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Abstract

Precise distance measurement is crucial for the high-precision industry as the semicon-
ductor manufacturing is one. Measurement devices based on the concept of a Michelson
interferometer are widely used to implement a very accurate and non-contact distance
measurement with nanometer resolution. Interferometers are often applied in environ-
ments where the optical path is uncovered and influenceable by air turbulences such
as caused by fast moving targets. Air turbulences cause aberrations in the wavefront,
deteriorate the interference pattern and lead to a smaller peak-to-valley intensity signal
which cause problems in the determination of the traveling distance.

To determine as well as to compensate for aberrated wavefronts this thesis investi-
gates the integration of an adaptive optics system into a Michelson interferometer. The
aberrated wavefront is measured with a Shack-Hartmann wavefront sensor and com-
pensated by a deformable mirror. A feedback controller is implemented that computes
the signals for the deformable mirror.

The proposed setup comprises off-the-shelf products for the interferometer and the
adaptive optics setup. The implemented system is capable of compensating low order
aberrations, resulting in an average improvement of 5, 7 of the peak-to-valley signal.
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Zusammenfassung

Die Verwendung von Interferometern zur exakten Distanzbestimmung ist vor allem in
der Hoch-Präzisions-Industrie, wie etwa der Halbleiterfertigung, nicht mehr wegzuden-
ken. Das berührungslose und nanometer-genaue Messprinzip auf Basis des Michelson
Interferometers wird beispielsweise zur Positionierung von Waferstages bei deren Be-
lichtung verwendet. Durch die steigenden Anforderungen bei immer höheren Taktraten
auch entsprechend hohe Beschleunigungen zu erreichen, besteht die Gefahr von Luftver-
wirbelungen entlang des offenen Interferometer-Messpfades. Diese Luftverwirbelungen
können dazu führen, dass durch unterschiedlich dichte Luft die ebene Wellenfront des
verwendeten Lasers gestört wird. Da alle Aberrationen der Wellenfront im Messpfad
bei der Interferenz mit dem Referenzpfad zu einem unerwünschten Inteferenzmuster
führen und dadurch die Signalstärke am Ausgang des Interferometers geschwächt wird,
wird die exakte Positionierung erheblich erschwert.

Um diese Fehlerquelle einerseits zu bestimmen und andererseits auch zu kompen-
sieren, wird in dieser Arbeit ein adaptives optisches System untersucht welches in
ein Michelson Interferometer integriert wird. Die Aberration wird dabei mit einem
Shack-Hartmann Wellenfront-Sensor gemessen und mittels eines deformierbaren Spie-
gels in einem Regelkreis kompensiert.

In dem vorgeschlagenen Aufbau werden jeweils für das Interferometer als auch für
das adaptive optische System handelsübliche Komponenten verwendet was die Praxi-
stauglichkeit und somit die einfache Integrierbarkeit in bestehende Systeme zeigen soll.
Das realisierte System ist in der Lage Störungen niedriger Ordnung zu kompensieren
und eine durchschnittliche Verbesserung des Ausgangssignal um den Faktor 5, 7 konnte
erreicht werden.
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CHAPTER 1

Introduction

This chapter gives a brief introduction in which fields of application this thesis is
located. The context of the topic and the motivation that drives this thesis is outlined
together with the appearing of two concrete scientific questions that are investigated
in the following. At last, the organization of this thesis is presented.

1.1 Motivation and Context

Laser interferometers are mainly used in the high-precision industry for positioning in
the nanometer range. In a Michelson interferometer the interference of two coherent
light waves, traveling through different optical paths, is evaluated. If one optical path
is fixed as a reference and the other path is used for the measurement path, a change
in the interference pattern can be interpreted as a distance change of the optical path.
The amplitude of the acquired output signal heavily depends on the quality of the two
interfering wave fronts and any disturbance, such as turbulent air in the laser beam of
the interferometer’s measurement path, would result in an aberration of the wavefront
that decreases the output signal.

To correct wavefront aberrations, adaptive optics (AO) system are commonly used.
The performance and so the use of AO systems increased strongly in the last years. AO
systems consist of a wavefront sensor like the popular Shack-Hartmann (SH) sensor,
a deformable mirror (DM) and a feedback controller. Their ability to measure and
compensate wavefront aberrations are used in many optical applications like astronomy,
confocal microscopy, ophthalmology and others to increase image quality.

In this thesis an investigation is done on how an adaptive optics systems with a
Shack-Hartmann wavefront sensor and a deformable mirror can counteract disturbances
in an interferometer measurement path. For proving this idea, this thesis uses off-the-
shelf products to show the applicability in a real measurement system.
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1 Introduction

The propagation of light through an inhomogeneous medium causes an aberration
of the wavefront. This happens because the wavefront of the propagating light travels
through regions with locally different refraction indices which forces some parts of the
wave to slow down more than others. The medium for example could be a gas (e.g. air)
with fluctuating density because of temperature drift, an optical lens or anything with a
nonuniform refraction index. To measure this kind of aberrations a wavefront sensor is
used. Together with a DM, a device that can form its surface into certain shapes, and
a feedback controller it is possible to actively compensate for wavefront aberrations.
Such configurations are known as AO systems. AO systems are nowadays applied
for example in astronomy where the atmosphere of the earth causes blurred images
of the observed stars [1], in ophthalmology to compensate aberrations caused by the
inhomogeneous human lens [2], and in optical communication systems to compensate
signal degradation due to air turbulences [3].

Another field where wavefront aberrations distorts the measurement signal is in-
terferometric metrology [4]. In the field of interferometry an interference pattern is
created based on the phase relation of two overlaying beams.

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Photos of interference patterns. (a) shows the ideal case of a uniform pat-
tern caused by non aberrated wavefronts. (b) - (f) show interference pattern
caused by wavefront aberrations in the optical path of the measurement
arm.

An often used instrument for performing relative distance measurements is the
Michelson interferometer. In a Michelson interferometer the beam of a laser source is
divided into two arms by a beam splitter, a reference arm and a measurement arm.
The beams in both arms are reflected by mirrors and brought back together in the
same beam splitter where they interfere. Depending on their phase difference they
show constructive or destructive interference. In an ideal setup, constructive interfer-
ence leads to a uniform bright intensity pattern at the detector whereas destructive

2



1.2 Goal Definition and Challenges

interference leads to a uniform dark intensity pattern. Due to wavefront aberrations in
the optical path, e.g. caused by a tilt of the mirror in the measurement path or caused
by air turbulences, a fringe pattern appears at the detector. In Fig. 1.1 a collage of
different captured interference patterns is displayed showing distinct fringes as they
would appear as interference pattern.

Usually, a lens focuses parts of the interference pattern onto a single photo-detector
to measure the entire averaged intensity. A movement of the mirror in the measurement
path causes the fringes of the interference pattern to wander. Every displacement of one
half of a wavelength is equal to an inversion of the pattern which means that luminous
fringes become dark and dark ones light up. The change in the intensity while moving
is then proportional to the moved distance. The more fringes are inside the detection
area, the less intensity variation is measured. Less intensity variation decreases the
peak-to-peak signal range, hence reducing the signal to noise ratio (SNR) and so the
achievable resolution. Thus, compensating for wavefront aberrations removes fringes
from the intensity pattern and increases the SNR.

1.2 Goal Definition and Challenges

In this thesis an AO system is integrated into a Michelson interferometer. The im-
plementation of an AO system in the measurement path of the interferometer is an
attempt to increase the peak-to-peak signal range of the interferometer’s output signal
by counteracting any disturbances that would lead to an unwanted fringe pattern on
the recording photo-detector. Doing so, the performance, robustness and availability
of a Michelson interferometer should be enhanced. To accomplish this an investigation
is needed on how wavefront aberrations influence the interferometer’s output signal
strength and how an AO system can counteract arbitrary disturbances in the interfer-
ometer’s measurement path. From the described circumstances two specific questions
arise that are investigated thoroughly in this thesis:

• How are disturbances in the optical path of a Michelson interferometer affecting
the output signal?

• Is an adaptive optics system capable to improve the peak-to-peak signal range of
the interferometer’s output if the measurement path suffers from disturbances?

The focus in this thesis lies on a proof of concept if a particular improvement of
a Michelson interferometer is achievable by using an AO system. Only static distur-
bances in the measurement path are considered and no special attention is payed to
the controller speed.

1.3 Approach

At first, an adaptive optics system with a feedback controller is built which is capable
to counteract wavefront aberrations. An iterative algorithm for the feedback controller
is chosen. This AO system is then integrated into a Michelson interferometer whereby
a homodyne laser is used as a light source and a half-silvered beam splitter is used

3



1 Introduction

to divide the beam into the reference and the measurement path. A normal mirror
reflects the beam in the reference part while a DM is used in the measurement path.
To examine the influence of wavefront aberrations on the interferometer’s output signal
the DM of the AO system is used to generate distinct aberrations while the output
is recorded. In a next step, disturbances are introduced into the measurement path
and again the interferometer’s output is measured but this time the AO system tries
to compensate for the aberrations. All data is transfered to a personal computer (PC)
where the computation and evaluation is done in MATLABR©1.

The proposed approach in this thesis yields about a usage of commonly available
items as they are already thoroughly tested, powerful, established on the market and
therefore reasonably priced.

1.4 Thesis Organization

Chapter 2 introduces the term wavefront and wavefront aberration followed by a de-
scription of Zernike polynomials. The components of an AO system are described in
Chapter 3 with special focus on the Shack-Hartmann wavefront sensor and the used
piezoelectric driven deformable mirror. It follows the description of the feedback algo-
rithm for closed loop control with corresponding implementation. Also the first part of
the results is presented where the capability of the built AO setup is investigated. In
Chapter 4 the interferometer setup is outlined, starting with an overview. A detailed
view on the experimental setup used in this work and the results of the conducted ex-
periments with the combined setup of AO and interferometer is also part of the chapter.
Finally, future improvements and further investigations are discussed in Chapter 5.

1MATLAB R© Version 2012b, The MathWorks R© Inc., 3 Apple Hill Drive, Natick, Massachusetts
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CHAPTER 2

Wavefront and Wavefront Aberrations

At first, the mathematical representation of an electromagnetic wave through the
Maxwell’s equations is presented followed by a description of wavefront aberrations.
Secondly, the reconstruction of wavefronts by using Zernike Polynomials is presented
together with wavefront error metrics.

2.1 Free Plane Wave

The basic description of an electromagnetic wave in free space is given by the ho-
mogeneous Maxwell’s equations [5]. In a medium with constant permittivity ε and
permeability µ, as given in free space, the equations are as follows:

~∇× ~E + µ
∂

∂t
~H = ~0, ~∇ · ~E = 0 (2.1a)

~∇× ~H + ε
∂

∂t
~E = ~0, ~∇ · ~H = 0 (2.1b)

Where ~E is the electric and ~H is the magnetic field strength. Introducing a phase
function θ (~r, t) for an electromagnetic field with ~E (θ) and ~H (θ) only depending on
time and space whereby

θ (~r, t) = ct− ~κ · ~r (2.2)

with constant speed c and a constant direction vector ~κ (with |~κ| = 1). One can see
that surfaces with constant phase θ are parallel to each other running with the same
speed c as it is displayed in Fig. 2.1. The components in propagation direction of ~E
and ~H are constant and so they are set to zero with no loss of generality:

~κ · ~E = 0, ~κ · ~H = 0 (2.3)

As a conclusion, the free plane wave is transversal to its propagation direction.
It is now possible to eliminate either the electrical or the magnetic component from

5



2 Wavefront and Wavefront Aberrations

~E

~H

~r

θ = const.

~κ

Figure 2.1: Phase surface of a plane wave traveling through free space (revised figure
from [5]).

the homogeneous Maxwell’s equation by expressing it through the other parameter.
The formula for the electrical field is given by:

(

∇2 − µε
∂2

∂t2

)

~E (~r, t) = 0 (2.4)

A solution of Eq. (2.4) is the flat sinus wave in an electrical non-conductive medium
with constant µ and ε:

~E (θ) = Re
[

Ê0e
jkθ
]

(2.5)

With the complex amplitude Ê0 and the propagation velocity c = ω/k while Re [ ]
denotes the real part of the expression within the brackets.

Solving Eq. (2.1) and (2.2) for the Laplace operator in a spherical coordinate sys-
tem results in wavefronts with spherical shape. Fig. 2.2 illustrates spherical wavefronts
with corresponding rays emitted by a point source. The distance (in meters) between
a 360◦ phase shift is called the wavelength λ. Furthermore, when considering a small
portion of the spherical wavefront at a large distance, the spherical wavefront can be
regarded as a plane wavefront.

2.2 Wavefront Aberrations

Wavefront Aberrations are describing any deviation of a light ray in respect to an ideal
trace. This includes aberrations due to manufacturing failures in optical components,
uneven distribution of the refraction index as well as any other disturbance that influ-
ences propagation of light rays in an unwanted way. A general description in form of
a wavefront is provided in Fig. 2.3.

