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Abstract

We address the one-to-one multi-commodity pickup and delivery traveling
salesman problem (m-PDTSP) which is a generalization of the TSP and
arises in several transportation and logistics applications. The objective is
to find a minimum-cost directed Hamiltonian path which starts and ends at
given depot nodes, the demand of each given commodity is transported from
the associated source to its destination, and the vehicle capacity is never ex-
ceeded. In contrast, the many-to-many one-commodity pickup and delivery
traveling salesman problem (1-PDTSP), just considers a single commodity
and each node can be a source or target for units of this commodity. We show
that the m-PDTSP is equivalent to the 1-PDTSP with additional precedence
constraints defined by the source-destination pairs for each commodity and
explore several models based on this equivalence. In particular, we consider
layered graph models for the capacity constraints and introduce new valid
inequalities for the precedence relations. Especially for tightly capacitated
instances with a large number of commodities our branch-and-cut algorithms
outperform the existing approaches. For the uncapacitated m-PDTSP (se-
quential ordering problem) we are able to solve to optimality several open
instances from the TSPLIB and SOPLIB.
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1. Introduction

We address the one-to-one multi-commodity pickup and delivery traveling
salesman problem (m-PDTSP) introduced by Hernédndez-Pérez & Salazar-
Gonzdlez (2009). The problem arises in several transportation and logistics
applications. We are given a complete directed graph with a node set con-
sisting of start and end depot and a set of customers. For each arc a travel
distance (or cost) is given. Furthermore, a set of commodities is given, each
one associated with a demand, a source and a destination node. The capac-
ity of the single vehicle is limited. The objective is to find a minimum-cost
Hamiltonian path such that the vehicle starts and ends at the correspond-
ing depot, the source of each commodity is visited before the associated
destination, and the vehicle capacity is an upper bound of the vehicle load
throughout the path satisfying all demands.

More formally, we are given a complete directed graph G = (V, A). Node
set V' consists of start and end depot 0 and n+ 1, respectively, and the set of
customers V., = {1,...,n}. For each arc (7,j) € A, a travel distance (or cost)
¢;; of going from i to j is given. There are m commodities K = {1,...,m},
cach k € K associated with a demand ¢, a source s, € V' \ {n + 1}, and a
destination dj, € V'\{0}. We assume s;, # dj and g > 0. A customer j can be
the source of several commodities and the destination of other commodities.
The capacity of the vehicle is represented by ) > 0. We assume that ¢, < @
for all £ € K. The objective is to find a minimum cost sequence 6 of nodes V'
such that: 1) 6(0) = 0,0(n+1) = n+1, i.e., the vehicle route starts and ends at
the corresponding depot, ii) 0(sg) < 0(dy),Vk € K, i.e., the source is visited
before the corresponding destination, and iil) > 44, <pcoy & < @, VD €
{0,...,n}, i.e., the vehicle capacity is an upper bound of the vehicle load for
each position p on the path from 0 to n+1. The value 6(j) can be interpreted
as the position of node 7 € V in the Hamiltonian path. The problem is N'P-
hard since it generalizes the traveling salesman problem (TSP).

Hernéndez-Pérez & Salazar-Gonzélez (2009) present two solution ap-
proaches, both based on Benders decomposition of a path and a multi-
commodity flow model, respectively. The resulting branch-and-cut algo-
rithms are based on models in the natural variable space, i.e., only use
binary variables for arcs A. These approaches usually achieve excellent re-
sults in terms of solution runtime for loosely-constrained problem instances,
i.e., when only a few commodities have to be considered or the given vehi-
cle capacity is large in relation to the demands. In these cases only a few



violated inequalities have to be added within the cutting plane phase. Ad-
ditionally, the reduced size of the initial model makes it possible to quickly
solve the corresponding linear programming (LP) relaxation. However, when
considering problem instances with many commodities and/or a tight vehi-
cle capacity several weaknesses of these approaches show up, namely that
the basic model provides only a quite weak LP relaxation value leading to
a large number of branch-and-bound nodes and making it necessary to add
many violated inequalities. Our aim is to especially consider these type of
instances and present models and solution algorithms to quickly solve them.
Rodriguez-Martin & Salazar-Gonzélez (2012) also propose several heuristic
approaches for the m-PDTSP to obtain high-quality solutions for larger in-
stances for which exact approaches cannot obtain satisfying results within
reasonable time. They present a simple nearest neighbor heuristic to con-
struct a solution followed by an improvement phase based on 2-opt, 3-opt,
and restricted MIP neighborhood structures.

A different problem variant called the many-to-many one-commodity
pickup and delivery traveling salesman problem (1-PDTSP) is introduced by
Hernéndez-Pérez & Salazar-Gonzélez (2003). In this problem we just con-
sider a single commodity and each node can be a source or target for units of
this commodity. Values p;,Vj € V, represent the customer demands: Nodes
with p; > 0 and p; < 0 are denoted pickup and delivery customers, respec-
tively. Nodes with p; = 0 also need to be visited without changing the vehicle
load. Again, we want to find a Hamiltonian path from 0 to n+ 1 satisfying all
customer demands and the vehicle capacity Q. It is NP-hard to find a feasi-
ble solution for the 1-PDTSP (Hernandez-Pérez & Salazar-Gonzélez, 2003)
and since the 1-PDTSP is a relaxation of the m-PDTSP (Hernandez-Pérez
& Salazar-Gonzalez, 2009), it is also NP-hard to find a feasible solution for
the m-PDTSP. Hernandez-Pérez & Salazar-Gonzalez (2004, 2007) present
several models and valid inequalities for the 1-PDTSP and branch-and-cut
algorithms to solve it. Dumitrescu et al. (2010) consider the TSP with pickup
and delivery which is a special variant of the m-PDTSP without capacity con-
straints and a special commodity structure and introduce several new sets of
valid inequalities and a branch-and-cut algorithm. An overview on further
pickup and delivery problems can be found in Berbeglia et al. (2007).

