.5 (1.4)
150 114.0 (0.9) 258.6 (15.6) 115.3 (0.8) 1634.0 (176.2) 113.2 (0.4) 5959.9 (3.3) 115.1 (1.0) 1056.5 (1.1)
200 106.8 (1.0) 132.0 (8.9) 108.4 (1.0) 684.5 (74.8) 107.9 (1.0) 3193.0 (2.4) 108.8 (1.1) 477.6 (3.1)
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Table A.2: DNA rat - ACO + Local Search. The average length of the longest common subsequence (LCS) in characters,
the average run-time in seconds, and the corresponding standard deviations. The dataset is “DNA rat” with a varying number
of strings (n). The parameter sets used, setCPU and setGPU, are explained in Section 7.2 and the general ACO parameters
are listed in Table 6.1. The two parameter sets were tested on both architecture (CPU and GPU). Some values are missing
because the GPU ran out of memory during the Local Search.

CPU GPU
setCPU setGPU setCPU setGPU

n LCS time [s] LCS time [s] LCS time [s] LCS time [s]
10 185.0 (1.2) 8.5 (0.7) 184.5 (0.7) 57.9 (3.3) 183.7 (0.6) 99.6 (0.0) 184.9 (1.3) 39.7 (2.8)
15 168.8 (0.5) 9.7 (0.5) 170.1 (0.8) 69.1 (3.7) 168.6 (2.0) 142.3 (0.1) 168.4 (0.7) 60.4 (3.5)
20 155.7 (0.5) 21.6 (1.2) 155.5 (1.0) 197.7 (7.3) 155.1 (0.3) 449.4 (0.2) 155.8 (0.7) 97.7 (4.4)
25 154.7 (1.1) 27.9 (1.5) 155.8 (0.7) 262.1 (9.6) 154.0 (0.0) 588.8 (0.1) 155.8 (0.8) 133.4 (4.4)
40 141.6 (0.7) 39.2 (2.3) 143.2 (1.1) 392.5 (16.7) 141.5 (0.8) 878.8 (0.2) 142.6 (0.6) 209.6 (7.7)
60 133.8 (0.8) 54.9 (3.6) 135.4 (0.9) 565.3 (38.5) 134.1 (0.5) 1281.8 (0.3) 135.8 (0.7) 311.6 (12.2)
80 125.3 (1.3) 105.0 (5.2) 127.5 (0.8) 1070.8 (38.5) 126.5 (1.3) 2434.3 (1.0)

100 124.4 (0.7) 81.7 (3.8) 125.7 (0.8) 865.3 (47.2) 124.9 (0.5) 1987.1 (2.9)
150 114.3 (0.9) 258.8 (11.2) 115.3 (0.8) 1723.7 (69.7) 113.6 (0.5) 5962.1 (1.8)
200 107.7 (1.3) 133.9 (5.7) 108.7 (1.1) 775.8 (27.4) 108.1 (0.9) 3192.2 (3.3)
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Table A.3: Protein virus - ACO. The average length of the longest common subsequence (LCS) in characters, the average
run-time in seconds, and the corresponding standard deviations. The dataset is “Protein virus” with a varying number of
strings (n). The parameter sets used, setCPU and setGPU, are explained in Section 7.2 and the general ACO parameters are
listed in Table 6.1. The two parameter sets were tested on both architecture (CPU and GPU).