The plane wave is aberrated by the object with a refraction index n2 greater than
the refraction index of the surrounding medium. It slows down the light partially and
therefore the entire wavefront (i.e. connection of points with the same phase) is not flat
any more. Light rays are indicated by the arrows as they stand perpendicular to the
wavefront. Aberrations can be classified by the way on how they introduce deviation.
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2.2 Wavefront Aberrations

~κ

~κ

~r

~r

θ = const.

λ

point source

Figure 2.2: Point source sending out a spherical wave. Depicted are the distance from
the origin ~r, the wavelength λ and the propagation direction ~κ. Far away
from the point source a small angular fraction looks like a plane wave.
(revised figure from [6, p. 3])

. . . n1

. . . n2 (a) (b)

Figure 2.3: A plane wave, traveling from left to right, hits an object with a refraction
index n2 > n1. Due to the slower propagation speed in the n2 medium,
the flat wavefront get distorted. In (a) the ideal and in (b) the aberrated
wavefront is depicted separately. (revised figure from [7, p. 471])

Three common aberrations for monochromatic light namely Spherical aberration, Coma
and Astigmatism are shown in Fig. 2.4.

Ideal lenses are focusing all paraxial rays on the exact same spot at the nominal
focal distance. The imperfection that paraxial rays are focused on different focal points,
depending on their distance to the optical axis, is called Spherical aberration (see Fig
2.4a). The name is derived from the idea of using a sphere as a lens where this
aberration would be at its maximum.

Similar applies to Coma (see Fig. 2.4b) where the incident rays are not paraxial but
hitting the lens at a tilt. For an ideal lens the focal point would lie at the prolongation

7



2 Wavefront and Wavefront Aberrations

of the center ray but lenses suffering from Coma are not able to form a sharp focus
point in that case. Rays at the bottom are hitting the surface of the lens almost
perpendicular while a sharp angle occurs on the top, leading to different deflection and
a blurred focal point.

The last mentioned aberrations, the Astigmatism (see Fig. 2.4c), occurs if rays,
propagating in two orthogonal planes, have different focal points. The orthogonal
planes are often called tangential (or meridional) and sagittal plane. On one hand
Astigmatism is observable if the curvatures of a lens is different in both mentioned
planes. On the other hand it may also occur with symmetric lenses if the object is off
the optical axis.

(b)

(c)
G

(a)

FS
FT

... Tangential Plane

... Sagittal Plane

Figure 2.4: Spherical aberration in (a) shows different focal points of paraxial rays
depending on the distance to the optical axis. In (b) Coma is displayed
with non-paraxial rays focusing on different spots. The schematic in (c)
shows the Astigmatism aberration for an object G positioned away from
the optical axis and focusing on different spots for the tangential FT and
the sagittal plane FS (schematic (c) is revised from1).

Beside deflection in the lens geometry, common sources of aberrations are density
fluctuations and so fluctuations of the index of refraction in the optical path caused by
e.g. air turbulences.

1Astigmatism Schematic, Author: Michael Schmid, under Creative Commons License
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2.3 Wavefront Reconstruction

2.3 Wavefront Reconstruction

2.3.1 Zonal vs. Modal Reconstruction

To reconstruct any arbitrary wavefront into a three dimensional representation two
approaches are presented. For the zonal approach the wavefront surface is divided by
a rectangular grid and for every discrete node of the grid the local phase of the wavefront
is derived from a linear equation that takes the runtime difference into account. The
resulting set of linear equations can be written in matrix notation for further processing.

The modal approach reconstructs the wavefront from a set of basis functions. This
polynomials are weighted with coefficients and super-positioned. A solution for the
representation of a specific wavefront is found by determining the right coefficients.
Since this approach is used widely in adaptive optics, mainly by employing the so
called Zernike Polynomials, it is also used in this thesis.

2.3.2 Zernike Polynomials

Frits Zernike developed in the first third of the 20th century a method to describe
wavefront aberrations and found a set of orthogonal polynomials defined inside a unit
disc. They can be interpreted as the phase surface, i.e. the wavefront of a light beam.
The so named Zernike polynomials are either even or odd and are defined as follows [8]:

Zm
n (ρ, ϕ) = Rm

n (ρ) · cos (mϕ) (2.6)

Z−m
n (ρ, ϕ) = Rm

n (ρ) · sin(mϕ) (2.7)

The function Rm
n (ρ) is called radial polynomial with the radius ρ and is defined as

Rm
n (ρ) = 0 (2.8)

if the difference of (n−m) is odd. And in case (n−m) is even:

Rm
n (ρ) =

(n−m)/2
∑

k=0

(−1)k (n− k)!

k! ((n +m) /2− k)! ((n−m) /2− k)!
ρn−2k (2.9)

The positive integers m and n with n > m are the indices of the described Zernike
modes. Since the radius ρ is only defined on the unity disk it’s in a range between 0
and 1. ϕ describes the azimuthal angle of the function. The great advantage of this
set of polynomials is that through their orthogonality any sufficiently smooth surface
over the unity disk can be described by a composition of Zernike modes similar to a
Fourier series for periodic functions. The requested surface W (ρ, ϕ) can be expressed
by

W (ρ, ϕ) =
∑

m,n

[

am,nZ
m
n (ρ, ϕ) + bm,nZ

−m
n (ρ, ϕ)

]

(2.10)

with the coefficients am,n for the even and bm,n for the odd part of the composition.

9



2 Wavefront and Wavefront Aberrations

An example of the first Zernike modes can be seen in Fig. 2.5.

Figure 2.5: Depiction of the first 21 Zernike modes with their indices n and m.2

Sometimes it’s handier to work only with one index j instead of two (m and n).
Therefore a translation between the two index notation and the one index notation is
needed. One possible way is given by (see Table 2.1):

Zm
n → Zj with j =

n (n+ 2) +m

2
(2.11)

Table 2.1: Zernike mode indices translation.
m 0 -1 1 -2 0 2 -3 -1 1 3 -4 -2 0 2 4 -5 ...
n 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 ...
j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

Often Zernike modes are not only called by their index but by their name. Common
denominations are presented in Table 2.2 as they correspond to the description of
aberrations in Chapter 2.2.

2Pictures of Zernike Modes, Author: Rocchini, licensed under Creative Commons License
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Table 2.2: Zernike modes denomination.
j denomination

0 Piston
1,2 Tilt
3,5 Astigmatism
4 Defocus

6, 9 Trefoil
7, 8 Coma

10, 14 Quadrafoil
11, 13 Secondary Astigmatism

12 Spherical Aberration

By using the single index j and the positions x and y instead of ρ and ϕ with

x = ρ cos (ϕ) (2.12)

y = ρ sin (ϕ) (2.13)

the description of an arbitrary wavefront W (ρ, ϕ) from Eq. (2.10) can also be expressed
as:

W (x, y) =
∑

j

cjZj (x, y) (2.14)

This formalism will be used further in this thesis since it provides a commonly used
tool to describe wavefront aberrations.

2.4 Wavefront Error Metrics

To have a measure on how strong an aberration is compared to a flat wave one can
perform a Zernike decomposition whereat the Zernike coefficients weigh the appearance
of each Zernike mode. But sometimes it’s more comfortable to express the aberration
in terms of one single value. Therefore four different metrics for wavefront aberrations
are presented:

• The root mean square (RMS) is calculated by applying the square root over the
sum of the squared elements of the coefficient vector cZ = [cZ,1, cZ,2, . . . , cZ,n]

T ,
utilizing the property of orthogonality of the Zernike polynomials [9].

RMS =

√

√

√

√

n
∑

j=1

c2Z,j (2.15)

The root mean square (RMS) is often used to characterize disturbances or to
evaluate the quality of a wavefront aberration compensation by the residual RMS.
The unity of the RMS value is the unity of the coefficients but in most cases it is
specified by orders of the used wavelength.
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2 Wavefront and Wavefront Aberrations

• The peak-to-valley value is qualified to deliver an idea of the difference of the
highest hill to the deepest valley of the measured wavefront. In contrast to the
RMS it does not take the overall appearance into account but only uses the
maximum and the minimum value.

PV = max [W (x, y)]−min [W (x, y)] (2.16)

With W (x, y) representing the 3D representation of the captured wave. The unity
is meter but similar to the RMS it is often specified by orders of the wavelength.

• Purity is used to express how strong a specific Zernike mode is present in an
actual measurement [10]:

Pj =
cZ,j

√

c2Z,1 + c2Z,2 + · · ·+ c2Z,n

(2.17)

The purity factor can take values in the interval between 0 and 1. This value
is mainly used to investigate the Zernike mode forming capability of an DM. If
for example the mirror is forced to form only one specific Zernike mode with the
coefficient cZ,j and the measurement with the SH sensor shows a coefficient vector
cZ with non-zero elements aside to cZ,j, the purity ends up in a value smaller than
1.

• The Strehl Ratio also plays an important role in imaging technologies to validate
the quality of an optical system. It is defined as the ratio between the peak image
intensity of a point source to the theoretically possible maximum intensity of a
perfect system that is only limited by diffraction over the systems aperture.

S =
1

π2

∣

∣

∣

∣

∣

∣

2π
∫

0

∫ 1

0

ejW (ρ,ϕ)ρdρdϕ

∣

∣

∣

∣

∣

∣

(2.18)

The possible values are between 0 and 1 whereby an ideal system has the Strehl
Ratio of 1.
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CHAPTER 3

Adaptive Optics System

"Adaptive Optics is a scientific and engineering discipline whereby the performance of
an optical signal is improved by using information about the environment through which
its passes." - [1, Page 1]

To perform this kind of enhancement of an optical setup strategies were developed
were a sensor determines the wavefront of the incident light and a deformable mirror
counteracts wavefront disturbances by actively shaping its surface.

In Fig. 3.1 a basic layout of a closed loop AO setup is shown.

• The original wavefront coming from a light source (e.g. a laser) is depicted as a
flat and coherent wave coming from the top. It goes through a

• disturbance e.g. an air turbulence (compare also Fig. 2.3). This leads to an
uneven propagation of the incident light resulting in an

• aberrated wavefront. The wavefront surface is not flat any more.

• A deformable mirror, which is capable to form its surface complementary to the
aberrated wavefront, reflects the light towards a

• beam splitter where one half of the intensity is forwarded to a

• wavefront sensor (e.g. a SH sensor). That sensor measures the residual wavefront
and feeds the signal into the

• controller that drives the DM. Thus operates the system in a closed loop scheme
such that the original wavefront (i.e. a flat wave) is recovered.

• A science camera on the second output of the beam splitter is used for further
processing of the corrected wavefront signal. It can be seen as the output of the
AO system where the disturbance is compensated.
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3 Adaptive Optics System

science camera

deformable mirror

controller

beam splitter

original wavefront

disturbance

aberrated wavefront

wavefront sensor

Figure 3.1: Functional schematic of a closed loop AO setup. The incoming wavefront is
aberrated due to the disturbance and reflected off the DM which is actuated
by the feedback controller accordingly to the signal from the wavefront
sensor to compensate for aberrations. (revised figure from [11])

3.1 State of the Art

3.1.1 Wavefront Sensor Technologies

As described in the previous chapter the wavefront of a light beam is a connection of
all points of a wave with the same phase (θ = const.). But since there is no detector
available fast enough to measure the temporal frequency of light, an alternative method
has to be found [12]. One conclusion of this is that light rays can be considered as
constant or "frozen-in". So from the perspective of the frequency of light the difference
between two rays is constant [6]. In other words if a wavefront is going through the
same (constant) disturbance the output looks again constant. The other conclusion is
that wavefront sensors are transforming the phase information (that can’t be measured
with electronics) into another domain like intensity.

In AO applications mainly two groups of sensors can be distinguished [1, p. 111].
The indirect approach actively influences the optical path by using a DM such that the
phase of the wavefront is retrieved from the driving signals of the mirror. One example
for an indirect method is a system where the phases of two beams are compared by
letting them interfere on a detector [1, p. 153]. An active compensation device is fed by
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the detectors signals and tries to maximize the intensity which is equivalent to a match
of the phases of these two beams. Herein, the real wavefront is never calculated and
involves some trial and error on how to feed back the signal which is time consuming
and limited by the number of channels, thus not very common for good performing
closed loop systems.

The direct approach measures the phase of an incident wave and reconstructs the
wavefront out of this information. Direct methods are used more widely as they are
more powerful thanks to modern computational power and additionally they provide
a representation of the acquired wavefront. Three commonly used wavefront sensors
that estimates the phase based on an intensity measurement are the lateral shearing
interferometer (LSI), the Pyramid Sensor and the Shack-Hartmann (SH) sensor.

The LSI is based on the Mach-Zehnder interferometer although modern versions
have different appearances. The incident beam is split into two components, whereat
one component is shifted by the so called shearing distance δ. The two beams are
merged together to obtain interference fringes. These fringes represent the wavefront
slopes in one direction which is equivalent to the derivative of the wavefront in this
direction. For a two dimensional representation a second sensor perpendicular to the
first one is needed to get also the derivation in the other spatial direction. The hard-
ware setup for this wavefront measurement method is very complex depending on the
number of utilized subapertures and according to [12] it was the most commonly-used
interferometer before it was replaced by the Shack-Hartmann sensor.

