

Proceedings of

2014 10th IEEE Workshop on
Factory Communication Systems

WFCS 2014

May 5-7, 2014

Toulouse, France

Proceedings Editor

Zoubir Mammeri
Paul Sabatier University

Toulouse, France

IEEE Catalog Number: CFP14WFC-ART
ISBN: 978-1-4799-3235-1

Concept for a Safety-Controller based on uncertified Hardware

Bernd Thiemann, Andreas Platschek
Vienna University of Technology
Institute of Computer Technology

Vienna, Gußhausstraße 27-29
{thiemann, platschek}@ict.tuwien.ac.at

Abstract

This work suggests new solutions for safe systems in
industrial applications. Nowadays automation systems
get more complex, so the microcontroller has to be re-
placed with a more powerful CPU. The preferred solution
is to use commercial off-the-shelf (COTS) general purpose
CPUs. The hardware has to be analyzed in detail to es-
timate the behavior in case of a fault. With state-of-the
art processors this is not possible anymore. A concept to
avoid this is “coded processing” as mentioned in the stan-
dard for industrial safety systems IEC 61508 [1]. The goal
of this research is to analyze a concept which meets the
demands of the IEC 61508 safety integrity level 3 (SIL 3)
only based on software techniques to avoid any hardware
analysis and dependencies. The evaluation of the con-
cept is done by theoretical analysis based on fault models
found in literature. The practical tests are done by a fault
injection software which is developed in the course of this
research.

1 Introduction

Over the last years industrial safety systems based on
microprocessors have widely replaced hard-wired solu-
tions. The advantage of microprocessor based systems is
a cost-effective installation and its flexibility during use.
Changes in the safety concept can be adopted easily, be-
cause there is no need to install new wires. Only a repro-
gramming of the safety-controller is necessary. The task
of a safety-controller is to monitor the industrial process
and execute a safe stop to transfer the process into a safe
state if dangerous conditions are detected. So it is impor-
tant for the safety-controller to be safe itself, so it does not
cause risks and detects dangerous behavior with a prede-
termined probability.

To meet the demands of functional safety and error
detection the IEC 61508 [1] shows among others design
guidelines for safety equipment. Another important part
is the definition of the SIL. The four SILs stand for dif-
ferent Safe Failure Fractions (SFF) which the equipment
has to meet to comply with the standard. For SIL 3 the
probability of failure per hour (PFH) of 10−7 [1, Part 2,

Table 3] or better has to be fulfilled. In dependency on the
hardware fault tolerance (HFT) for SIL 3 a SFF of > 99%
for zero HFT and a SFF of 90% ≤ 99% for single HFT is
required.

Common safety-controllers on the market achieve the
required SIL 3 due to redundant hardware. A typical
safety platform is shown in Fig. 1. Certified components
are hatched, not certified components are blank. There are
two independent hardware channels, each executing an in-
dependent safety application on top of it. The architecture
can be 1oo2D (one out-of two including diagnostics) or
2oo2D. The only cross-communication between the chan-
nels is for diagnostic purposes. Each channel monitors
the other channel. If one channel detects an anomaly in
the other one a safe state has to be initiated. The commu-
nication with the environment takes place via a network
interface card (NIC) and a safe fieldbus. Safety controllers
typically do not have any direct interfaces to the industrial
process.

The problem of this structure is the certified hardware
wherefore a long and costly certification process is re-
quired and re-usability is (in contrast to software) limited.
The interior of hardware components is typically intellec-
tual property of the manufacturer and not accessible to the
developers of safety controllers. Hence it is hard to ac-
complish guaranteed fault reaction without the knowledge
of the internal structures. A solution for hardware inde-
pendence is to shift the guaranteed fault detection (due to
the redundant hardware) entirely into the software. For
this case the hardware has to be seen as HFT 0, because
with uncertified hardware one can not rely on their fault
reaction if any anomaly occurs.

To monitor the hardware and detect nearly all possi-
ble hardware faults, coded processing can be used. Coded
processing uses an arithmetic code, which fulfills the re-
quirements of Eq. 1. X ′ and Y ′ stand for the coded val-
ues of X and Y , whereas ⊕ is the coded operation for +.
The coded mathematical operation applied to two coded
operands leads to an result which is already encoded.