We will show that the m-PDTSP is equivalent to the 1-PDTSP with
additional precedence constraints defined by the origin-destination pairs for
each commodity. The customer demands of the equivalent 1-PDTSP are
defined by the load changes when the vehicle visits a customer in the m-
PDTSP. The advantage of using this relation to model the m-PDTSP is
that we are able to model the capacity constraints just by considering a
single commodity. The precedence relations are ensured separately by adding
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inequalities for the sequential ordering polytope (SOP), sce Balas et al. (1995)
and Ascheuer et al. (2000). We also introduce new inequalities based on
sequences and logical implications of precedence relations which are able to
further close the LP gap, especially for instances with a large number of
precedence constraints. Furthermore, we present alternative ways to model
the capacity constraints based on load-dependent layered graphs which are
beneficial for tight capacities in terms of LP bounds. In particular we consider
a formulation based on a 3-dimensional layered graph that combines position
and load together and even achieves tighter LP bounds, at the cost of a large
model size. Our branch-and-cut algorithm to solve the m-PDTSP consists
of several preprocessing methods, primal heuristics, and separation routines
for the SOP inequalities. Especially for tightly capacitated instances with
a large number of commodities we are able to outperform the approaches
by Hernéndez-Pérez & Salazar-Gonzalez (2009). Additionally, we consider
the uncapacitated m-PDTSP which is equivalent to the TSP with precedence
constraints (TSPPC) (or sequential ordering problem). Here, an adapted
variant of our branch-and-cut algorithm is able to solve to optimality several
open instances from the TSPLIB and SOPLIB.

The remainder of this article is as follows: In Section 2 we present reduc-
tion and preprocessing techniques for the m-PDTSP, Section 3 revises ex-
isting models, Section 4 discusses the transformation to a single-commodity
problem, Section 5 introduces layered graph models for the capacity con-
straints, Section 6 presents existing and new sets of valid inequalities, Sec-
tion 7 describes our branch-and-cut algorithms, Section 8 shows experimental
results, and Section 9 concludes the paper.

2. Preprocessing

In this section we discuss some problem reductions and important prob-
lem properties which will be used to reduce and strengthen the models dis-
cussed in this paper. Additionally, this information may lead to an early
detection of infeasibility of an instance.

2.1. Commodities

A commodity k£ € K is called transitive if there exist commodities ky, ky €
K\ {k} with s, = sk, dy, = Sk,,dr, = di. It can be easily seen that the
set of feasible solutions is not modified if a transitive commodity is removed
from set K and the demands of the corresponding commodities k; and ko are
appropriately modified, i.e., ¢, = g, + @ and ¢, = qx, + qx. We perform
this reduction step for all transitive commodities.



2.2. Precedence Relations

The source-destination pairs (sg,dy),Vk € K, induce an acyclic prece-
dence graph P = (V, R) with R being the transitive closure of R = {(sy, dy) :
ke K}U{(0,i) :ie€ V\{0}}u{@i,n+1):ie V\{n+1}}. Clearly,
arc (j,i) € A can be removed from the original graph G if (i,j) € R since
it cannot appear in any feasible solution. Additionally, arc (i,7) € A can be
removed if (i,7) € R is transitive, i.e., for some k € V, (i,k), (k,j) € R (cf.
Balas et al., 1995). Let R C R be the subset of non-transitive precedence
relations.

2.8. Vehicle Load Bounds

For each node j € V we define net demands p; := 3. qx—> iz, Gk
representing the load change of the vehicle when visiting node 7 € V. For
each arc (i,7) € A we compute lower and upper bounds /;; and u;; on the
vehicle load, respectively. The load on arcs going out of and coming in
to the depot is fixed and defined by the commodities starting or ending in
the depot, i.e., lp; = ug = ZkeK,sk:O 0, V(0,7) € A, and l; py1 = Uipy1 =
> keK.dyeni1 & V(i,n +1) € A. This is different to the 1-PDTSP where the
initial vehicle load cannot be derived a priori since it depends on the visiting
sequence. To calculate the load bounds for all other arcs (,7) € A,i #0,j #
n + 1, we use some ideas from Herndndez-Pérez & Salazar-Gonzalez (2009)
and extend them in the following way. For each commodity k£ € K we define
the set V™ C V of nodes which have to be on the path from s to dj in any
feasible solution. Set V,°** C V includes nodes which cannot be on the path
from s; to dj in any feasible solution:

V=i eV ii=5,Vi=dV (s,1),(i,dy) € R}
Vet ={i e V: (i,s;) € RV (dy,i) € R}
Similarly, we define set A" consisting of arcs (i, j) which — if used in a solution

— have to be on the path from sj to di. Set A" includes arcs (i, j) which —
if used in a solution — cannot be on the path from s; to d:

AP ={(0,j) € Azi e VI \{di} Vi € Vi \ {sx} V (s1,9), (j,di) € R}
Azut = {(Z,]) EA:i:dk\/jZSk\/iEV;gout\/j erOut}

Then, lower and upper load bounds for the arcs can be defined as follows:

lij = Z 4k, U5 = mln{@ - max{(), —Pi, Pj}7 Z C]k:}

k:(3,5)€ Ain ke (i,) g A"



To further strengthen the load bounds we consider all feasible paths P of
length three and update the bounds in the following way:

lij = min max{lp; + pi, lij, Lk — pj}, wiy = maxmin{up; + p;, wij, wir, — p;}
Phijk Phijk
These bounds are used for tightening the models presented in this article.