δ

Figure 3.2: Schematic of the LSI principle with the sketched wavefronts on the left
and the beams shifted by δ on the right. The interference fringes in the
overlapping zone represent the wavefront slope in shearing direction.

The Pyramid Wavefront Sensor uses a pyramidal prism with its top in the system
focus to create four subbeams which are re-imaged onto a high-resolution detector via
a relay lens [13]. The according schematic is drawn in Fig. 3.3. The difference of the
intensity of the four resulting spots contains information about the x- and y- wavefront
slopes which are the first derivatives of the incident wavefront. It is possible to use an
array of pyramids in front of the same relay lens to form a layer oriented wavefront
sensor. However, arrays of pyramidal prisms are not easily available at the moment.
Another disadvantage is its increasing non-linearity at strong aberrations [14].

The Shack-Hartmann sensor consists of a microlens array in front of a detector.
The detector is positioned in the focal distance of the microlenses so that an incoming
flat wave results in an equally spaced pattern of focused spots, each in the middle
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Incident Wave

Pyramidal Prism

Relay Lens
Detector

Figure 3.3: Schematic of a Pyramid Wavefront Sensor. An incident wave hits an pyra-
midal prism and creates four subbeams. The intensity difference of the four
spots on the detector are proportional to the wavefront slope.

of their subaperture. If now a non-flat wave hits the sensor, every microlens would
deliver a spot displaced from its optical axis according to the average wavefront tilt of
this subaperture. The result is an image with uneven distributed spots, whereby every
displacement of a spot, with respect to the reference position (e.g. the optical axis),
delivers the spatial derivative of the captured wavefront. Table 3.1 shows technical
parameters of commercially available Shack-Hartmann sensors that are typically used
for research applications.

Table 3.1: Commercially available SH sensors, overview. All values are stated with
their maximum as obtainable.

company & model details values

Imagine Optic SA1 frame rate: 7, 5 fps
HASOTM3 128-GE lenses: 128× 128

aperture [mm2]: 14, 6× 14, 6
accuracy: λ/100
connection: GigaEthernet

OKO Technologies2 frame rate: 25 fps
UI-2210M, CCD lenses: 20× 20

aperture [mm2]: 4, 5× 4, 5
accuracy: λ/150
connection: USB 2.0

Thorlabs GmbH3 frame rate: 450Hz
WFS10-7AR lenses: 41× 29
180× 180 px aperture [mm2]: 6, 34× 4, 76

accuracy: λ/10
connection: USB 2.0

1Imagine Optic SA, 18 rue Charles de Gaulle, Orsay 91400, France
2Flexible Optical B.V., Polakweg 10-11, 2288 GG Rijswijk, the Netherlands
3Thorlabs GmbH, Hans-Boeckler-Str. 6, Dachau/Munich 85221, Germany
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3.1.2 Deformable Mirror Technologies

Deformable Mirrors are devices with the ability to actively shape their surface. They
can be distinguished in terms of size, number and working principles of actuators,
achievable stroke and speed. While for astronomical applications the diameter of the
active surface can go up to several meters and the number of actuators is a few thou-
sands such as used for the European Extremely Large Telescope, E-ELT [15] in other
fields like ophthalmology the size is considerably smaller, namely in the range of cen-
timeters and the number of actuators is between 10 to 100 [16]. In the beginning of
DMs the surface was segmented and each segment was actuated separately. The prin-
ciple was to apply only a piston like movement per segment, as depicted in Fig. 3.4a.
Advanced versions added a tilt functionality carried out by two actuators per segment,
as seen in Fig. 3.4b.

(a) (b)

mirror segments
actuators

Figure 3.4: (a) shows the segmented mirror with piston displacement and (b) displays
the segmented mirror with tilt functionality.

With the enhanced possibilities in manufacturing micro machined structures it was
possible to produce DMs with a continuous-surface, as shown in Fig. 3.5a. They don’t
suffer from scattered light from the edges of the segments, have no loss of light in the
gaps between segments and are able to form a completely smooth surface. Different
actuator techniques are utilized to bend the surface as for example voice coils, piezo
stacks or even worm gears.

The piezo driven DM as shown in Fig 3.5a, has a certain number of distinct piezo
stacks with a plate-like mirror bonded on top of them [17]. The actuators of the mirror
are driven by a relatively high (several hundreds volts) positive or negative voltage, thus
it is able to push or pull the surface. The rim of the plate is not fixed and can move
freely, such that the mirror can also perform piston movements. The arrangement of
the piezo stack layout is an important characteristic of a device and varies for different
applications because every actuation of one stack causes global deformation of the plate
and effects also the neighboring actuators.

A different approach is provided by membrane mirrors, also called micro-machined
deformable mirror (MMDM) [18]. The MMDM is basically a membrane with fixed
edges and an array of electrodes beneath it. They are manufactured with the technology
of bulk micro-machining and therefore they are comparably cheap to other technologies.
If a voltages is applied between the membrane and one (or multiple) of the electrodes
the electrostatic attraction bends the membrane into the desired shape. Applying
a constant potential to all electrodes forces the mirror into a concave shape and by
biasing the electrodes the mirror is able to work in both directions by releasing or
increasing electrostatic force. They are commercially available in sizes from about half
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a centimeter up to 50 mm in diameter and a thickness of the membrane from 0, 5 to
10µm. The schematic is displayed in Fig. 3.5b.

(a) (b)

piezo actuators

membrane
electrodes

Figure 3.5: Two mirrors with a continuous-surface. In (a) a piezo driven mirror with
a free edge is shown while in (b) a membrane mirror with a fixed rim is
displayed. The second one is driven by electrostatic forces applied by the
marked electrodes.

In [10] an improvement to the electrostatic MMDM technique is presented which
introduces push-pull capability to increase the performance. It is achieved mainly with
transparent electrodes out of indium-tin-oxide coated glass at the mirrors top surface.
They work the same way as the bottom electrodes by applying electrostatic force to
the membrane.

The piezo driven DM and the MMDM, both with a continuous surface, are the
most common mirrors used for adaptive optics. A comparison of DMs with different
actuation principles is done in [19]. They show that on one hand the higher stroke
of a piezo-actuated mirror gives a vital advantage compared to a MMDM but on the
other hand the measured hysteresis of the piezo-actuated mirror was about 14% of its
maximum stroke. Furthermore, hysteresis necessitates an approach with an adequate
feedback control.

3.1.3 Conclusion

Shack-Hartmann wavefront sensors are well established, commonly used, robust and
universally usable devices to capture arbitrary wavefront aberrations, so this principle is
used in this thesis as wavefront sensor. They are able to capture an incident wavefront
with a single shot and the quality of the measurement depends on the number of
microlenses as well as the correct detection of the center of the focused spots. In this
thesis, the OKO Technologies SH sensor (from Table 3.1) is used, which provides a
good accuracy however a moderate frame rate that is sufficient since only quasi-static
aberrations are compensated.

Due to its advantage in providing a higher stroke a piezo-actuated DM is used as
the active part in the AO system. A model with 19-channels is used with a maximum
stroke of 8µm at 400V and it’s provided by the same manufacturer as the SH sensor,
OKO Technologies. Due to the mentioned issue of strong hysteresis of piezo stacks, the
mirror is driven in a feedback setting with the captured wavefront from the SH sensor
as input for the feedback control.
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3.2 Shack-Hartmann Wavefront Sensor

3.2 Shack-Hartmann Wavefront Sensor

The used Shack-Hartmann sensor is a device from OKO Technologies with a 20 × 20
lens array in front of a 640 × 480 pixels CCD USB camera. The following section
gives an detailed overview on how the SH sensor principle works and how the incident
wave can be recovered. Followed by an introduction on how wavefront surfaces can be
represented by Zernike polynomials.

3.2.1 Basic Working Principle

The SH sensor comprises of two main components, an image sensor such as a CCD
and a mircolens array. The microlens array is mounted at its focal distance in front of
the image sensor. The sensor area is divided into so called subaperture, whereby every
microlens focuses into one of them. The schematic of the sensor is shown in Fig. 3.6.
In case of a plane wave as shown in Fig. 3.6a, the incoming light wave is segmented and
focused to small spots on the detector, forming a pattern of equally distributed spots.
The spots are exactly in the middle of each subaperture. In the case of an aberrated
wavefront, each lens doesn’t focus on its optical axis anymore, as depicted in Fig. 3.6b.

(a) (b)plane wave

detector
microlense array

focused spot

aberrated wave

Figure 3.6: A light wave hits the microlense array of a SH sensor and generates a
pattern of focused spots on the detector. In (a) the plane wave leads to
equally spaced dots while in (b) an aberrated wave leads to an uneven
pattern.

The resulting spot of each corresponding lens shows a displacement to the optical
axis, originating from the average wavefront tilt, as depicted in Fig. 3.7. The relation
between wavefront slope (tilt) and spot displacement is given by [9]:

∆x

f
=

∂W (x, y)

∂x
= sx (3.1)

∆y

f
=

∂W (x, y)

∂y
= sy (3.2)

Where sx and sy are the slopes in x and y direction and ∆x and ∆y denote the spot dis-
placement. By using a reconstruction algorithm the wavefront slopes are transformed

19



3 Adaptive Optics System

into a continuously modeled wavefront.

(a)

(b)

plane wave

optical axis

microlense
subaperture

spot displacement

∆x

∆y

aberrated wave

image plane

Figure 3.7: This depiction is a detail of Fig. 3.6. The incoming wavefront generates
a spot on the detector depending on its average tilt. As seen in (a) an
incoming plane wave produces a spot in elongation of the optical axis while
in the aberrated case (b) the spot is shifted from the center position by ∆x
and ∆y.

3.2.2 Spot Detection

One challenge in the SH principle is to locate the exact position of the spots within one
corresponding subaperture of the sensor. It has to be noted that the focused spots are
not points of the size of one pixel but are disks of several pixels. Therefore a method
is needed to find the centroids of the spots. The most frequently used algorithm is the
center of gravity (CoG) calculation where the discrete intensity values are multiplied
by the position of the pixels, summed up and divided by the overall intensity:

CoGx =

n
∑

x=1

m
∑

y=1

x · I (x, y)

n
∑

x=1

m
∑

y=1

I (x, y)
CoGy =

n
∑

x=1

m
∑

y=1

y · I (x, y)

n
∑

x=1

m
∑

y=1

I (x, y)
(3.3)

The variables x and y are integer values of the n × m subaperture and the sub-
aperture size was determined to 19 × 19 pixels. As seen in Fig. 3.8 the coordinates
of the center of gravity (CoG) (CoGx and CoGy) are not necessarily integer values
but floating-point numbers. The value of the intensity of each pixel, stated as I (x, y),
depends on the bit resolution of the image sensor, which is 0 to 255 for the SH sensor
used in this thesis.
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Figure 3.8: Picture of a subaperture of 19× 19 pixels size. The intensity value of each
pixel is used to find the center of the spot via the CoG algorithm from Eq.
(3.3).

Different methods to gain accuracy in the centroid calculation by reducing the
influence of present noise are reported. Some of them aiming on the improvement of the
presented basic CoG algorithm shown in Eq. (3.3) like the Thresholding CoG (TCoG)
or the Weighted CoG (WCoG). The TCoG method basically subtracts a threshold
from the intensity values which can reduce detector noise while the WCoG weights the
intensity value of each pixel with a function depending on its position [20]. For the
implementation of the WCoG method further information of the expected region of
the spot is necessary such that noisy pixels in the outer region of the subaperture can
be suppressed. Other techniques utilize Correlation Algorithms where a template of
an ideal prototype spot is cross-correlated with the examined subaperture [20]. The
centroid is then retrieved from the best matching of the ideal spot with the subaperture.

As the proposed setup is capable of adjusting the incident laser intensity onto the
SH sensor, the settings of the image sensor are tuned in a way that noise is negligible.
Therefor the basic CoG formula from Eq. (3.3) works well and sufficient for the pre-
sented implementation. Since the SH sensor will be used in a closed loop arrangement
absolute exact measurements are not necessary because the controller takes care of any
residual deviation. Furthermore it will be expected that the residual error caused by
the limited mirror shape due to the finite number of createable mirror modes is far
more significant than the difference between the diverse CoG algorithms, especially
when a good contrast of the spots can be achieved. When thinking about high speed
implementation the simple CoG is also advantageous in terms of processing effort and
time.