X ′ ⊕ Y ′ = (X + Y)
′ (1)

One kind of arithmetic codes is the AN-Code. The the-
oretical construct was introduced by Brown [2] and ex-
tended by Forin [3]. The requirement to use this code is

 978-1-4799-3235-1/14/$31.00 ©2014 IEEE

Figure 1. Common safety equipment

that the used processor has to have a wider bitlength than
the largest used number in the safety application requires.
Nowadays processors typically contain at least an 64 bit
arithmetical logical unit and even bigger single instruc-
tion multiple data units (up to 256 bit [4]). AN-codes use
a constant A to encode a number xn and generate xc, as
shown in eq. 2.

xc = A · xn. (2)

With this encoding it is possible to detect failed arithmetic
operations and some faults in memory. The modulo op-
eration of every variable, regardless if it is in a proces-
sor register after a calculation or in the memory, has to
be zero to accomplish the encoding. If the modulo test
fails a safe state has to be established. The AN-encoding
only detects wrong operands but not exchanged operands
or wrong operations. For this purpose ANB-coding can be
used. B is called the signature and is added to every xc.
Thus the result of any arithmetic operation additionally
depends on the composition of the signatures. The signa-
ture after an addition of two encoded variables xc1 + xc2

has to be B1 + B2. This way it is possible to discover
wrong or exchanged operands and operators. Forin [3]
also introduced an additional date D added to the ANB-
encoded variable creating the ANBD-encoding to detect a
phenomena called “lost update”. It happens if a variable
is read from the memory, modified and should be stored in
the same place in the memory again, but due to an error it
is stored somewhere else. Afterwards the previous value
is read from the correct position in memory. The dynamic
value of D changes every calculation cycle so a lost up-
date is detectable, because the attached date differs from
the expected one.

These encodings lead to increased error detecting capa-
bilities but require additional computational performance.
Due to the good progress of processor performance and
the possibility to use state-of-the art components the dis-
advantage of the raised computational needs can be com-
pensated. Additionally one gets the opportunity to use un-
certified hardware for safety related applications.

2 Concept

Before the concept can be developed some assumptions
have been made.

Figure 2. Hardware independent safety ap-
proach

2.1 Assumptions
First there are no special demands on hardware perfor-

mance. It is assumed that the hardware is fast enough to
calculate the results in the predefined period. If this con-
straint can not be met, it leads to reduced availability, but
the safety related behavior must not be effected. For the
input and output of data it is mandatory that there are no
direct interfaces to the monitored industrial process. Ev-
ery input and output transaction is sent/received via a safe
fieldbus to safe input and output modules. These output
modules switch off the power in case of a detected er-
ror. The certified software is supposed to be developed
according to IEC 61508 part 3. For the uncertified soft-
ware (GPOS) no safety assumptions can be made. The
used hypervisor is a software which can be used to ex-
ecute different operating systems on the same hardware.
It is responsible for the isolation between the guests and
a fair sharing of processor time. If an error is detected,
the fail-silent state is considered the fail-safe state, e. g.
no messages may be sent by the controller. All the safe
output modules will switch off to reach an de-energized
situation after a certain preconfigured time period without
a message from the controller.

2.2 High Level Concept
Based on this assumptions a concept for a safe com-

puter system has been developed. The high level architec-
ture is shown in Fig. 2 and is based on information re-
dundancy and time diversity. The hatched components
have to be certified, the blank ones not. On the uncertified
hardware a type-1 hypervisor is executed, which isolates
the two safety applications against each other. Optionally
there can be a general purpose operating system (GPOS)
beside the safety applications.

The calculated data is sent via a Peripheral Component
Interconnect express (PCIe) to the NIC, which generates
the data-packets for the fieldbus. A second unit on the
PCIe interface is the watchdog. This item must achieve
the high SFF of > 99% requested by the IEC 61508 [1].

The PCIe interface for the watchdog is widespread, so it
can be used with a wide range of available industrial PCs
on the market. Its tasks are quite simple so it is easy to de-
sign and certify. The watchdog is responsible for measur-
ing the analog environmental values like processor supply
voltage and temperatures. For this, there are some addi-
tional analog inputs which are necessary, because analog
data can not be routed via the PCIe interface. The PCIe
interface of the watchdog is needed to receive a heart-
beat from the safety applications and to check if there is
progress in the software control-flow. Additionally the
watchdog compares the output results of the two safety
applications.