Furthermore, for each arc (i, j) € A we define sets A;; and Aj; of all valid
preceding and succeeding arcs, respectively:

A ={(k,i)) e A:k#j,(j,k) ¢ R,(k,1) ¢ R for some | #1i,(l,j) € R}
AL ={(,k) e A: k#1i,(k,i) ¢ R,(l,k) ¢ R for some [ # j,(i,l) € R}

Then, for each arc (i,5) € A,i # 0,7 # n + 1, we define lower and upper
bounds l’:{ and uf_,i’ respectively, on the vehicle load coming into node ¢ and
bounds /;; and u;; on the load going out of node j, assuming that arc (,7)
is traversed, as follows:

;= > G uy = minfuy; - p;, max ue}
k: A CAPV (isp A(i,)) EAR)

+ _ + i . . .

l; = E Gk ug; = min{ug; + pj, (ﬁ?é‘ Uik}

ki A C ARV () A (i) €AR)

Arcs (i,7) € A can be removed if I; > ug or Ij; > u; or I[; > uf;. These
preprocessing steps may already decide in an early stage of the solution
process whether a particular problem instance is infeasible or unconstrained
with respect to a given vehicle capacity Q).

3. Multi-Commodity Flow Model (Hernidndez-Pérez & Salazar-
Gonzalez, 2009)

First, we introduce some notation: The set of arcs going out of some set
S C V is denoted by 01(S) := {(i,j) € A:i € S,j ¢ S} Similarly, we
use 6 (S) :={(i,j) € A:i ¢ S,j € S} for the set of arcs coming into set
S. It S = {i} we simply write 0% (i) and §~ (i), respectively. Furthermore,
for a set of arcs A" C A we write v(A') := 7, ;4 vi; to denote the sum
of variables v associated to arcs A'. We write v(S) 1= > ;o4 icqvij for
the sum of variables of arcs within node set S C V. Similarly, we write
v(S,8") = Y j)eaiesjes Vij for the sum of variables of arcs going from
set S C V toset " C V. M; denotes the LP relaxation of model M.
F(M) denotes the set of feasible solutions of model M. Proj, (S) denotes
the projection of set S into the space defined by variables v.
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Since the feasible solutions for the problem under study are Hamiltonian
paths from 0 to n+1, we consider the following generic model for the problem.
We use binary variables z;;, (i, j) € A:

min Z CijTij (1)

(i,7)€A

s.t. (6T (i) =1 VieV\{n+1} (2)
z(6 (1) =1 Vie V\{0} (3)
z(0(S)) > 1 VSCVA\{n+1} (4
{(,7) : zs5 =1} supports flows for each k € K (5)

and satisfies vehicle capacity
z;; € {0,1} V(i,j) € A (6)

In some of the models presented next we will provide alternative ways of
modeling the connectivity constraints (4). These situations will be indicated
later on but for simplicity we present the generic model with (4) which are
the most well known constraints for guaranteeing connectivity and are also
used in models for the 1-PDTSP and m-PDTSP in previous papers (e.g.,
Herndndez-Pérez & Salazar-Gonzélez, 2004, 2007, 2009). Note that these
constraints, although exponential in number, can be easily implicitly included
in the model by a cutting plane approach finding violated inequalities with
max-flow computations (see, e.g., Ahuja et al., 1993).

We start by revising the flow model by Herndndez-Pérez & Salazar-
Gonzélez (2009). This model is based on the generic scheme mentioned
before. Flows and the vehicle capacity are ensured by adding for each com-
modity k € K and each arc (i, ), the flow variable f indicating the flow
on arc (4, j) of commodity k as well as the following set of flow conservation
and capacity constraints:

fEETE) = fFo () =8 —qn ifi=d, VieV\VVkeK (7)
0 else
< Quy v(i,j)e A (8)
keK
L>0 V(i,j) € AVk e K (9)

Note that we have reduced the size of the model by eliminating the flow con-
servation constraints for all nodes in V,>"* for each commodity k. As men-
tioned by Herndndez-Pérez & Salazar-Gonzalez (2009) the LP relaxation of
the model can be improved by adding the following well known modeling
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strengthening of multicommodity flow models extended by information ob-
tained in preprocessing:

=0 if (4,5) € Aot

fzk = qxTij if (27]) S A}cn V(Z,j) € A7Vk EK (10)
< qpwi; else
Ly < ) fh < wgay V(i,j) e A (11)
ek

Sets A" and A"t for each k € K and load bounds [;; and u;; are defined in
Section 2.3.

4. Relating the m-PDTSP to the 1-PDTSP (with Precedence Con-
straints)

In this section we suggest new models for the m-PDTSP that are moti-
vated by observing that the m-PDTSP is equivalent to the 1-PDTSP with ad-
ditional precedence constraints defined by the origin-destination pairs (sy, di)
for each commodity £ € K. As far as we know, this ”equivalence” rela-
tion has never been stated neither used before. A related relation has been
given by Herndndez-Pérez & Salazar-Gonzalez (2009) stating that the two
problems: i) the 1-PDTSP using net demands p (without considering any
precedence relations) and ii) the TSP with precedence constraints defined
by the commodities (with unlimited vehicle capacity) are relaxations of the
m-PDTSP. Essentially, we are saying that by adequately combining these
two relaxed problems we obtain a problem equivalent to the m-PDTSP.