CPU GPU
setCPU setGPU setCPU setGPU

n LCS time [s] LCS time [s] LCS time [s] LCS time [s]
10 68.0 (0.0) 11.7 (1.0) 69.0 (0.4) 89.8 (1.7) 68.0 (0.0) 295.3 (0.2) 68.9 (0.3) 48.0 (0.1)
15 59.0 (0.0) 13.4 (0.4) 59.7 (0.5) 102.7 (3.7) 59.0 (0.0) 370.5 (0.2) 60.0 (0.5) 63.7 (0.3)
20 55.6 (0.5) 16.6 (0.6) 55.8 (0.4) 126.3 (3.4) 55.5 (0.5) 467.2 (0.4) 55.1 (0.4) 85.5 (0.2)
25 52.6 (0.5) 19.3 (0.7) 52.8 (0.4) 149.8 (8.8) 51.8 (0.4) 577.3 (0.5) 52.2 (0.4) 110.9 (0.2)
40 47.0 (0.0) 26.1 (1.7) 47.8 (0.4) 220.0 (10.0) 47.0 (0.0) 837.0 (0.9) 47.2 (0.4) 177.3 (0.2)
60 44.4 (0.5) 37.2 (3.0) 44.3 (0.5) 316.7 (7.7) 44.0 (0.0) 1163.8 (1.6) 44.3 (0.5) 250.8 (0.8)
80 43.0 (0.2) 52.0 (2.4) 43.0 (0.2) 480.2 (56.6) 42.2 (0.4) 1488.6 (1.0) 43.0 (0.0) 320.4 (0.6)

100 42.0 (0.2) 64.5 (3.1) 43.0 (0.0) 588.4 (98.7) 42.1 (0.3) 1858.2 (1.9) 43.0 (0.2) 401.9 (2.4)
150 42.0 (0.0) 131.9 (5.2) 42.6 (0.5) 786.2 (109.2) 42.0 (0.0) 3463.9 (0.9) 42.6 (0.5) 670.1 (1.0)
200 41.4 (0.5) 175.0 (6.9) 42.0 (0.2) 768.9 (71.7) 41.0 (0.0) 4632.8 (6.2) 42.0 (0.2) 698.8 (1.2)
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Table A.4: Protein virus - ACO + Local Search. The average length of the longest common subsequence (LCS) in characters,
the average run-time in seconds, and the corresponding standard deviations. The dataset is “Protein virus” with a varying
number of strings (n). The parameter sets used, setCPU and setGPU, are explained in Section 7.2 and the general ACO
parameters are listed in Table 6.1. The two parameter sets were tested on both architecture (CPU and GPU). Some values
are missing because the GPU ran out of memory during the Local Search.

CPU GPU
setCPU setGPU setCPU setGPU

n LCS time [s] LCS time [s] LCS time [s] LCS time [s]
10 68.1 (0.3) 17.3 (3.2) 69.1 (0.3) 99.0 (10.8) 68.0 (0.0) 296.8 (1.5) 69.0 (0.7) 53.6 (1.2)
15 59.0 (0.0) 15.4 (1.0) 59.6 (0.6) 112.6 (5.4) 59.0 (0.0) 370.9 (0.2) 60.0 (0.4) 69.6 (0.9)
20 55.5 (0.5) 19.8 (1.8) 55.8 (0.5) 150.0 (9.7) 55.3 (0.5) 467.4 (0.6) 55.2 (0.4) 96.0 (6.8)
25 52.5 (0.5) 22.3 (1.8) 52.9 (0.4) 180.3 (16.8) 52.0 (0.0) 578.2 (0.9) 52.3 (0.5) 120.5 (1.7)
40 47.0 (0.0) 27.7 (1.6) 47.8 (0.4) 240.6 (11.5) 46.7 (0.5) 838.0 (0.6) 47.1 (0.4) 189.5 (1.7)
60 44.3 (0.5) 43.5 (5.1) 44.4 (0.5) 342.4 (11.1) 44.0 (0.0) 1166.7 (1.7) 44.0 (0.2) 268.0 (1.0)
80 43.0 (0.2) 58.5 (14.8) 43.0 (0.0) 494.5 (56.5) 42.0 (0.0) 1488.2 (1.2)

100 42.1 (0.3) 62.4 (8.5) 43.0 (0.0) 605.7 (42.2) 42.0 (0.0) 1858.7 (1.0)
150 42.0 (0.0) 155.3 (26.9) 42.6 (0.5) 799.4 (36.4) 42.0 (0.0) 3467.8 (4.6)
200 41.1 (0.4) 190.3 (28.8) 41.9 (0.3) 780.6 (47.7) 41.4 (0.5) 4633.5 (5.5)
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Table A.5: DNA rat - ACO compared with ACO + Local Search. The average length of the longest common subsequence
in characters and the corresponding standard deviation. Statistical significance according to a Wilcoxon rank-sum test with
an error level of 5% is shown in column p. The dataset is “DNA rat” with a varying number of strings (n). The parameter
sets used, setCPU and setGPU, are explained in Section 7.2 and the general ACO parameters are listed in Table 6.1. The
two parameter sets were tested on both architecture (CPU and GPU).