3.2.3 Limitations

One major issue of a SH sensor is its time consuming read out. Every time a wavefront
is captured a full resolution picture is processed to get the information about the

21



3 Adaptive Optics System

wavefront. A deeper investigation is done in [21] where also a field programmable gate
array (FPGA) implementation of a fast wavefront reconstruction is presented. Another
drawback of the SH sensor is that there are wavefronts that lead to a corrupted or false
interpretation. As depicted in Fig. 3.9, three main erroneous cases can be distinguished.
The first case appears when the incident wave has such a tilt that the corresponding
spot lies in the next subaperture. Multiple spots in one subaperture are not evaluable
since it can’t be determined which spot is coming from which lens. With the help of
an intelligent algorithm, that is used to evaluate the position of the spots, at least the
occurrence of an error can be detected. Obvious in the second case is that if no spot
is detected in a subaperture no interpretation is legit. And thirdly a crossover of two
spots appear when the incoming wavefront is curved in a way that two lenslets are
pointing in each others subaperture. The problem in this case is that the spot finding
algorithm is not able to detect any error but the computed wavefront is not the real
one. Since these problems occur only at highly aberrated waves it is not very relevant
in a closed loop setup because the residual error is kept as small as possible.

aberrated wave

lenslets sensor

multiple spots in one subaperture

empty subaperture

crossover of two spot

Figure 3.9: A strongly aberrated wave hits the microlens array and leads to different
kind of errors. Multiple spots in the first subaperture, no spot in the second
and a crossover in the third and fourth. (revised figure from [2, p. 71])

One further limitation of a SH sensor is that a phase difference of the entire wave-
front, also known as piston mode, can not be detected. If all points of the wave are
suffering from the same phase delay it is not possible to detect it since the lenslets
would still focus on the same spots.
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3.2 Shack-Hartmann Wavefront Sensor

3.2.4 Zernike Decomposition

The decomposition of any measured disturbance into the coefficients of the Zernike
modes is done by using the slopes sx and sy. This slopes are the displacements of the
spots for every single subaperture k divided by the focal length f of the micro-lenses:

skx =
CoGkx − CoGkx,ref

f
(3.4)

sky =
CoGky − CoGky,ref

f
(3.5)

CoGx and CoGy are calculated by Eq. (3.3) and represent the current spot position.
CoGx,ref and CoGy,ref are positions from a reference spot obtained either by taking
a reference wavefront (e.g. a captured wavefront of the optical setup without any dis-
turbance) or by using the imaginary center of the subaperture. To collect the x and y
direction into one vector the slope vector can be written as

sxy = s = [sx1, sy1, sx2, sy2, . . . , sxn, syn, ]
T . (3.6)

The relation between the slopes and the wavefront expressed in terms of Zernike poly-
nomials is [2]:

s = Zcz (3.7)

Where the vector cz contains the coefficients of the Zernike modes and the matrix Z

is called the reconstruction matrix comprising of the first derivative of the Zernike
polynomials:

Z =



























Z11x · · · Z1jx · · · Z1Jx

Z11y · · · Z1jy · · · Z1Jy
...

. . .
...

. . .
...

Zk1x · · · Zkjx · · · ZkJx

Zk1y · · · Zkjy · · · ZkJy
...

. . .
...

. . .
...

ZK1x · · · ZKjx · · · ZKJx

ZK1y · · · ZKjy · · · ZKJy .



























(3.8)

Whereby:

Zkjx =

∫∫

k

∂Zj(x,y)

∂x

∫∫

k

dx dy
(3.9)

Zkjy =

∫∫

k

∂Zj(x,y)

∂y

∫∫

k

dx dy
(3.10)

The index j, running from 1 to J , names the Zernike modes in ascending order whereby
ZJ represents the highest utilized mode and the index k numbers the subapertures of
the wavefront sensor (as shown in Fig. 3.10 in Chapter 3.2.5) running from 1 to K.
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3 Adaptive Optics System

Since the values for the reconstruction matrix are discretized for each subaperture
(k = 1 . . .K) the question is raised either to use the average value or the value of the
Zernike gradient at the center of each subaperture. For practical usage, calculating the
Zernike gradient at the center of the subaperture is sufficient.

Consequential two values are still open to be defined as the first is the maximum
number of Zernike modes J that are used for the decomposition and the other is the
number of used subapertures K. For the current implementation of the decomposition
a value of J = 20 is chosen because (i) of a decent balance between computational
cost and proper reconstruction and (ii) the DM is only able to create shapes up to
mode 15 as seen in the Results in Chapter 4.4. For a precise reconstruction of a certain
mode (the higher the mode number, the higher is the spatial frequency), large spatial
oversampling of the wavefront is needed, meaning that the ratio of the number of
subaperture to the mode number has to be large. The number of used lenslets K is
basically derived from the available beam diameter. If the intensity of the laser beam
is not distributed evenly over the beam diameter (e.g. brighter center), then it could
be necessary to exclude the outer spots because they may introduce an inaccurate
reconstruction due to noise.

For the wavefront reconstruction the slopes are measured by the wavefront sensor
and Eq. (3.7) is inverted, yielding the following formalism:

cz = Z
†
s (3.11)

With s as slope vector, Z† as pseudo-inverse of the reconstruction matrix and cz as the
coefficient vector for the Zernike polynomials. Since Z is not quadratic, an algorithm
such as the singular value decomposition (SVD) [22] is used to calculate its pseudo-
inverse. Because of the non detectable piston mode the first row only consists of zeros,
therefor it makes sense to exclude this first row to have better results with the SVD
algorithm. The row of zeros is added again as a leading column of Z†. The piston mode
can’t be measured with the SH sensor thus no loss or win of information happens by
leaving out the zeros.

As last step the wavefront W is obtained by first multiplying each Zernike coefficient
by the according polynomial and second by superimposing the partial results, as given
in matrix notation:

W = Zcz (3.12)

3.2.5 Implementation

In this section the workflow from capturing an image with the wavefront sensor to find
the subaperture spots, translating their displacements into Zernike modes and finally
retrieving a 3D representation of the measured wavefront is lined out.

At first, suitable camera parameters for the SH sensor must be found. These are
in particular the exposure time, the gamma correction and the region of interest. The
latter describes a cut-out of the sensor area since the image sensor is bigger than
the microlens array. The region of interest is found by trying to center the circular
spot pattern as good as possible in the middle of the resulting image and cutting out
a square with an edge length of the original image height. The other two settings,
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3.2 Shack-Hartmann Wavefront Sensor

exposure time and gamma correction, are adjusted in a way that the distinct spots are
clearly visible but not overexposed since this would lead to an inaccurate wavefront
reconstruction due to an inaccurate spot detection. In the presented setup the shortest
possible exposure time was still to high resulting in a spot image with oversaturate pixel
intensity. With the help of a polarizing filter in front of the SH sensor the intensity of
the incident linear polarized laser beam is additionally decreased to avoid saturation
of the spots.

To find a suitable number of utilized lenslets more system preferences must be
taken into account. At first the available beam diameter of the laser together with
the size of the SH sensor’s aperture. And a second limitation is as described in [2, p.
68] that the highest Zernike mode that can be calculated accurately is roughly given
by the number of used subapertures. This second limitation turned out to be not a
very substantial problem since only modes up to the 20th are used and the number of
subapertures is clearly larger than this. By laying an imaginary circle over the center
of the captured spot pattern and only using the subapertures inside provides a well
working solution with K = 132 microlenses as displayed in Fig. 3.10.
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...

131
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65
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68

Figure 3.10: Numbering of the used lenslets. Squares symbolize the subapertures of
the lens array.

Setting all preferences in an initialization routine in MATLABR© and capturing a
snapshot delivers a picture as shown in Fig. 3.11 (a). The position of the subapertures
are derived from a reference image whereby the four center spots (see cyan colored
dots in Fig. 3.11 (c)) are utilized to define an equally spaced grid over the entire image
sensor, mapping the lens array.

Spots at the rim of the laser beam are often not as bright as the center which makes
them more vulnerable to noise. To get a decent wavefront reconstruction only part of
the visible spots are used because limiting the used spots to the subapertures inside
the circle in Fig. 3.11 (b) leads to a more robust evaluation. As seen in Fig. 3.11 (c)
the blue squares represent the subapertures that are used for further processing.
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3 Adaptive Optics System

(a) (b)

(c) (d)

Figure 3.11: SH spot patterns. In (a) the raw image is shown while in (b) the circle
with the cross (i.e. point of origin) in the center is marking the area in
which the spots are evaluated. The utilized subapertures are drawn as blue
squares in (c) with a yellow mark on each found spot. A magnification
of one subaperture is displayed in (d) with the determined spot center
(compare also Fig. 3.8).
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3.3 19-channel Piezo Deformable Mirror

For a first step the bwlabel algorithm from the MATLABR© Image Acquisition
ToolboxTM is used to search in the entire image for so called connected blobs and
labels these. Since this algorithm is only able to detect spots in a binary image with
either black or white (BW) pixels a threshold is needed. Experiments showed that
50 (in a possible range from 0 to 255) is a suitable choice for the intensity threshold.
Everything below is considered as black and all above as white. With the labeling
of the found blobs the function regionprops delivers a coarse determination of the
centroids. The reason, why the so delivered centroids are not exact is that it only can
compute the BW image. But in doing so, it can be checked if there are two or more
spots in one subaperture. Having more than one distinct spot in a subaperture may
occur when evaluating wavefronts with a SH sensor (see also Fig. 3.9). After checking
if the acquired image is eligible for further processing by making sure that only one
spot is within a subaperture the CoG algorithm from Eq. (3.3) is applied to every
subaperture and the values for the computed centroids are stored in a vector called
snapshot_centroids. This vector is subtracted from the vector of reference centroids
which are derived from a reference image. These reference centroids represent the
wavefront that the feedback controller aims for. As stated before, the so called slopes
(see also Eq. (3.4) and Eq. (3.5)) are computed by dividing the difference between
measured and reference centroids by the focus length of the micro-lenses. A matrix
multiplication (see Eq. (3.12)) is carried out to obtain the wavefront.

3.3 19-channel Piezo Deformable Mirror

For the setup used in this thesis a 19-channel Piezo deformable mirror with a diameter
of dDM = 30mm from OKO Technologies is used. The surface is coated with protected
silver to provide a good reflection for visible light. It is specially designed for low-order
aberrations correction as stated in the technical guideline [23]. Since the exact number
of Zernike modes towards which the mirror shows sufficient performance is not specified
an investigation is conducted in Chapter 3.5. A photo of the used device is provided
in Fig. 3.12 together with the layout of the positions of the actuators.

The layout shows a single center stack with two circles of actuators around it. The
outer circle is directly on the edge of the mirror and the inner circle is slightly indented.
To overcome the so called print-through effect, the two rings of actuators are outside
of the used aperture of the mirror [24]. This effect is inherent to the design of normal
continuous faceplate DMs as actuators causing spots in the surface when they try to
form a specific shape.

All actuators are pizeo stacks with a nominal stroke of 6µm at an input voltage
of Vin = 300V (with maximum stroke of 8µm at 400V). To supply the required
high-voltages and for actuation a digital to analogue converter (DAC) in combination
with a high-voltage amplifier unit is used. To address each actuator with MATLABR©

a custom programmed C-function is implemented, based on the supplied application
programming interface (API). The C-function is compiled into a MEX-function to have
the ability to call it as any common MATLABR© function.
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Figure 3.12: Photo of the used DM in (a) with the arrangement of the 19 piezo actuators
in (b). Characteristic for this type is the single center stack complemented
by two rings along the rim.

3.4 Feedback Control Algorithm

In general piezo actuators are suffering from a relatively strong hysteresis due to their
inner polarization effects. The absolute error for feed forward positioning of a piezo
stack depends on the applied voltage (i.e. the electric field) and is between 2% and
15% of the nominal displacement according to [25]. Therefore the performance of the
deformable mirror is strongly connected to a suitable feedback control algorithm to
cope with nonlinearities, model uncertainties and to make sure that the real surface
deflection converges to the desired one.

Before feedback algorithms are described, the concept of the influence matrix A

is presented. The influence matrix describes the mapping of the actuators movement,
expressed by the applied (normalized) voltage v to the resulting deformation of the
mirrors surface, expressed by the measured slopes s.

s = Av (3.13)

To determine A for the actual setup it is possible to apply the maximum voltage to
each actuator separately (i.e. v1 = [1, 0, 0, . . . ]T , v2 = [0, 1, 0, · · · ]T ) and measure the
resulting slopes (sv1, sv2,...)

A = SV
−1 =

([

sv1
...

]

,

[

sv2
...

]

, · · ·

)([

v1

...

]

,

[

v2

...

]

, · · ·

)−1

= (3.14)

=

([

sv1
...

]

,

[

sv2
...

]

, · · ·

)











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











(3.15)

such that the collected voltage vectors form the identity matrix and therefore A is
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3.4 Feedback Control Algorithm

the composition of the measured slopes. This method assumes a linear relationship
between the actuator deflection and the measured slopes over the full range.

Measurements showed that only the region between 20% and 80% of the maximum
actuator voltage leads to a linear relation between v and s. A different approach uses
a large number of measurements with random voltage vectors v with all voltage values
inside the linear region. In the actual setup this method was used with a total number
of 264 measured actuator-slope relations. The influence matrix is then derived from:

A = SV
† (3.16)

The condition number of an non-quadratic matrix gives a hint on how close the pseudo-
inverse comes to the solution of a set of linear equations. With the described method of
finding A a condition number for the matrix V

† smaller than 10 was achievable which
is comparable sufficient value.