To motivate the relation between the m-PDTSP and the 1-PDTSP with
precedence constraints, we show next how to transform the MCF system (7)—
(9) described in the previous section into a different and equivalent system
where this relation is enhanced.

4.1. Introducing Scaled Flow Variables
We introduce scaled flow variables gfj and use equalities

5 = w9, ¥(i,j) € AV € K, (12)
to rewrite (7) and (9) as follows:

gOT() —gf (@) =4 —1 ifi=dy VieV\V"VkeK (13)
0 else

g5 >0 V(i,j) € AVke K (14)



4.2. Aggregating the Flows
Next, we sum up equalities (7) for all commodities k € K and obtain:

PRACHOIEDSFACROIE Z U — Z @  VieV (15

The right-hand side of (15) corresponds to the already defined net demand
values p;,Vi € V. By using aggregated flow variables f;;,V(i,j) € A, and
equalities

fij = Z 5 (i, j) € 4, (16)
keK

we can rewrite (8), (9) and (15) as the following single-commodity flow (SCF)
system:

PR @) — £ () = p viev (7
0 < fij < Quij V(i j) € A (18)
fi; >0 V(i,j) € A (19)

4.8. Combining the Scaled Flow System with the Aggregated Flow System
It is now easy to see that in terms of integer solutions, the aggregated
flow system (17)—(19) together with (13)—(14), the linking constraints

fi = angl V(i j) € A, (20)
keK
and (6), is equivalent to the model (7)—(9) and (6).

In terms of linear programming relaxations, the equivalence is also obvi-
ous. One direction has already been proved with the given transformation.
To see the reverse situation, note that from a given solution feasible for the
system defined by (13)—(14), (17)—(19), and (20), we obtain a feasible solution
for (7)-(9) simply by setting the ff variables as defined by (12).

Thus, we have just proved that:

Result 4.1. Under the transformation (12) the system defined by (13)—(14),
(17)-(19), and (20), is equivalent to the system (7)—(9).

A similar result can be obtained by adding the strengthening inequali-
ties (10)—(11) to the system (7)-(9), and equivalently constraints

=0 if (i,) € Aot

g < =y i (i,5) € AP V(i,j) € AVke K (21)
<z else
lijzij < fij < uijag Vi, ) e A (22)

to system (13)—(14), (17)—(19), and (20).
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Table 1: Model TMCF

(1) —(4),(6)

f(E@) = f(67(@) = ps VieV
Lijri; < fij < ugai V(i,j) € A
g6t (1) —g*(6 (i) =< -1 ifi=d, Vie V\ VU Vk e K

0 else

= if (7,7) € A

0<gl =y if (i,5) € AP V(i,j) € AVk e K

<z else
fii =D ke Qk‘gzkj V(i,j) € A

Result 4.2. Under the transformation (12) the system defined by (13)—
(14), (21), and (17), (22), and (20) is equivalent to the system (7), (9), (10)
and (11).

We denote by MCF the original model from Hernandez-Pérez & Salazar-
Gonzalez (2009) with constraints (10)—(11) and by “Transformed MCEF”
(TMCF) the model just derived including constraints (21)—(22). Here, we
refer to the complete models for the whole problem. Results 4.1 and 4.2 state
that the two models provide the same linear programming bound.

4.4. Relating the m-PDTSP with the 1-PDTSP with Precedence Constraints

In order to motivate this relation, consider Table 1 that gives an overview
of the essential parts in model TMCEF.

In order to make the connection that we have mentioned at the beginning
of this section, we first remove the linking constraints (20) from the TMCF
model (at the end of Table 1). We denote by Weak TMCF (WTMCF) the
model obtained in this way. We observe that WTMCF is still a valid model
for the problem, although with a weaker LP relaxation.

Theorem 4.3. Model WI'MCF is a valid formulation for the m-PDTSP.

Proof. We show this by induction on the number of commodities K.

m = 1: In case of a single commodity net demand values are set to
pi = 0,¥i € V\{s1,d1}, and ps, = ¢1 and pg, = —¢1. Here, we do not even
need to explicitly ensure that s; is visited before d; since the SCF system (17)
and (22) already forbids to visit d; before s; because of the negative value pg,
and the lower vehicle load bound 0. The consequence is that the m-PDTSP
with K = {1} is equivalent to the 1-PDTSP which can be modeled by the
generic part (1)-(4), and (6), and flow system (17) and (22) (see Herndndez-
Pérez & Salazar-Gonzalez, 2004).
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Inductive step: We assume that model WTMCEF is valid for the (m —1)-
PDTSP with commodities K = {1,...,m — 1}. We want to show that model
WTMCEF stays valid when adding a further commodity m. The additional
flow system (13)—(14), (21), for k = m ensures that s,, is visited before d,,.
Furthermore, we observe that exactly two net demand values change, i.e.,
0y, = Psm +Gm and pl; = pg,, — qm. The SCF inequalities (17) and (22) for
nodes i = s,,,d,, ensure that the additional demand ¢, is considered with
respect to the vehicle load bounds. ]

Second, we observe that the aggregated flow system on variables f;; (see
second box in Table 1) ensures the capacity constraints as well as the net
demands and corresponds to the flow system in formulations for the 1-
PDTSP (e.g., Herndndez-Pérez & Salazar-Gonzalez, 2004, 2007). Finally,
the gfj system (see third box in Table 1) guarantees the precedence relations
for each commodity k£ € K.