The watchdog can only receive data. If an anomaly is
detected no data is generated or sent. The only possibility
to interrupt calculations and stop the industrial process is
to switch off the network connection. In this way the safe
output module does not receive data any more and after a
deadline, defined by the safe fieldbus, the output module
will switch off.

To achieve verifiable information diversity between the
two safety applications coded processing is used. One
of the channels calculates with encoded and the other
one with uncoded data. To meet the requirements of an
SFF > 99% according to the safety standard an encod-
ing called ANB-encoding is used. While researchers claim
a fault detection a high as 99, 56% [6, p. 160], at this stage
of our work we are not able to confirm or disprove these
numbers.

The second channel with the uncoded data additionally
calculates the signatures B of the encoded application. In
this approach a sightly different encoding is used than pos-
tulated by Forin [3]. He designed a code in which the sig-
nature B is static and for the dynamic part date D was
developed. An easier and faster solution is to link the sig-
nature B to the value and not to the variable. In this way
the signature B changes after every calculation, leading
to a time dependent B(t). The computation of the dy-
namic B(t) is independent from the encoded or uncoded
data and is also executed in the uncoded channel. Due to
the two-channel signature calculation even dynamic, not
predetermined control-flow can be observed.

For the highest error detection, the calculation results
and the signatures of both channels are sent to the watch-
dog. The comparison outside the main processor increases
the error detection probability. With the help of the sig-
natures the watchdog can discover if the two calculation
channels used different program sequences to generate the
data and thus check the control flow. This constant input
of signatures is used as heartbeat to observe the vital func-
tion of the safety applications.

3 Analysis

The analysis of the concept is important to accomplish
verifiable safety. Due to the hardware independence an
accurate and still hardware independent fault model has

to be found.
Two fault models are used to analyze the concept in

Fig. 2. The model of Goloubeva [5, p. 13] for the analysis
on system level and the model given in IEC 61508 [1] for
possible physical effects.

3.1 Analysis on System Level
The fault model on system level presented in [5] con-

sists of two error-types including two subtypes. The two
error-types are single data error and single code error. A
single data error is a logical error in a memory cell. It
is not important where exactly the error occurs. A single
code error effects an instruction of the program code. As
previously, it is not important where exactly the error oc-
curs. The single code error can effect the source-code in
two ways. A type-1 fault modifies the operation but does
not influence the program flow. For example an addition
is exchanged by a multiplication. The mathematics result
is erroneous but the control flow is not harmed. Also the
operands of the machine instruction can be altered, for ex-
ample if one operand is exchanged by another one. If an
error of this kind modifies the control-flow, it would be a
type-2 error. Examples are exchanged jump-instructions
or wrong destination addresses.

Coded processing addresses the single data error. If
a bit-flip happens anywhere in the data the encoding can
detect it with a high probability. For these faults an AN-
encoding would be enough, but for the other faults the sig-
nature B is needed. If a fault alters the instruction of an
arithmetic operation and changes the operand with ANB-
encoding using two software channels it is detectable, be-
cause the signature in the result is not equal to the one cal-
culated in the second channel, unless the fault alters both
calculations the same way. A type-2 error that influences
the control flow can also be detected by ANB-encoding.
If the control-flow is altered it is also detectable by the
signature B. The safe applications in both channels have
to execute the same control flow, which can be retraced by
the signatures. Due to this it is possible to check if the cal-
culations in both channels executed the same path in the
control-flow graph. It would be undetectable if both chan-
nels generate identical and wrong results. To generate this
kind of dangerous state both software applications have to
be altered in very special, different ways.

The fault-model in [5, p. 13] is good for an analysis on
system level, but neglects all kinds of analog anomalies.
Fault-models on system level can not describe the system
behavior for not logical faults, e.g. if the power supply
leaves the permitted voltage range. For these faults model
in IEC 61508 part 2 Annex A [1] will be used. It consists
of many possible anomalies and is beyond the scope of
this paper, but the most likely faults will be discussed.