With the use of the influence matrix A a commonly used feedback function is
similar to a simple integrator described in [26]:

sd = Zcz (3.17)

vn+1 = vn − gA† (s− sd) (3.18)

Where the desired slopes sd are computed by using the reconstruction matrix Z and
the desired Zernike coefficients cz. The resulting voltage vector vn+1 is the previous
one vn with a subtracted error. The error consists of the difference of the desired to the
measured slopes multiplied by the pseudo-inverse of the influence matrix A

† and an
integrator gain g. The problem with this algorithm is the explicit usage of the pseudo-
inverse which is in some cases not very robust, depending on the singular values of
A. Small defects in A could lead to enormous changes in A

†. First experiments have
shown that the algorithm in Eq. (3.18) is not capable to deliver the desired performance
concerning speed, accuracy and convergence.

In [27] an alternative feedback control algorithm is presented which has been devel-
oped for a push pull mirror. It is based on an iterative learning control (ILC) algorithm
by trying to minimize the error for the next step en+1, formulated as optimization prob-
lem. The solution of the optimization problem is:

en = sd − s (3.19)

vn+1 = vn +
(

A
T
A+ βI

)−1
A

T
en (3.20)

The error en is found by the difference between the desired slopes sd and the measured
slopes s. The iteratively computed voltage vector for the next step vn+1 is based on the
previous one with an addition of the error multiplied by a factor similar to Eq. (3.18).
The influence of the regularization parameter β (with 0 < β < 1 ) on the behavior of
the AO system is investigated in Chapter 3.5.1 in detail. In advance it can be said
that by choosing β close to one a slow convergence speed is expected while a smaller β
increases the convergence speed with the risk of causing oscillations. Even though this
feedback algorithm was originally designed for a push-pull MMDM it fitted very well
for the proposed setup and showed good performance.
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3 Adaptive Optics System

3.5 Results 1: Control Capabilities

This section provides the results of the investigations of the built AO setup. Starting
with the finding of a suitable regularization parameter β followed by an investigation of
the capabilities of the adaptive optics system to work in a feedback configuration. This
is tested by forming distinct Zernike modes with the DM and measuring the output
wavefront with the Shack-Hartmann sensor.

In Fig. 3.13 a photo of the setup is displayed. It shows the main components of the
AO system working in a feedback loop. The laser beam hits the beam splitter from the
right, goes through the beam expander formed by L1 and L2 and is reflected back by
the DM. For protection the DM is covered on the photo (compare Fig. 3.12). The light
goes straight back through the two lenses (now working as a beam concentrator) and
is reflected by the beam splitter towards the SH wavefront sensor. Between the two
lenses a polymethyl methacrylate, acrylic glass or PlexiglasR© (PMMA) disk introduces
static aberrations.
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3
4

567

Figure 3.13: Photo of the adaptive optics part of the setup.

The descriptions of the labels for Fig. 3.13 are as follows:

1. incoming laser beam

2. Shack-Hartmann sensor

3. beam splitter

4. lens L1, f1 = 45mm,

5. PMMA disk as disturbance,

6. lens L2, f2 = 180mm,

7. deformable mirror (surface is covered for protection)

The special layout of the AO system differs from the basic schematic in Fig. 3.1.
That is the case because it is integrated into the interferometer setup that is investigated
in the following chapter. Since alignment is crucial the measurement for the AO part
was carried out in the combined setup which will be presented later.
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3.5.1 Regularization Parameter

As discussed in Chapter 3.4 the used algorithm for feedback control of the AO system
is

en = sd − s (3.21)

vn+1 = vn +
(

A
T
A+ βI

)−1
A

T
en (3.22)

with the error en, the desired slopes sd and the measured slopes s. v stands for the
(normalized) voltage applied to the piezo actuators of the mirror, A is the influence
matrix, β denotes the regularization parameter and I represents the identity matrix.

To find an appropriate regularization parameter β (with 0 < β < 1) a constant
disturbance was introduced into the measurement path. The RMS value of the mea-
sured wavefront compared to a flat wave was monitored while the controller tried to
compensate for the disturbance.

The disturbance is shown in Figure 3.14 as an interferogram on the left together
with a three dimensional representation on the right.

Figure 3.14: Interferogram and 3D wavefront representation of the applied disturbance.

The associated Zernike coefficients of this disturbance are displayed in Fig. 3.15.
The strongest modes are vertical tilt, the first astigmatism and defocus.

A decomposition up to the 20th Zernike mode shows that considerable modes only
appear up to mode 9.

If now the feedback control is applied to this sample disturbance the RMS value
of the measured wavefront is monitored. Performing the measurements with different
regularization parameters β shows, that for values between 0,001 and 1 the algorithm
shows a faster convergence and a smaller residual RMS error if β is smaller. However,
when using β = 0, 0001 the control algorithm shows a fast convergence only at the
beginning, followed by an oscillation before reaching a higher final RMS value compared
to β = 0, 0015.

The curves in Fig. 3.16 shows that the regularization parameter cannot be chosen
as small as possible for obtaining the smallest final residual RMS error. Too small values
of β result in a higher residual error. Such a behavior can be explained when referring
to the L-curve plot of a numerical inverse problem for solving Axλ = b, as described
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Figure 3.15: Zernike modes with their corresponding weighting coefficients of the ap-
plied disturbance from Fig. 3.14.
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Figure 3.16: Comparison of different regularization parameters β. The ordinate depicts
the RMS value of the measured wavefront and the abscissa shows the
iteration cycles of the feedback controller.

in [28]. The L-curve displays the norm of the regularized solution (‖xλ‖2) against the
norm of the residual (‖Axλ − b‖2) when changing the regularization parameter. An
example is depicted in 3.17.

On one hand, a large regularization parameter shows a high residual ‖Axλ − b‖2
since it does not fit the given data b. On the other hand, a small regularization
parameter leads to a nice fit of the residual ‖Ax− b‖, but the solution will suffer from
data and numerical errors, so ‖xλ‖2 will be large. The latter applies to the behavior
depicted in Fig. 3.16 where β = 0, 0001, causing a larger RMS error compared to
β = 0, 001.
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The L-curve for Tikhonov regularization
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Figure 3.17: L-curve of a numerical inverse problem. A regularization method
(e.g. Tikhonov regularization) is applied for solving the inverse problem.
The L-curve describes the trade-off between the size of a regularized solu-
tion and its fit to the given data [28].

So far the measurement was only carried out with one specific aberration. To find
a proper β a series of tests is conducted with three different values for the regulariza-
tion parameters in five disturbances, namely G1 to G5. The applied disturbances are
displayed in Appendix 1 and an overview on the initial RMS and peak-to-valley (P-V)
values is given in Table 3.2.

Table 3.2: Initial RMS and P-V values of the applied disturbances.
Disturbance RMS P-V

# G1: 2,7498 λ 14,9925 λ
# G2: 1,5442 λ 6,2694 λ
# G3: 2,1713 λ 9,6288 λ
# G4: 2,9856 λ 13,6309 λ
# G5: 2,0189 λ 8,1933 λ

The disturbances all have a dominant tip/tilt (modes 1 and 2) and in decreasing
order astigmatism (mode 3, 5), defocus (4), trefoil (6, 9) and coma (7, 8). This kind
of distribution was characteristic for all introduced disturbances.

As an example, how the measurement was executed the graph in Fig. 3.18 shows
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the trace of the RMS value of disturbance number G1 over 1200 controller iterations
with three different regularization parameters. For a better meaningfulness the graph
is vertically zoomed in to see that a regularization parameter of β = 0, 0015 (in - - -
green) leads to the best result in meanings of the residual RMS value even though it
looks a little bit slower in the beginning. The starting value of the RMS error is about
two decimal powers bigger than the residual error.
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Figure 3.18: Longrun of the RMS measurement for disturbance G1 with three different
regularization parameters β.

The second thing to look at, besides the RMS and the P-V value, is the convergence
speed of the controller, or in other words, how many iterations are needed to have a
final value that is in a 1% range of an assumed asymptotic value.

As conclusion a regularization parameter of β = 0, 0015 is a qualified choice in
terms of a decent convergence speed of the feedback algorithm and smoothly approach-
ing the final shape. At approximately 600 iterations the output can be considered as
constant if the disturbance is kept static.

3.5.2 Zernike Mode Forming Ability

As next step the capability of the AO system to form designated Zernike modes is
tested. Forming specific Zernike modes is important since any disturbance is assumed
to be a superposition of a finite number of modes. First a feedforward approach is used
to calculate initial values of the output voltage vector v:

sd = Z cz (3.23)

v = A
†
sd. (3.24)

With the slope vector sd, the reconstruction matrix Z, the influence matrix A and the
(desired) Zernike coefficient vector cz.

The voltage vector is applied to the piezo actuators of the mirror before the feed-
back control is started to compensate for not modeled effects such as hysteresis. The
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maximum value of the Zernike coefficient is limited by the applicable voltage. Comput-
ing the voltage vector for higher indices j shows that the possible maximum value of
the coefficients decreases because v goes earlier into saturation. In other words, lower
modes can be formed with considerably stronger gain than higher modes. Thus, the
Zernike coefficient cz was chosen so that the magnitudes of the elements of the voltage
vector v never exceeded 85% of their upper limit. This limit provides some margin to
the top value for the feedback controller and it is in the linear region of the mirror. To
have a characteristic value for how clear one mode j can be formed by the mirror the
metric of the purity Pj was used (see Chapter 2.4).

As an example, the third mode (i.e. the first astigmatism) is picked out to show
the approach. The iterative calculation of the initial v results in a gain factor of
cz3 = 7, 4620× 10−7 m ∼= 1, 18 λ. Fig. 3.19 shows the calculated actuator voltages.
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Figure 3.19: Calculated voltage vector v for a Zernike coefficient cz3 = 7, 4620×10−7 m.
The magnitudes of the maximum voltages are all within ±0, 85.

After applying the feedback algorithm, the saddle-like shape of astigmatism can be
observed, as shown in Fig. 3.20.

The purity of the shape with P3 = 0, 9994 indicates a good forming capability. The
appearance of other modes is negligible, as shown in Fig. 3.21.

Following the presented example, the forming capability of the first 16th modes is
analyzed in the next step. In Fig. 3.22 all maximum coefficients for each Zernike mode
are displayed. The conducted experiments showed that and investigation up to the
16th mode is enough because no proper forming of any higher mode was possible.

On one hand, a general decrease of the coefficients of higher modes is noticeable
and on the other hand that columns mainly show up in pairs. The latter is a conse-
quence of the fact that modes with a distinct symmetry plane always appear with a
complementary mode perpendicular to it. Only modes like defocus (mode j = 4) with
a rotational symmetry are without any direct opponent. To explain why one tilt (and
one astigmatism) is bigger than the other it must be stated that alignment is crucial
in the whole setup and even a small tilt in a mounting of the optical components could
cause one direction to be favored over the other. The other observation is that the
coma related modes are harder to form for the system. The first two coma modes (7
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Figure 3.20: Interferogram (left) and saddle-like shaped 3D representation (right) of
the first astigmatism (i.e. Zernike mode j = 3).
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Figure 3.21: Depiction of the measured Zernike coefficients when trying to get the
best forming of the third Zernike mode. Obviously the third coefficient is
dominant, but still some other modes appear to be non-zero.

and 8) as well as the secondary astigmatism (11 and 13) are considerably smaller than
the previous or the following modes, respectively. A reason of this behavior lies in
the geometry of the mirror and the attached actuators which are designed in a way to
be able to form the edge of the mirror more than building hills and valleys inside the
surface.

Another important graph rating the forming capabilities is shown in Fig. 3.23
where the purity value for each single mode is displayed.

The measurement for every mode was done separately and it can be seen that the
first six modes are reconstructed very pure (see also Fig. 3.21) while in the higher modes
also other coefficients are induced and therefore the purity decreases. The graph also
shows that only modes up to the 15th mode are presentable with a positive coefficient
and purity. The 16th mode is not representable at all.
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Figure 3.22: Forming of distinct modes. Red bars in the background represent calcu-
lated target values while blue bars in the front are the achieved ones.
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Figure 3.23: Purity Pj of the Zernike modes. Each value is computed for a distinct
mode separately and then brought together in one bar-diagram.
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CHAPTER 4

Interferometer System

This chapter outlines the interferometer principle together with the characteristics and
practical issues of a Michelson interferometer. Additionally, some of the improvements
that were developed to cope with its imperfections are presented. The last two sections
describe the achieved results if the adaptive optics system is integrated into the Inter-
ferometer setup together with an conclusion derived from the measurements results.

Interferometric measurements are used in a variety of fields that include astronomy,
chemistry, physics and especially one major application area, the high precision distance
metrology. According to [29], one of the main advantages of interferometer metrology is
the ability to gain precise position information without changing the system’s dynamics.
Interferometry can be considered as non-contact method and in most cases only a
(lightweight) mirror plate has to be mounted on the measuring object. Therefore it can
be easily combined in a feedback loop to allow high precision positioning. For example
in the chip manufacturing industry where the exact positioning for silicon wavers is
the main usage [30]. Similar to this, the production process of LCD screens also relies
heavily on interferometer precision. Other applications are found for example in the
field of calibration for other measurement devices or machine tools.