This decomposition puts in evidence the fact that we can model the m-
PDTSP as the 1-PDTSP model together with any set of precedence con-
straints guaranteeing the precedence relations defined by the commodity
pairs. In the model WTMCF, these precedence constraints are modelled
with the flow system (13)—(14) and (21).

4.5. Modeling the Precedence Constraints with SOP Inequalities

We present next one alternative for modeling the precedence constraints
using cut-like inequalities, the so-called sequential ordering polytope (SOP)
inequalities, known from the literature to guarantee precedence constraints
(Balas et al., 1995; Ascheuer et al., 2000). For each commodity k € K we
define a set of relevant nodes V* = V\ V,°" and the corresponding inequalities
are defined as follows:

z(S,VF\ 8) > 1 VS C V¥ s € 8,d, € VF\ S Vk € K (23)

Similar to connection cuts (4), these inequalities associated to one particular
commodity k ensure a path from s, to di in a reduced graph excluding all
nodes which have to be visited before s; or after dj.

We denote model WTMCEF with the flow system (13)—(14), (21) replaced
by SOP cuts (23) by CUTK. Inequalities (23) can be separated in polynomial
time for each commodity k£ € K by max-flow computations in a similar way
as the connection cuts (4) but in a support graph induced by node set V*.
Also, as a consequence of the max-flow min-cut theorem (Ahuja et al., 1993)
we can state that the projection of the set of feasible solutions defined by
the flow system (13)—(14), (21) and 0 < z;; < 1,V(4,7j) € A, into the space
of the x;; variables is defined by the SOP cuts (23) and 0 < z;; < 1, that is:
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Result 4.4. Proj (F(WTMCFL)) = Proj (F(CUTK ).

As a consequence of this result, the bounds obtained from the LP relax-
ations of model CUTK and WTMCF are the same.

As pointed out before, the model just obtained produces an LP bound
that is weaker than the LP bound produced by TMCF (since we lose the
connection between the two sets of flow variables). The difference in LP
bound is more notorious for cases with tight capacity. However, in instances
with too many commodities, this alternative view may be preferable (which
is confirmed by our computational results) to the one of including a flow
system associated to each commodity as with the TMCF model.

4.6. Strengthening the Cut Model

Additionally, we can strengthen the model by adding other families of
precedence related cut-like inequalities to the model. Besides considering the
source-target pairs (sg,d) for each commodity k£ € K to define associated
SOP inequalities, other sets of node pairs, i.e., all non-transitive precedence
relations R, will be used. Essentially, the additional node pairs relate depot
nodes 0 and n + 1 to other nodes, i.e.,

R = {(Sk,dk) : ]{IGK}
U{(0,9) :i € V\{0,n+1},(j,9) ¢ R,¥j € V\{0}}
U{(i,n+1):i e V\{0,n+1},(i,j) ¢ RVj e V\{n+1}} (24)

Similar to the inequalities (23) for each precedence relation (i, j) € R we
define a set of relevant nodes V¥ = V \ {k: (k,i) € RV (j, k) € R}. Then,
the corresponding SOP inequalities are given as follows:

z(S,VI\ S)>1 VSCcV9ieS jeVi\SVj) eR (25)

If i = 0, inequalities (35) are known as weak o-inequalities, if j = n +
1 as weak m-inequalities, and if ¢ # 0 and j # n + 1 as simple (7, 0)-
inequalities (Balas et al., 1995). It is easy to see that these inequalities
dominate connection cuts (4) due to the inclusion of the additional node
pairs in R. We denote model CUTK with inequalities (23) replaced by (25)
by CUTR. Note that the LP bound obtained from model CUTR is at least
as good as the one from model CUTK and our experimental results indicate
that for many instances it is clearly better.

Figure 1 summarizes the strength relations of the LP relaxations of the
discussed models. We note that there is no LP relation between the bounds
given by the models MCF and CUTR. This can be observed for the experi-
mental tests, e.g., in Table 2.
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PLCUTR.

}

_-LCUTR,
MCF «——»TMCF<------- LCUTR
~ CUTR

}

WTMCF «——»CUTK

Figure 1: Strength relations: The model at the head of an arrow provides an optimal LP
relaxation value which is at least as good as the one of the model at the corresponding
tail. Dashed lines indicate that there is no LP relation between the two models.

5. Layered Graph Models

Models on layered graphs have been shown to provide strong LP bounds
and lead to optimal solutions with short runtimes for several classes of prob-
lems, e.g., for tree problems (Gouveia et al., 2011, 2014a,b; Ruthmair & Raidl,
2011), TSP variants (Godinho et al., 2011, 2014; Abeledo et al., 2013), and
location problems (Ljubi¢ & Gollowitzer, 2013). In these formulations paths
are modeled in an expanded layered graph where the layers correspond to
the position or time within the path. Since the layered graphs are acyclic
subtours are eliminated implicitly by the structure of this graph.