3.2 Physical Analysis
Very often computers struggle with voltage changes,

especially in the rough industrial environment electromag-
netic disturbances can alter the supply voltage for a short

time. To protect the hardware against dangerous failures
the watchdog monitors the voltage and switches the field-
bus off if any limit is exceeded. One extrema of ille-
gal voltage changes is a sudden blackout. In this case
both software channels and the watchdog can not work
any more, because typical industrial PCs only contain
one power supply unit and COTS processors are not de-
signed to be powered by different sources. In this case no
data packets can be generated and the output module will
switch to a safe state after the deadline of the fieldbus is
missed. Another common cause failure for both software
channels is the oscillator. In the case where the frequency
of the quartz changes slowly, the effect can be detected in
two ways. First, the safe output module will recognize the
missing data-packets and switch off. Secondly the watch-
dog, which contains its own timebase and quartz, will un-
cover the technical issues through unexpected delays of
the signatures from the software channels.

4 Proof of Concept

The concept of Section 2 has to be proven. This is
done by an exemplary implementation of a mathematical
library and a fault injection suite.

4.1 Mathematical Library
A mathematical library has been implemented, which

provides ANB-encoded operations for addition, subtrac-
tion, multiplication and AN-encoding for the division.
Furthermore it handles the dynamic signatures B of the
ANB-encoding. The goal is to generate an environment
where the programmer of the safety application should
not pay attention to the encoding. The encoding, decoding
and coded calculations should be done in background so
no special knowledge is needed to use the mathematical
library and thus coded processing.

A second, simpler mathematical library is needed for
the uncoded channel because this library has to calculate
the signatures B additionally to allow the comparison with
the encoded program.

4.2 Fault Injection Suite
The practical evaluation of the concept in Fig. 2 and the

included mathematical library is done by a fault injection
software which operates on assembler-code level. With
this tool faults on assembler level can be injected dur-
ing execution by replacing operations with another ones.
Operands can be exchanged or modified by a selectable
number of bit-flips. A transient or permanent endurance
of the fault appearance can be chosen.

First tests of the ANB-library have shown that the
performance drawback rate due to the encoding achieves
a low double-digit level, compared with the native,
uncoded calculation. The second channel calculating with
uncoded data and additionally generating the signatures
is approximately twice as fast as the encoded channel.

According to the first fault injection tests and the analy-
sis based on Goloubeva’s error model [5], the encoded ap-
plication has a high diagnostic coverage for faults effect-
ing the arithmetic operations, but influences on the control
flow can only be detected by comparison with the second,
uncoded channel and its additional signature computation.

5 Conclusion and Further Work

The next steps are to test the fault reaction of the en-
coded safe software application and then analyze the weak
points. Depending on the results, the second safe applica-
tions will be started in parallel to check if the combination
of two channels can avoid previous discovered drawbacks.

In this paper a concept for a hardware independent
safety controller has been shown. It is based on infor-
mation redundancy and time diversity and has to comply
with the requirements of the IEC 61508 standard. The
presented concept has the advantage of dynamic control-
flow. This is a contrast to Forin’s [3] design, which only
allows static control-flows, because in his concept the sig-
natures are predetermined and stored in an additional read
only memory. Another development is the combination
of the dynamic date D into the former static signature B.
This allows simplification in the mathematical library and
therefore improved computational performance.
The advantage of the concept presented here is that
through coded and redundant calculations and the addi-
tional PCIe watchdog card a computer system gets the
ability to perform safety-related applications.

References

[1] IEC, IEC 61508 Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-
related Systems, 2011.

[2] David T. Brown, Error Detecting and Correcting
Binary Codes for Arithmetic Operations, Electronic
Computers, IRE Transactions on , vol.EC-9, no.3,
pp.333,337, 1960.

[3] P. Forin, Vital Coded Microprocessor: Principles and
Application for various Transit Systems, 1989.

[4] Intel, Intel 64 and IA-32 Architectures Software De-
velopers Manual Volume 1: Basic Architecture, 2013.

[5] Goloubeva Olga, Maurizio Rebaudengo, Matteo
Sonza Reorda, Massimo Violante, Software Imple-
mented Hardware Fault Tolerance. 1. Springer, 2006.

[6] Ute Schiffel, Hardware Error Detection Using AN-
Codes. Technische Universität Dresden, 2011