CPU GPU
setCPU setGPU setCPU setGPU

n ACO p ACO+LS ACO p ACO+LS ACO p ACO+LS ACO p ACO+LS
10 183.7 (0.7) < 185.0 (1.2) 184.5 (0.6) ⇡ 184.5 (0.7) 183.8 (0.6) ⇡ 183.7 (0.6) 185.3 (1.0) ⇡ 184.9 (1.3)
15 167.7 (0.6) < 168.8 (0.5) 169.5 (0.9) ⇡ 170.1 (0.8) 169.8 (1.7) > 168.6 (2.0) 168.7 (0.6) ⇡ 168.4 (0.7)
20 155.4 (0.5) ⇡ 155.7 (0.5) 155.2 (0.4) ⇡ 155.5 (1.0) 155.1 (0.2) ⇡ 155.1 (0.3) 155.6 (0.7) ⇡ 155.8 (0.7)
25 154.5 (1.1) ⇡ 154.7 (1.1) 155.4 (0.9) ⇡ 155.8 (0.7) 154.1 (0.2) ⇡ 154.0 (0.0) 155.6 (0.6) ⇡ 155.8 (0.8)
40 141.0 (0.3) < 141.6 (0.7) 142.7 (0.5) ⇡ 143.2 (1.1) 141.2 (0.8) ⇡ 141.5 (0.8) 142.3 (0.7) ⇡ 142.6 (0.6)
60 134.1 (0.9) ⇡ 133.8 (0.8) 135.4 (0.6) ⇡ 135.4 (0.9) 133.8 (0.5) ⇡ 134.1 (0.5) 135.3 (0.8) ⇡ 135.8 (0.7)
80 124.8 (0.9) ⇡ 125.3 (1.3) 127.2 (0.8) ⇡ 127.5 (0.8) 126.7 (1.3) ⇡ 126.5 (1.3) 127.5 (0.9)

100 124.0 (0.6) ⇡ 124.4 (0.7) 125.4 (0.7) ⇡ 125.7 (0.8) 124.8 (0.5) ⇡ 124.9 (0.5) 125.6 (0.8)
150 114.0 (0.9) ⇡ 114.3 (0.9) 115.3 (0.8) ⇡ 115.3 (0.8) 113.2 (0.4) ⇡ 113.6 (0.5) 115.1 (1.0)
200 106.8 (1.0) ⇡ 107.7 (1.3) 108.4 (1.0) ⇡ 108.7 (1.1) 107.9 (1.0) ⇡ 108.1 (0.9) 108.8 (1.1)

62



Table A.6: Protein virus - ACO compared with ACO + Local Search. The average length of the longest common subse-
quence in characters and the corresponding standard deviation. Statistical significance according to a Wilcoxon rank-sum
test with an error level of 5% is shown in column p. The dataset is “Protein virus” with a varying number of strings (n).
The parameter sets used, setCPU and setGPU, are explained in Section 7.2 and the general ACO parameters are listed in
Table 6.1. The two parameter sets were tested on both architecture (CPU and GPU).