5.1. The Picard and Queyranne Formulation for the Capacity Constraints

In this subsection we show that the model by Picard & Queyranne (1978)
(PQ) can be easily readapted to model the capacity constraints of the ag-
gregated SCF model (17) and (22). We consider the variables z/; for each
arc (i,j) € A and each possible vehicle load | € L;; := {l;;,...,u;;}. Let
L, = U(Z.J)E 4 Lij be the set of possible vehicle loads when leaving node
1 € V. The load-dependent PQ model is defined as follows:

2706 (5) = 210 (5)) VjeVe,Viel; (26)
>z =y W(i,j) € A (27)
leLy;

2, >0 V(i,j) € AVl € Ly (28)

We denote the model CUTR in which the SCF system (17), (22) is replaced
by system (26)—(28) by LCUTR. It is easy to argue (as in Gouveia & VoS,
1995) that the LP bound of LCUTR is at least as good as the one of CUTR
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Figure 2: In the left a problem instance with graph G with n = 4, a set of commodities,
and the aggregated node demands is shown. In the right the corresponding (preprocessed)
load-dependent layered graph Gp, for vehicle capacity Q = 3 is shown. The set of bold
arcs in both graphs represent the same feasible solution.

and in fact the experimental results showed that for many instances it is
better. Note that in contrast to the original time-dependent P model the
load-dependent PQ model alone is not sufficient to eliminate subtours since
values p; may also be negative. However, in the model CUTR as well as in
LCUTR subtour elimination is guaranteed by SOP cuts (25) (which dominate
connection cuts (4)).

5.2. Strengthening the Load-Dependent PQ) Model

We can view the load-dependent PQ system (26)—(28) as modeling a path
in a layered graph Gp, = (Wi, Ap). This layered graph is more complicated
than the layered graph corresponding to the original PQ formulation. In Gy,
a node 7; describes the state when the vehicle leaves node j € V' with load [.
Node set Vi, = {0,n+1}U{j; : j € V., € L;} consists of the start and the
end depot, and replicated nodes for all clients for all possible loads. Arc set
A;, includes

e start depot arcs {(0, 1) : (0,7) € A, 1 = lo; + pj = uo; + p;},
e general arcs { (i1, Jitp;) : (4,7) € A,i # 0,5 #n+ 1,1 € Ly;}, and
e end depot arcs {(j;,n+1): (j,n+1) € Al =141 = Ujpns1}-

This layered graph is reduced by eliminating all nodes except the depot
nodes which have no incoming or outgoing arcs since they cannot be part of
a feasible solution. An example is shown in Fig.2.
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Similar to what has been done in Gouveia et al. (2011) and Godinho et al.
(2014) to redefine cut inequalities in the layered graph, we can also redefine
the SOP cuts (25) in the load-based layered graph G, to improve the LP
relaxation of model LCUTR. Let Si, := {j; € VL : j € S} denote the set of
all copies of nodes in some set S C V. The corresponding SOP cuts in Gy,
are defined as:

ASVINS) =1 VS VP {ih €S {ih S W\ S, Vi, j) € R (29)

These inequalities can be interpreted as the SOP cuts (25) lifted in the load
layered graph Gp. It is easy to see that SOP cuts (25) are implied by (29)
since the subset of (29) in which all copies of nodes v € V% \ {i, j} belong
cither to S or to V{7 \ S gives exactly the SOP cuts (25) for a precedence
relation (i,j) € R. We denote the model LCUTR replacing SOP cuts (25)
by (29) by LCUTR,. The previous observation implies that the LP relax-
ation of LCUTR, is not worse than the LP relaxation of LCUTR, and similar
to what happens with model CUTR, there is no LP relation between MCF
and LCUTR, , as can be observed e.g., in Table 2.

5.8. The Position-Load-Dependent P(Q) Model

As noted before, the layered graph associated to the load-dependent PQ
model is not acyclic. However, the good results taken from Godinho et al.
(2011, 2014) explicitly use the fact that the associated layered graphs are
acyclic (as in the original PQ model) since the layers correspond to the
positions of the nodes in the solution. We can derive some information about
the position of nodes and arcs based on the given precedence relations. Let
Nij, 1 € V\{n+1},j € V\{0} be the length of the longest path in precedence
graph P from node i to j with respect to the number of arcs. Note that the
longest path in an acyclic graph can be computed in time linear in the number
of arcs based on topological sorting.

Value a; = \g; represents a lower bound on the position of node j € V, in
any feasible tour. Similarly, w; = n+1—A\;,4+1 denotes an upper bound on the
position of 7 € V. in any feasible tour. Since the positions of the depot nodes
are fixed we set ap = wp = 0 and oy, 41 = w1 =n+1. Let Pj = {ay, ..., w;}
be the set of possible positions for node 7 € V. We also define the set of
possible positions Pj; := {max{«a; + 1, ;}, ..., min{w; + 1,w;}} for each arc
(i,4) € A.

Using this information we propose a combined generalized model that
disaggregates variables zfj by position. The new variables are defined as zf«’;
representing a vehicle on arc (i, ) in position p with load [. The position-
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load-dependent PQ model is defined as:

SIS (9)) = H(E() VieVeVpe FVIeL;  (30)
pePij lELij
>0 V(i,j) € A,Vp € P,V € Ly 32
i ) p Jo J

Again, we observe that we can view these equations in a 3-dimensional
layered graph Gpr, = (Vpr,, Apr,) with two resource dimensions, i.e., the posi-
tion and the load of the vehicle. In Gpy, we have nodes j,; defining the state
when the vehicle arrives at client 7 on an arc in position p and leaves it with
load . Node set Vpr, = {0,n+1}U{j, : j € V.,p € P;,l € L;} consists of the
start and the end depot, and replicated nodes for all clients for all possible
positions and loads. Arc set Apy, includes

e start depot arcs {(0, ji;) : (0,7) € A, l = lo; + p; = uo; + pj}s

o general arcs {(ip—1,, Jpisp,) : (i,5) € A0 # 0,5 #n+1,p € Pyl €
Lz’j}, and

e end depot arcs {(ju,n+1): (jyn+1) € Al =ljni1 = Ujni1}-

Note that due to the position dimension, the layered graph Gpy, is acyclic and
thus the generalized PQ model (30)—(32) is sufficient to eliminate subtours.