4.1 Interferometer Principle

In general interference of waves from a coherent light source comes as a consequence
of the superposition principle. Two waves of equal frequency and polarization but
different phase are defined as:

~E1 = Ê1 cos (ωt+ θ1) (4.1)

~E2 = Ê2 cos (ωt+ θ2) (4.2)

with Ê1, Ê2 being the amplitude and θ1, θ2 representing the phase. The net electric
field at a certain location is now the algebraic sum of the two waves. Assuming they
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4 Interferometer System

both have the same electric field strength amplitude Ê1 = Ê2 = Ê together with θ1 = 0
and θ2 = ∆θ, with no loss in generality, results in a net electric field:

~Enet = ~E1 + ~E2 (4.3)

= Ê (cos (ωt) + cos (ωt+∆θ)) = (4.4)

= 2Ê

(

cos

(

ωt+
∆θ

2

)

cos

(

∆θ

2

))

(4.5)

As a result from the trigonometric addition theorem, the sum of the two sinusoidal
signals transfers to a multiplication with a term cos

(

∆θ
2

)

which has its maximum at
∆θ = 0 and is zero at ∆θ = 180◦. By introducing the amplitude of the net electric field

Ênet = 2Ê cos

(

∆θ

2

)

(4.6)

it can be seen that the amplitude varies from twice the amplitude of one of the beams to
zero, depending on the phase shift between the two interfering beams. The frequency-
dependent term cos

(

ωt+ ∆θ
2

)

shows a net phase shift of half of the original ∆θ. An
example is shown in Fig. 4.1 where the constructive interference at ∆θ = 0 shows
double the amplitude of the single waves. With increasing phase shift the amplitude
decreases until ∆θ = 180◦ where they cancel each other out, also known as destructive
interference.

Since the optical frequencies are to high for electronics in a practical use the elec-
tric field is not evaluated directly. Instead, the irradiance Ir,c is used, where the
cos
(

ωt+ ∆θ
2

)

term in Eq. (4.5) is averaged out by the integration time of the detector.
The irradiance of the net electrical field of two interfering light beams is provided by

Ir,c =
c0nε0
2

Ê
2
net (4.7)

with the speed of light c0 = 299 792 458 m/s, the refraction index of the surrounding
atmosphere n (e.g. for air n ∼= 1, 000292...) and the vacuum permitivity ε0 ∼= 8, 8542×
10−12 F/m. By using the net amplitude from Eq. (4.6) it follows to:

Ir,c =
c0nε0
2

(

2Ê cos

(

∆θ

2

))2

= c0nε0Ê
2 (1 + cos (∆θ)) (4.8)

Comparing this value with the irradiance delivered by only one beam

Ir,1 = Ir,2 = Ir =
c0nε0
2

Ê
2 (4.9)

shows that the measured irradiance is in case of constructive interference (i.e ∆θ = 0)
four times bigger than the irradiance of a single beam. In case of destructive interference
(i.e. ∆θ = 180◦) the acquired signal is zero:

Ir,c =

{

2c0nε0Ê
2 = 4Ir if ∆θ = 0 + 2πk

0 if ∆θ = π + 2πk
(4.10)
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4.1 Interferometer Principle

Fig. 4.1 provides also the values of Ir,c next to the plotted electric field.

constructive
interference

destructive
interference

∆θ = 0

Ir,c = 4 Ir

∆θ = 0, 5 π

Ir,c = 2 Ir

∆θ = 0, 75 π

Ir,c = 0.6 Ir

∆θ = π

Ir,c = 0

Figure 4.1: Two waves (blue and green) with increasing phase difference ∆θ interfere
with each other. The amplitude of the interfered electric field (red) is
dependent on the phase difference between the two waves and is zero for
∆θ = π (destructive interference) and twice the electric amplitude of the
single wave for ∆θ = 0 (constructive interference).

Assuming plane waves and using a photo detector to measure the interference
signal the output voltage VD of the photo detector is a product of the irradiance Ir,c,
the wavelength-dependent optical power to electrical current efficiency factor ηλ, the
transimpedance amplifier gain G and the utilized sensor area AD:

VD = ηλGIr,cAD (4.11)

A transimpedance amplifier is needed to convert the photocurrent, delivered from the
sensor surface of the photo detector, into a voltage, which can be processed further for
example by an analogue to digital converter (ADC).
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4 Interferometer System

4.2 Basic Michelson Interferometer

A setup of the homodyne (i.e. single frequency) Michelson interferometer is shown in
Fig. 4.2.

LASER
Beam Splitter

Photo Detector

Reference Mirror

Measurement Mirror

Figure 4.2: Schematic of a homodyne Michelson interferometer setup. The laser source
provides a coherent laser beam while the beam splitter separates them into
a reference path (up) and a measurement path (right). Both are reflected by
mirrors and at the output of the beam splitter (downwards) the interference
signal can be recorded.

The laser sends out a collimated beam of coherent light with one frequency. A
beam splitter comprising a half-transparent mirror divides the incoming laser beam
into a reference and measurement path. The beam in the reference path is reflected
by the reference mirror whereas the beam in the measurement path is reflected by
the measurement mirror that is attached to a moving object for measuring relative
distances. Both beams interfere with each other after they are merged by the same
beam splitter.

Moving the object in orders of the used wavelength causes an optical path length
(OPL) that equals the phase difference:

∆θ =
2π

λ
2∆x (4.12)

The displacement of the measurement object ∆x is multiplied by two because the beam
has to go back and forth. This OPL leads to an output voltage of the photo-detector
depending on the moved distance of the measurement mirror (compare Eq. (4.8) and
Eq. (4.11), with all constant parameters summed up in K):

VD = K

(

1 + cos

(

4π∆x

λ

))

(4.13)

If all parameters, except the phase difference, are assumed to be constant, the output
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4.2 Basic Michelson Interferometer

is only dependent on the change of the OPL of the measurement path which in this
case is equivalent to twice the movement of the object parallel to the direction of the
laser beam. For example, if the used laser has a wavelength of λ = 633 nm and the
object would move a quarter of a wavelength, the resulting change of the OPL is λ/2.

∆x = λ/4 = 158, 25 nm (4.14)

∆OPL = λ/2 = 316, 50 nm (4.15)

∆θ = π (4.16)

When constantly moving the object, a transition from the maximum of the signal to
zero is measured, leading to a sinusoidal output. By counting the recorded minima (or
equivalent to that, the maxima) the traveled distance of the object can be computed by
multiplying this number with λ/2 of the used laser. With this method the measurement
range is only limited by the coherence length of the laser which makes it a powerful
method for high-precision positioning over a comparable long distance.

The description above is only valid if all parameters in Eq. (4.8) and in particular
the refraction index n, are constant. Since the interferometer only measures the OPL
a local change of n within the measurement path, as it can occur with air turbulences,
also influences the measurement. By only observing the output of the interferometer
it is not identifiable if the change of the OPL originates from a movement of the
measurement object or a change of the refraction index within the path, thus making
the measurement result sensitive to changes in the optical path.

4.2.1 Improvements for High-Precision Distance Measurement

From the first trials to modern industrial measurement devices a lot of enhancements
were introduced. Starting from the basic setup of a Michelson interferometer with a
homodyne laser, one beam splitter, two mirrors and one detector (see Fig. 4.2), modern
systems can be far more complex. The most important enhancements concerning
usability and increase of robustness are as follows [29]:

• Detection of moving direction: According to Eq. (4.13), the actual moved dis-
tance can be measured by counting minima (or maxima) of the acquired signal,
however the direction of movement is still unknown. By introducing a second
detector after an additional beam splitter and a 90◦ phase delay the direction of
movement can be determined. As depicted in Fig. 4.3, if now one detector is at
a minimum (or maximum) the other one is at a phase with the biggest gradient
showing a decrease or increase of the signal and thus the direction of movement
can be derived.

• Reducing loss of intensity with polarizing beam splitter (PBS): When the laser
beam is divided the first time at the beam splitter, 50% of the light goes in each
direction. Assuming the reference and the measurement mirrors reflect the light
ideally each beam hits again the beam splitter with only 50% of the incoming
intensity going towards the output and the other half is send back into the di-
rection of the laser (which can also cause error inside the cavity of the laser).
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4 Interferometer System

To cope with this, two orthogonal light polarizations are used, emitted by the
same light source. Together with a PBS it is possible to split p and s polarized
light into two paths. With the help of so called Quarter Wave Plates (λ/4-WP)
at the exit of the PBS it’s possible to change a linear polarization into circular
polarization which is then reversed at the mirrors. When coming back from the
mirror, this reversed circular polarized light hits again the quarter wave plate,
becoming linearly polarized but orthogonal to its original direction and passes
the beam splitter unhindered towards the output. To let the two orthogonal
polarized beams interfere with each other, an additional polarizer in front of the
detector is needed to select out the components of the light that are overlapping.
A schematic of the setup is displayed in Fig. 4.4.

• Retro-reflectors for being insensitive to tilt: Any misalignment of the mirrors
leads to interference of tilted wavefronts and so a fringe pattern appears on the
detector that decreases the captured signal strength. One very common solution
to this is the usage of retro-reflectors. They are also called corner cubes as they
consist of three mirrors with a 90◦ angle between them. No matter which angle
the incident beam has, they always reflect the beam back into the same direction
but slightly translated. Retro-reflectors make alignment much easier because
they are not sensitive to tilt but lateral movement could be an issue because
the displacement of the out-coming beam is twice the lateral translation of the
retro-reflector.

Movement of mirror

λλ/2

Intensity

Figure 4.3: The direction of movement can be determined by an additional output with
a 90◦ phase shift. If one output is at an extremum the decrease or increase
of the other one shows the direction of movement.
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I

I

II

II

(a)

(b)

p

p

s

s

PBS
λ/4-WP

Mirrors

Polarizer

Laser Source

Detector

Figure 4.4: In (a) the path from the light source to the reflection on the mirrors is
depicted. Orthogonal polarized light hits the PBS where the p polariza-
tion can go through unhindered (path I) while the s polarization is de-
flected (path II). λ/4-waveplates transform linear into circular polarized
light which then hits the mirrors. In (b) the path after reflecting off the
mirrors is displayed. The circular polarization switches direction and the
λ/4-waveplates transform the circular polarization back into a linear polar-
ization. The s polarized light (now from path I) is deflected while the p
polarized light (path II) can go straight through the PBS. The light paths
are recombined at the output of the PBS and a polarizer filters out the
overlapping components of the two polarizations to enable interference.
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4.2.2 Disturbances in Interferometric Metrology

The problem of disturbances in the optical measurement path of an interferometer is
already covered partly in literature, mainly speaking of the impact of air turbulences
and temperature flow of the surrounding atmosphere. In [31] an investigation is con-
ducted on how an air turbulence in a typical distance measuring setup, as can be
found in the semiconductor industry, influences the accuracy. Manufacturing processes
in the semiconductor industry need very low densities of airborne particle contamina-
tions and therefore use a constant flow of filtered air through the equipment. Together
with small thermal gradients this flow of air influences the refraction index based on
time-dependent temperature and pressure fluctuation. Measurement errors between
1, 6 nm and maximal 24, 8 nm were observed, however the author describes that the air
disturbance only uncovers if a lot of other error sources, such as vibrations affecting the
setup, different refraction indices for the measurement and the reference part (coming
from a different mean temperature of the surrounding air) or an uncertain frequency
of the used laser are fixed.

The authors in [4] use wavefront measurements of the optical path to model dis-
turbances caused by air turbulences, however don’t actively compensate for it. It is
described that disturbances move like bubbles through the measurement path and with
the help of a multi-segment detector, the disturbance is estimated. This information
is fed into a turbulence model which is used to correct the position signal of a waver
stage.

A very recently published paper [32] describes the use of an AO system in an
interferometric velocity measurement through a fluctuating gas-liquid. By using a fast
deformable mirror and a SH sensor with high frame rate they obtain high control
bandwith for low order distortion correction. The results show that an AO system
can successfully be integrated in a interferometer (of a Mach-Zehnder style) setup by
increasing the contrast of the interference.

4.2.3 Conclusion

Incorporating the mentioned improvements, modern interferometers are capable to
deliver multi-axis measurement signals with a resolution of 0, 31 nm at a data rate of
up to 10 MHz.

This thesis aims for a proof of concept if an AO system can enhance the signal
strength of the output of a Michelson interferometer. To study the impact of wavefront
aberrations on the detector signal of the interferometer a basic Michelson interferometer
scheme has been selected since it can be concluded that the AO compensation technique
will also work with the improved Michelson interferometers.
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4.3 Experimental Setup

4.3 Experimental Setup

The proposed setup is drawn in the schematic seen in Fig. 4.5 and combines the
adaptive optics system (compare Fig. 3.1) with the Michelson interferometer (compare
Fig. 4.2).

LASER

DM
L2

L1

Mirror

Mirror

Reference Mirror

Polarizor

Photo Diode

Beam Splitter

Iris

SH Sensor

Figure 4.5: Schematic of the actual experimental setup.

The Michelson interferometer is chosen to apply a proof of principle. The basic
setup is relatively simple, does not require an excessive amount of components, works
with almost any homodyne laser source and a simple photo-diode can be used to record
the output signal.