CPU GPU
setCPU setGPU setCPU setGPU

n ACO p ACO+LS ACO p ACO+LS ACO p ACO+LS ACO p ACO+LS
10 68.0 (0.0) ⇡ 68.1 (0.3) 69.0 (0.4) ⇡ 69.1 (0.3) 68.0 (0.0) ⇡ 68.0 (0.0) 68.9 (0.3) ⇡ 69.0 (0.7)
15 59.0 (0.0) ⇡ 59.0 (0.0) 59.7 (0.5) ⇡ 59.6 (0.6) 59.0 (0.0) ⇡ 59.0 (0.0) 60.0 (0.5) ⇡ 60.0 (0.4)
20 55.6 (0.5) ⇡ 55.5 (0.5) 55.8 (0.4) ⇡ 55.8 (0.5) 55.5 (0.5) ⇡ 55.3 (0.5) 55.1 (0.4) ⇡ 55.2 (0.4)
25 52.6 (0.5) ⇡ 52.5 (0.5) 52.8 (0.4) ⇡ 52.9 (0.4) 51.8 (0.4) ⇡ 52.0 (0.0) 52.2 (0.4) ⇡ 52.3 (0.5)
40 47.0 (0.0) ⇡ 47.0 (0.0) 47.8 (0.4) ⇡ 47.8 (0.4) 47.0 (0.0) ⇡ 46.7 (0.5) 47.2 (0.4) ⇡ 47.1 (0.4)
60 44.4 (0.5) ⇡ 44.3 (0.5) 44.3 (0.5) ⇡ 44.4 (0.5) 44.0 (0.0) ⇡ 44.0 (0.0) 44.3 (0.5) ⇡ 44.0 (0.2)
80 43.0 (0.2) ⇡ 43.0 (0.2) 43.0 (0.2) ⇡ 43.0 (0.0) 42.2 (0.4) ⇡ 42.0 (0.0) 43.0 (0.0)

100 42.0 (0.2) ⇡ 42.1 (0.3) 43.0 (0.0) ⇡ 43.0 (0.0) 42.1 (0.3) ⇡ 42.0 (0.0) 43.0 (0.2)
150 42.0 (0.0) ⇡ 42.0 (0.0) 42.6 (0.5) ⇡ 42.6 (0.5) 42.0 (0.0) ⇡ 42.0 (0.0) 42.6 (0.5)
200 41.4 (0.5) ⇡ 41.1 (0.4) 42.0 (0.2) ⇡ 41.9 (0.3) 41.0 (0.0) ⇡ 41.4 (0.5) 42.0 (0.2)
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Table A.7: DNA rat - ACO compared with Shyu and Tsai’s ACO+LS [72]. The average
length of the longest common subsequence in characters and the corresponding standard
deviation. Tests were performed on the GPU using parameter set setGPU. The dataset
is “DNA rat” with a varying number of strings (n).

setGPU Shyu & Tsai
ACO ACO+LS

n GPU CPU
10 185.3 (1.0) 182.0 (2.4)
15 168.7 (0.6) 166.6 (1.3)
20 155.6 (0.7) 160.0 (1.3)
25 155.6 (0.6) 155.8 (1.3)
40 142.3 (0.7) 143.4 (0.8)
60 135.3 (0.8) 142.4 (1.7)
80 127.5 (0.9) 128.8 (0.7)

100 125.6 (0.8) 124.6 (2.0)
150 115.1 (1.0) 115.6 (1.3)
200 108.8 (1.1) 114.6 (2.3)

Table A.8: Protein virus - ACO compared with Shyu and Tsai’s ACO+LS [72]. The
average length of the longest common subsequence in characters and the corresponding
standard deviation. Tests were performed on the GPU using parameter set setGPU. The
dataset is “Protein virus” with a varying number of strings (n).

setGPU Shyu & Tsai
ACO ACO+LS

n GPU CPU
10 68.9 (0.3) 65.6 (0.8)
15 60.0 (0.5) 55.8 (1.3)
20 55.1 (0.4) 53.6 (1.3)
25 52.2 (0.4) 49.6 (0.8)
40 47.2 (0.4) 46.4 (0.8)
60 44.3 (0.5) 43.4 (0.8)
80 43.0 (0.0) 43.0 (0.4)

100 43.0 (0.2) 42.0 (1.1)
150 42.6 (0.5) 42.6 (0.8)
200 42.0 (0.2) 41.0 (0.2)
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