Similarly to what has been suggested in the last subsection we readapt
the SOP cuts (25) in layered graph Gpr. Let Spp, := {iy € Vpr, 1 i € S}
denote the set of all copies of nodes in some set S C V. The corresponding
SOP cuts in Gpy, are defined as:

28, Ve \S) 21 VS C Vol {iter € S, {j}er C Vol \ S V(i) € B (33)

These inequalities can be interpreted as the SOP cuts (25) lifted by exploiting
position and load information at the same time. We can use an argument
similar to the one in the previous subsection to show that SOP cuts (33)
dominate the SOP cuts (29) in the load layered graph Gi. We denote the
generic model extended by (30)-(32), and (33) by PLCUTR,. It is easy
to argue that the LP relaxation of PLCUTR, is at least as good as the
one of LCUTR, and our experimental tests indicate that it is significantly
better provided that it can be solved within the time limit. However, the
LP relation to MCF is still open. Finally, Figure 1 summarizes the strength
relations of all models proposed in the last two sections.
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6. Valid Inequalities

In this section we consider other sets of valid inequalities that are based on
exploiting both the precedence relations and capacity constraints to strength-
en the LP relaxation of the models discussed in the previous sections. Some
of the precedence based inequalities are taken from the literature. However,
we also create new generalizations that are useful in practice and are based
on exploiting sequences of precedence pairs.

6.1. Precedence-Based Inequalities in Original Graph

We adopt the notation from Balas et al. (1995) and write 7(S) = {i :
(i,7) € R,j € S} for the set of predecessors for some subset S C V. Similarly,
we use o(S) = {j : (i,j) € R,i € S} to denote the corresponding set of
successors. If S = {i} we simply write 7(i) and o(i), respectively. The 7-,
o-, and (7, 0)-inequalities have been proposed for the TSPPC by Balas et al.
(1995) and are defined as:

2(S\ 7(S),V\ (SUnr(S))) > 1 VScV\{n+1} (34)
z(V\ (SUa(S)),S\o(S)) >1 vS c vV \ {0} (35)
z(S\ S, V\(SuUS)) >1 VS cV, S =n(X)Uo(Y),

VX, Y CV,XCS,YCV\S,
with (i,7) e R,Vie X,j €Y (36)

For any violated SOP cut (25) we check if it can be lifted to a corresponding
inequality (34)—(36). This can be easily done for inequalities (34) and (35).
On the other hand, it is not obvious how to choose sets X and Y for the
(7, 0)-inequalities (36) for a given violated inequality (25) with set S and
nodes ¢, j. We consider two different cases for the liftings: i) X = {i},Y =
{v:(,v) € RveV\S} andii) X ={v:(v,j) € R,bve S}HY = {j}.

A subset of the precedence cycle breaking inequalities (PCB) by Balas
et al. (1995) is defined as follows: Let S C V' \ {n+ 1} and iy,i3 € S,iy ¢ S,
with (il, ig), (ig,ig) € R. Then,

z(S,V\S) > 2. (37)

Essentially, what these inequalities say is that we need to cross the cut from S
to V'\S at least twice, once when going from i; to is, and again in the subpath
from node i3 to n+1. We generalize inequalities (37) by considering sequences
of precedence relations (iy,is), ..., (ig—1,0k) € Ryi1,....,0 € V \ {n + 1}, for
odd values of k > 3. We require all odd nodes to be in set S C V' \ {n + 1}
and all even nodes to be in set V' '\ S, i.e, {i, : h < k,hodd} C S and
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{in,: h < k,h even} C V'\ S. Due to this node assignment we have to cross
the cut (S,V \ 9) at least [k/2] times to ensure a path from i; to n + 1.
Thus, the corresponding inequality is defined as

z(S,V\ 5) = [k/2]. (38)

Note that due to the right-hand side of (38) the inequalities for sequences
with even k£ are dominated by the ones for the corresponding sequence where
the last node is removed. Note also that sequences including transitive prece-
dence relations are dominated by the ones consisting only of non-transitive
relations, as shown by Balas et al. (1995) for the PCB inequalities. To
find non-dominated sequences we use transitive relations (i, j) € R\ R with
i,j € V\{n+ 1}, and search for the longest path (i = iy, s, ..., = 7) in the
precedence graph P. Note that all precedence relations along this path are
non-transitive since otherwise there would be a longer path in P. If £ is even
we do not consider the corresponding pair (i,j) € R\ R for inequalities (38).

Inequalities (37) and (38) can be separated in polynomial time by com-
puting the max-flow in a support graph G’ = (V' A") with V' = V U {s, t}
extending set V' by artificial source and target nodes, and defining A" =
AU{(s,ip) : h < k,h odd} U{(ip,t) : h <k, h even}, connecting the source
and target nodes to the nodes fixed to S and V'\ S, respectively. The capac-
ities on the arcs incident to node s and t are set to 1. It is straightforward
to see that the minimum cut (S,V \ S) obtained from the max-flow from s
to t is such that the nodes i, for all h = 1, ..., k, are assigned to the sets as
defined above.