At first, one major difference of the actually build setup to the regular Michelson
interferometer is that the measurement mirror is now replaced by the deformable mirror.
And additional to that, it is fixed to the optical table and instead the reference mirror
sits on a displaceable stage. The main reason for that is that the DM is comparably
heavy and bulky and according to the equations of the interferometer’s output signal
in Eq. (4.8) it is irrelevant which of the two mirrors move. The measured effect comes
only from a change of their phase shift and this is achieved by changing the OPL in
any of the paths.

The reason why it’s still called the measurement path is the introduced aberrations.
The aberration disturbs the wavefront of the laser beam and after the interference with
the reference path it leads to a non-uniform interference pattern (see also Fig. 1.1).

A change of the OPL of half a wavelength (i.e. quarter of a wavelength displacement
of the mirror) results in an inversion of the interference pattern. Illuminated fringes
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4 Interferometer System

darken and dark ones are now illuminated. The photo detector averages the intensity
over its entire sensor area and thus only the change of one fringe is detected. In other
words, with a stronger aberration in the measurement path the number of fringes on
the detector increases and therefore the change in the output signal (i.e. the signal’s
peak-to-peak range) is weaker.

To record the signal from the photo detector an I/O device is used, namely the
NI USB-6211 from National Instruments

TM 1. It is connected via USB to the PC, all
measurements are conducted in MATLABR©.

A moveable stage is used to drive the reference mirror continuously. It is an piezo
driven device with a minimum step size of 50 nm and together with a controller and
an externally provided triangle signal the stage is set to move several micrometers
back and forth. This provides a sinusoidal signal at the interferometer’s output which
then can be used to investigate the influence of different wavefront aberrations on the
signal’s peak-to-peak range.

The laser produces a beam of approximately dbeam = 5mm in diameter. With the
help of two deflection mirrors the beam is adjusted to go perpendicular to the edges
of the optical board where the entire system is placed. The first beam splitter that is
hit by the beam is the one that creates the interference. There it’s divided into the
measurement path going to the left and the reference path going downwards. Following
along the measurement path the light passes another beam splitter (where only one
output is used) and further into a beam expander, consisting of two lenses. These
lenses are used to widen the beam to provide a good covering of the surface of the DM
which in this setup is used as the measurement mirror. As described in Chapter 3.3,
the DM has a diameter of dDM = 30mm and with the used lenses

• L1 : f1 = 45mm and

• L2 : f2 = 180mm

the laser beam is expanded four times leading to an illuminated disk of about 20mm.
The light rays need to go through the beam expander, reflects off the DM and go

back through the same two lenses again. This turned out to require a lot of adjustment
to get again the same collimated beam as before and the best results were achieved
by using so called Air-Spaced Achromatic Doublets from Thorlabs GmbH. Although,
only light with a single frequency was used (achromatic lenses are normally designed
to cope for chromatic aberrations) they worked best in providing a high-precision focus
point in both directions.

Another important thing to take care of is the optical conjugation as described
in [24, p. 62]. Even so the light coming to the wavefront sensor is meant to be a
collimated beam the sensor should be positioned in a way that the pupil of the optical
system is optically conjugated with the pupil of the Shack-Hartmann sensor. Or in
other words, the deformable mirror and the Shack-Hartmann sensor have to be placed
in the focal/backfocal plane of the lens system to ensure conjugation.If this condition
is not adhered, the AO compensation will not work properly.

According to the guideline provided by the manufacturer of the mirror [24], the
surface of the DM should not be entirely covered by the beam. From the basic cal-

1National Instruments Corporation, 11500 Mopac Expwy, Austin, Texas
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culation of the deformation of a plate with biharmonic equations it can be derived
that for a proper reconstruction of Zernike modes at least some actuators have to be
positioned outside of the used aperture. Or more specific, for a piezo driven mirror like
the one used here at least 14 actuators have to act outside of the beam diameter to
form Zernike modes of higher order. The particular layout of the mirror as seen in Fig.
3.12b provides this (18 of 19 actuators are outside the used aperture) and in addition
to this it’s free from any print-through effect.

When the beam reflects off the DM light goes back through both lenses ending
up in the same diameter as it started and via the left beam splitter half of it goes
to the SH sensor where the wavefront is measured. The microlens array of the SH
sensor has a focal length of fSH = 7mm. In front of the sensor a polarizer is used to
weaken the intensity of the incident light. This is necessary to prevent the CCD from
overexposure, because the settable range of the exposure time was not sufficient for
decent image quality.

The other half of the returning light travels to the next beam splitter. This is
the one for the interferometer feature and here it’s brought together with the beam
from the reference path. As visible in the schematic also a gray beam splitter is drawn
in the reference path. Actually, this one has the only use to weaken the intensity of
the reference beam the same way the measurement path is weakened by the beam
splitter for the wavefront sensor and makes sure that the interfering waves have an
amplitude as equal as possible, which is required by Eq. (4.8). The output signal of
the interferometer is recorded with the photo diode on top of the interferometer’s beam
splitter.

Built Setup

The photo in Fig. 4.6 shows the actual built setup (compare Fig. 4.5) where the path
of the laser beam is sketched with a red line. It is set up on a 600mm × 900mm
optical breadboard. The picture misses the photo diode that would be placed where
the pictograph is as well as the movable stage of the reference mirror (number 4). The
description according to the numbers in the picture:

1. laser source, λ = 633 nm

2. first beam splitter, for the Michelson interferometer

3. beam splitter, in the reference path for equal intensity in both paths

4. reference mirror (not on the photo: movable stage)

5. beam splitter, for the wavefront sensor

6. lens L1, f1 = 45mm

7. lens L2, f2 = 180mm

8. deformable mirror

9. Shack-Hartmann wavefront sensor
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10. iris, to modify incoming laser diameter

11. polarizer, to adapt intensity for the SH sensor

It showed throughout the entire work that the alignment of the setup is the number
one crucial condition. Only a small deviation in the optical path destroys the fine tuning
of the component’s performance.

1

2

34

567

8

9

10

11

Figure 4.6: Photo of the built setup with a sketched laser path. Not on the photo are
the photo diode and the movable stage of the reference mirror.

4.4 Results 2: Evaluation of AO in the

Interferometric Setup

The main goal of this thesis is to show that an adaptive optics system improves the
functionality of a Michelson interferometer setup in a way that if the measurement
path suffers from wavefront aberrations the output signal peak-to-peak value range
can be increased by counteracting these disturbances. Firstly, an investigation is done
on how individual modes, formed by the deformable mirror, are affecting the output
signal’s peak-to-peak value. And secondly, a test with a variety of arbitrary but static
disturbances is conducted and the enhancement through the AO system on the photo
detector signal is observed and interpreted.
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4.4.1 First Series of Tests: Influence of designated Zernike

modes

For this series of tests the mirror is forced to take the shape of one designated Zernike
mode at a time. The peak-to-peak value of the output of the Michelson interferometer
is recorded to see if and how the induced Zernike mode will result in a loss of signal
strength. The procedure for conducting the measurements was as follows:

At first, the gain factor of the designated mode was set to zero while the controller
had time to make sure the reflected wave is as even as possible. This plane wave is used
as reference in the following. After this the coefficient is increased linearly in ten steps.
In every step the controller has time to form the mode sufficiently pure. After every
run the interferometer output (i.e. the signal of the photo detector) is measured and the
resulting peak-to-peak value is determined. It can be expected that with an increasing
coefficient the number of emerging fringes increases on the detector. A movement of
one half of a wavelength is still resulting in the change of only one fringe, the share of
this one fringe on the whole detector is much smaller compared to a pattern with less
fringes. A depiction of this is shown in Fig. 4.7.

(a) (b)

Intensity(x)Intensity(x)

xx

∆x∆x peak-to-peak valuepeak-to-peak value

Figure 4.7: In (a) two plane waves interfere. By displacing the mirror by ∆x = λ/2 a
drop in intensity from the maximum to zero is noticeable. In (b) a fringe
pattern, caused by uneven wavefronts, is visible and if the mirror is moved
the same distance only a weaker peak-to-peak value is measurable with the
photo-detector.

To make sure the signal on the photo diode is going from the possible minimum to
its maximum the mirror of the reference path is moved for more than one wavelength.
In a normal interferometer setup the reference is not moved at all but the mirror of
the measurement path. Since in this setup the measurement path is terminated by the
deformable mirror it seems to be a better choice not to move the comparatively heavy
and bulky DM. In a further improved setup the DM would be tilted a little bit to
the side, deflecting the beam to an additional mirror. This mirror would be mounted
on the moving object. For this particular measurements the moved path itself is not
important but a good signal on the photo detector and therefore it is equivalent if the
measurement path moves or the reference.

The introduced procedure is now shown for the 3rd mode. The target value of
the coefficient is increased linearly by ∆cz3 = 0, 5 × 10−7 m = 0, 079 λ for ten times
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leading to a final value of cz3,final = 5× 10−7 m = 0, 79 λ. This final value was chosen
in particular to have comparable results for the first five modes. As it is visible in Fig.
3.22 the DM is able able to achieve this coefficient with a high purity (compare Fig.
3.23).

Picking out the third Zernike mode and comparing the output of the interferome-
ter’s photo detector at three distinct coefficients (namely, cz3 = 0; 1× 10−7 m and 5×
10−7 m) leads to the measured time signals displayed in Figure 4.8. As expected all of
them are sinusoidal shaped which comes from a nearly constant movement speed of the
mirror. It must be stated that they are not synchronized in any way and the signals
are recorded at different times. The important difference between them is the decline
of signal strength with an increase of the applied Zernike mode coefficient. The peak-
to-peak value is determined as the difference of the maximum and minimum, seen also
in Fig. 4.8. Two horizontal light-blue lines for the run where cz3 = 0 showing which
values are chosen for further processing.
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Figure 4.8: Cut-out sequence of the interferometer’s output signal showing the influence
of a specific wavefront deformation on the output signal when moving the
mirror along one direction. Every graph is taken with a different coefficient
of the third Zernike mode. The disturbance is varied from weak (cz3 = 0)
to heavy (cz3 = 5× 10−7).

Each period in the detector signal represents a displacement of the moving mirror
of half a wavelength, ergo 316, 5 nm. Collecting the acquired peak-to-peak values from
every rerun results in Fig. 4.9 where the x-axis describes the increase of the coefficient
cz3,n+1 = cz3,n +∆cz3 and the y-axis describes the measured peak-to-peak signal. The
graph shows a definite drop of signal strength with increasing Zernike coefficient.

Fig. 4.10 shows the drop of the interferometer output signal when increasing the
coefficients of the first five Zernike modes.

The graph shows one color for each mode and all lines show the tendency to sink
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Figure 4.9: Comparison of the measured peak-to-peak value of the photo detector signal
with increasing coefficient cz3 of Zernike mode number 3.
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Figure 4.10: Peak-to-valley signal of the detector output when increasing the gain fac-
tor czn of the dedicated mode. The first five Zernike modes are used as
disturbance source.

with increasing gain factor but with notable differences. For example the similarity
between the third and the fifth mode (� blue, ⋄ pink) as they are very similar in their
behavior, especially if they are compared to the defocus mode (number 4, + red). This
comes mainly from the fact that by applying defocus the entire surface is bended while
with astigmatism (mode 3 and 5, compare also Fig. 2.5) mainly the edges are formed
and two orthogonal “bridges” remain stable on the surface.
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4.4.2 Second Series of Tests: Disturbance Compensation

After investigating the influence of distinct Zernike modes on the interferometer’s out-
put signal strength in the previous section, now various disturbances are introduced
into the measurement path. The impacts before and after active compensation are
measured and presented. Since disturbances can be seen as a superposition of Zernike
modes with varying coefficients the aberrations are decomposed into their components
and so a connection with the previous measurements is filtered out.

As disturbance source a disc of PMMA was used. The plate is melted slightly in
some places with a hot air blower to increase surface irregularities. For the following
measurements the disk is fixed in a holder and the laser is going through a small part of
the face. Additionally, the disc can be rotated to switch to another disturbance profile.

In the Appendix 2 a compilation of the ten utilized disturbances is shown. All are
displayed as interferogram, 3D representation and as Zernike decomposition with the
according coefficients. It can be seen that the coefficients are decreasing with higher
modes throughout all disturbances and especially after the fifth mode a significant drop
is visible. This fact was observable with all investigated disturbances and meats the
capability of the AO system which has its strengths in forming lower modes considerably
better than higher. The RMS and P-V values for the used ten disturbances are depicted
in Fig. 4.11. It was on purpose to have a variety of RMS values (and P-V values,
respectively) to test the performance of the system for different circumstances.
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Figure 4.11: Compilation of the RMS value (dark blue) and the P-V value (dark red)
of the ten applied disturbances.

The following measurements are carried out to determine on one hand the loss
of signal strength on the photo detector caused by the disturbance and on the other
hand to show that the signal can be increased by using anAO system. As preferences
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4.4 Results 2: Evaluation of AO in the Interferometric Setup

are used the regularization parameter β = 0, 0015 and a number of 800 cycles for the
feedback algorithm to be sure a constant output is established. The experiment was
carried out in the following steps:

• no disturbance is applied

• measuring the interferometer’s output peak-to-peak value, A0

• introducing an aberration

• measuring the output again, a smaller peak-to-peak value is expected, An

• the feedback controller tries to compensates for the aberration

• again measuring the interferometers output, Ancomp
.

The procedure above was repeated for the ten described disturbances in the following
labeled as P1 to P10.

To show an example on how the measurement is carried out the disturbance number
P5 with two strong tilts is picked out (see representation in Appendix 2). First, the
undisturbed signal is acquired leading to an value for the undisturbed peak-to-peak
value A0 = 21, 0mV.

Now the disturbance is introduced by placing the PMMA disk into the laser beam.
The signal decreases from A0 = 21, 0mV to A5 = 4, 6mV.

When the feedback controller is switched on and the RMS value of the captured
wave is monitored a quick drop at the beginning, followed by an asymptotic-like behav-
ior is observed similar to the investigation in Chapter 3.5.1. The residual RMSresidual =
0, 0479 λ is about two orders of magnitude smaller than the initial value RMSstart =
2, 1460 λ.

If the amplitude is now determined a third time, in fact after the feedback con-
troller did the work, the obtained value is A5comp

= 56, 5mV which is even higher than
the originally undisturbed value. That is the case because at the first measurement
no active compensation was applied, thus also any system introduced aberrations like
imperfect lenses or small misalignment were also effecting the output. While the con-
troller takes care to compensate for the introduced aberrations it also cancels out most
of these system immanent errors. Comparing the amplitudes directly

A5comp

A5

=
56, 5mV

4, 6mV
= 12, 2826... (4.17)

shows an increase of more than one decimal power.
Putting together the results from the ten conducted tests shows a clear improve-

ment of the signal peak-to-peak value. The amount of improvement depends on the
disturbance. The bar graph in Fig. 4.12 shows the comparison of the captured peak-to-
peak values against the disturbed ones in blue and the ones with active compensation
in green.

The resulting RMS values are displayed in Fig. 4.13 where they can be compared to
the starting values in Fig. 4.11. The different scaling of the y-axis in both graphs must
be taken into account. The resulting RMS values are about two orders of magnitude
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4 Interferometer System
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Figure 4.12: Depiction of the captured peak-to-peak values suffering from different dis-
turbances before (blue) and after (green) the feedback controller is acti-
vated
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Figure 4.13: Compilation of the RMS values of the resulting wavefronts after the active
compensation of the disturbances.

smaller and for the purpose of noise cancellation the presented values are the mean of
the last 80 measured data points.

Tab. 4.1 sums up the results for all disturbances and shows the improvement as a
factor of compensated to disturbed peak-to-peak value.

In the recorded tests the minimum of the achieved improvement factor is at the
sixth disturbance A6comp

/A6 = 3, 00 and the maximum at the fifth A5comp
/A5 = 12, 29

with an average over all ten values at about 5, 72.
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4.5 Conclusion

Table 4.1: Comparison of AO enhanced interferometer output signals.
Distur. Ancomp

An Ancomp
RMScomp RMSn

n# [mV] [mV] An [λ] [λ]
P1 62,13 12,82 4,8462 0,0379 1,8376
P2 53,26 15,78 3,3750 0,0399 1,5292
P3 59,50 9,20 6,4643 0,0413 1,1020
P4 47,34 7,56 6,2609 0,0543 1,4169
P5 56,54 4,60 12,2857 0,0468 2,0313
P6 34,52 11,51 3,0000 0,0307 1,2412
P7 50,63 8,22 6,1600 0,0372 1,1271
P8 39,45 11,51 3,4286 0,0533 0,4748
P9 67,72 9,86 6,8667 0,0209 0,6644
P10 63,78 14,14 4,5116 0,0265 0,5769

An explanation why some disturbances are more likely to be compensated than
other can be found in their Zernike coefficients. The highest gain in peak-to-peak values
was achieved with the disturbance P5 mainly because of it’s strong first and second
coefficient leading to a small initial value A5. But since tip and tilt can be formed
very efficiently by the mirror the win in signal strength is the highest. Disturbance
P6 for example suffers also from a strong tip and tilt together with a relatively strong
defocus. Even so the RMS value is one of the smallest this combination demands a
very high control variable that drives the actuators into saturation. And particularly
disturbance P8 shows a comparable high 14th mode which can hardly be formed by
the mirror, therefor also a saturation of the actuators and so a worse increase of signal
strength.

4.5 Conclusion

As conclusion can be said that the proposed setup is capable to improve the out-
put signal’s peak-to-peak value of a Michelson interferometer if the laser beam in the
measurement path is suffering from wavefront aberrations. In this setup the average
increase of the peak-to-valley signal range was 5, 4 times the disturbed signal. The
amount of improvement depends on the composition of Zernike modes of the distur-
bances. While even strong tip and tilt compensation is very easily done, disturbances
with significant coefficients higher than the 10th mode are hard to compensate with the
used deformable mirror.

Assuming the photo detector is already working on it’s detection limit because of a
weak laser beam, limit of the resolution of the ADC, noise or even because of working
in an environment with strong ambient light, an increase of this magnitude could help
establishing an operative interferometer setup even in harsh conditions.

57





CHAPTER 5

Outlook

The results from the previous chapter show that the usage of adaptive optics in a
Michelson interferometer setup can enhance the output signal’s peak-to-peak value. In
the following, some issues are presented to support further improvements of the overall
system.

For the AO part of the system separate investigations are conducted. The limita-
tions of the SH sensor not to be able to detect the piston mode in a wavefront makes the
presented setup vulnerable to induced errors due to the movement of the DM itself. If
all actuators of the DM are translated uniformly with the same offset no change in the
reconstructed wavefront is noticeable but the output of the Michelson interferometer
would see a distance change. To prevent this, either the position of the actuators could
be recorded together with the wavefront or the mean position of the mirror’s surface
must be measured with an additional sensor. The first method is limited because of
the strong hysteresis of piezo stacks which demands a powerful model to deal with this
nonlinearity if only the control signal is used to predict the piston mode. The second
method could lead to a massive overhead of extra components. Possible ideas for this
piston mode detection are for example an eddy-current sensor or even an additional
interferometer that logs the mean position of the mirror.

In this thesis the only regarded disturbance was introduced by a partly melted
PMMA disk in a static arrangement. For a further system evaluation a dynamic
approach is needed, potentially composed of a (hot) airflow together with a nozzle
and shielding to make sure only the measurement path is exposed. In general, a next
step would need to consider a dynamic disturbance source which results in higher
requirements for the speed of the feedback loop. A faster SH sensor together with an
optimized algorithm in MATLABR© or even an embedded solution (for example in a
FPGA) could increase controller speed.

As the results show the strongest modes of the investigated disturbances are mainly
tip and tilt. For some cases maybe a mirror with only tip and tilt correction would also
lead to similar results with the benefit of a simplified control that also would lead to a
higher controller speed. This is also thinkable with a simpler wavefront sensor than the
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5 Outlook

SH sensor where it’s not necessary to process an entire image to derive the wavefront.
The other direction to improve the performance of the system would be to imple-

ment an AO setup that is able to compensate for even higher modes with sufficient
coefficients. As outlined in the Results in Chapter 4.4 the current system is only able
to form Zernike modes up to the 15th with a positive purity. A DM with a higher
number of actuators would be able to correct more Zernike modes but also would need
a more powerful driving hardware.

The built interferometer setup is the basic Michelson interferometer and so a way to
improve the system’s performance would be to implement the enhancements described
in Chapter 4.2.1, where possible Improvements for High-Precision Distance Measure-
ments are outlined. The utilization of the detection of the moving direction, the usage
of a polarizing beam splitter (together with a qualified laser and quarter wave plates)
to reduce intensity loss and corner cubes instead of normal mirrors should cause no
noteworthy problems for the other features of the system.

Another big step in enhancement that’s worth a deeper investigation is given by the
introduction of the heterodyne interferometer. It is widely used in the interferometric
metrology. This setup uses a laser which is capable of sending out two orthogonal
polarized beams with a small difference in their frequency (small, compared to the
frequency of light). Interference of these two beams leads to a beat signal with the
frequency difference as the envelop. The distance measurement is now accomplished by
comparing two AC signals as one is tapped right at the output at the laser source and
one at the output of the Michelson interferometer. Due to the Doppler-Shift of a moving
object in the measurement path the envelop frequency of the second signal is modulated
while the first signal is still at the same frequency. Thus, the distance information can
be derived from the variation of an AC signal rather than using intensity information.
This comes with the advantage of not being sensitive to any loss of laser intensity
(as long as the signal is still detectable). Additionally, the direction of movement is
directly derived from the Doppler-Shift and also any drift of the laser frequency would
not lead to any erroneous measurement as long as both frequencies are drifting equally.
This is true in most cases since drift mainly originates from temperature change of
the environment. The complete calculation for signal acquisition is done in [29]. An
integration of an AO system into a heterodyne interferometer setup could also bring
advantages if the wavefront is distorted that much that a proper interference signal can
not be read out.
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Appendix A: Measurement Display

1 Disturbances for Control Gain Finding

Figure 1: Disturbance G1

Figure 2: Disturbance G2
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Appendix A: Measurement Display

Figure 3: Disturbance G3

Figure 4: Disturbance G4

Figure 5: Disturbance G5
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2 Disturbances for Performance Testing

2 Disturbances for Performance Testing

Figure 6: Disturbance P1

Figure 7: Disturbance P2

Figure 8: Disturbance P3
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Appendix A: Measurement Display

Figure 9: Disturbance P4

Figure 10: Disturbance P5

Figure 11: Disturbance P6

Figure 12: Disturbance P7
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2 Disturbances for Performance Testing

Figure 13: Disturbance P8

Figure 14: Disturbance P9

Figure 15: Disturbance P10
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Appendix B: Setup Details

3 Driving the Deformable Mirror

To drive the DM a high voltage driver for the piezo stacks is needed together with a
DAC that receives the control signals from the PC The DAC is connect via an Ethernet
connection to the PC while flat ribbon cables connecting the driver and the mirror.

One point that must be stated is that the mapping of the physical connector to
the actuator number does not match the description in the manual. A conversion
from the connector indices to the ones from the actuators was identified by applying
voltage to each piezo stack individually and determining its position by evaluating the
corresponding wavefront captured with the SH sensor. In Table 1 the mapping is shown
and if for example the first actuator (i.e. the center stack) is addressed the index is
mapped to pin 8 of the connector, according to the conversion table.

Table 1: Mapping of the indices of the actuators to the physical connector.
actuator connector actuator connector

1 8 11 18
2 19 12 11
3 13 13 15
4 17 14 16
5 14 15 4
6 6 16 5
7 2 17 9
8 7 18 3
9 1 19 10
10 12
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Appendix C: Software Functions

[time, data] = NI_USB_6211_Analog_Measurement(nbr_points, time_s);

Delivers the output of the National Instruments
TM

ADC. Inputs are the number of
points and the duration time that should be recorded in seconds.

[hpreview, uEye_obj] = init_imaqtool_settings(exp, prev, grid);

Initialization of the MATLABR© image acquisition toolbox settings. The exposure is
set with exp. If prev is non zero, a live preview is enabled, optional with grid on (non
zero) or off (zero).

ref = reference_measurement(snapshot, handle,...

... tresh_low, tresh_high, sub_size, nbr_lenses);

Provides the reference centroids for the SH sensor as return value as well as saving
them as ‘Reference_Centroids.mat’. Inputs are an undisturbed SH snapshot, a
handle to the preview object to plot the reference centroids, a threshold _high and
_low where the pixel intensity is limited, the size of the subaperture in pixels sub_size
and the number of utilized lenses.

colmap = colormap_interference_generator(stripes);

This functions constructs a colormap to display interference fringes. With the input
stripes the visible fringes are set. The borders of the graph where this colormap is
used need to be adjusted manually to the number of fringes and the used wavelength.

socket = DAC_init_and_open();

Initialization routine for the DAC that drives the piezo actuators of DM. An Ether-
net connection is established and a socket number is returned which must be used
whenever the DAC is addressed.

DAC_close(socket);

Closes the Ethernet connection to the socket assigned by the previous function.
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Appendix C: Software Functions

Send_values_to_DAC(socket, int32(v_desire));

A voltage vector v_desire is sent to the DM’s actuators, addressed by the opened
Ethernet socket. The input format for the voltage array must be an array of 32-bit
integer values.

slopes = slopes_calculation(snapshot, ref, nbr_lenses, pxl_size, focus);

Calculates the slopes sx, sy out of a SH snapshot. Further inputs are the reference
centroids (ref), the number of utilized lenses (nbr_lenses), the size of one single pixel
(pxl_size) and the focus of the lenses.

[phi, coeff_Z] = wavefront_calculation(snapshot, ref, nbr_lenses, ...

... pxl_size, focus, diam);

Calculates the 3D wavefront and the according Zernike coefficients out of a SH snapshot.
Further inputs are the reference centroids (ref), the number of utilized lenses (nbr_lenses),
the size of one single pixel (pxl_size), the focus of the lenses and the diameter of the
sensor (diam).
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