Since inequalities (37) and (38) consider the path starting from 4, passing
all nodes i, h = 2,...,k, and ending in an arbitrary node in V' \ S, we can
lift these cuts by excluding all nodes which have to be before 7; or must not
directly follow iy, i.e., S’ = {j : (j,i1) € RV (i, j) € R\ R}. Thus, we obtain
the lifted inequalities

r(S\ S, VA (SUS)) = [k/2]. (39)

Similar to the SOP cuts (38), inequalities (39) can be separated in polynomial
time in support graph G” = (V' \ §", A"\ {(i,7) :i € S'vj€ S'}).

The next set of inequalities are based on logical implications to fix vari-
ables in a branch-and-bound node (Ascheuer et al., 2000): If z;; = 1 for an
arc (i,7) € A, 1,5 € V., then other (non-trivial) arcs can be fixed to zero, e.g.,

w(w(i),0(3)) = 2(c(j), (i) = (o(i),7(5)) = z(7(j),0(i)) = 0. We create
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valid inequalities based on these implications:

v({i, i) +x({k,1}) <1  Vi,jeV.i#jVken(i),Vlca(j) (40)
2({i,j}) + x(k,0(j)) < 1 Vi,j € Ve, i#j,Vken(i) (41)
e({i, 1) +x(o(4), k) <1 Vi,j € Ve, i#j,Vkem(i) (42)

r({3,5}) +2(r(i), 1) <1 Vi,j € Ve,i # j,Vl € o(j)  (43)

z({i,j}) +2(l,7(@) < 1 Vi,j € Ve,i# jVLEa(f)  (44)

The validity of these inequalities can be easily shown by using node degree
constraints (2) and (3). We add violated inequalities (40)—(44) within a
cutting plane algorithm by examining them one by one.

6.2. Precedence-Based Inequalities in Layered Graphs

We consider similar valid inequalities in the variable space defined by the
layered graphs Gy, and Gpy, as it was done before in Section 5. Note that
the concept of predecessors and successors is more complicated in layered
graphs since in contrast to original graph G the solution path in G, or Gpy,
is not Hamiltonian. We know, however, that exactly one of the copies of
each original node has to be visited. Thus, in the context of layered graphs
a precedence relation (7, 7) € R means that one of the copies of node ¢ has to
be visited before one of the copies of node j. However, we cannot say that
one particular copy of node 7 has to be before one particular copy of j since
one or both copies may not be visited at all. Thus, the predecessors and
successors of some subset S C V{, in G, need to be defined as 7, (S) := {i; €
VL (i,7) € RA{j}L € S} and o,(S) :={j; € VL : (4,)) € RA{i}L C S},
respectively. The definitions in Gpy, are straightforward.

As already shown in Section 5 SOP inequalities (29) and (33) are lifted
variants of SOP inequalities (25) in the layered graph. In a similar way we
lift the 7-, o-, and (7, 0)-inequalities (34)-(36) to the space of variables z;
and zfjl , respectively. Here, we only mention the lifted inequalities in G, since
it is straightforward to formulate the corresponding inequalities in Gpy:

S\ 7L(S), VA (SUmL(S)) = 1 VS C Vi \{n+1} (45)
VA (SUaL(5)),5\oL(5)) =1 VS c VL \ {0} (46)
2(S\ S, V\N(SuS)) >1 VScW,S =m(Xy)UoL(Yy),
VXY C V., X, CS YL, CWL\ S,
with (i,j) e R,Vie X,j €Y (47)
When a violated inequality (29) is found we try to lift it to the corresponding

inequality (45)—(47). As mentioned above, in this case we need to take care
of the different meaning of predecessors and successors.
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Finally, we also lift inequalities (39) to the space of variables z};. Let
(i1,12), oy (th—1, k) € Ryiy,...,ip € V \ {n + 1}, for odd values of k > 3
be a non-dominated sequence of precedence relations as defined in Subsec-
tion 6.1. All copies of odd nodes in Gy, are fixed to some set S C Vi, \ {n+1}
and all copies of even nodes to set Vi, \ S, i.e., Uy<p ) oqqlintt € S and
Un<in eventint € Vi \ S. The set of excluded nodes is defined as S’ =

U(j’il) €RV(ix /)ER) #{7}L. Then, we obtain inequalities
2(S\ S, W\ (SUS)) > [k/2]. (48)

Similar to inequalities (39) this lifted variant can be separated in polynomial
time by computing the max-flow in a support graph G = (V/\S", A \{(7,7) :
ie Svye st with V/ = VL U{s,t}, and A = AL U{(s,i) : h <
k,h odd} U {(in,t) : h < k,h even}. The capacities on the arcs incident to
node s and t are set to 1. Then, the max-flow from s to ¢ is equivalent to a
minimum cut in Gy, satisfying the requirements above.

6.3. Capacity-Based Inequalities in Original Graph

In case of a violated inequality (4), (37), and (38) for some set S we check
if the corresponding rounded capacity cut (Letchford & Salazar-Gonzélez,
2005) in the context of the m-PDTSP is stronger:

2(67(9)) = [Z’“ke“dk%s q’ﬂ (49)

T Max( j)est(s) Uij

Note that we can strengthen the right side by using the largest upper load
bound over all cut arcs instead of the vehicle capacity.

7. Branch-and-Cut Algorithm

The proposed models are solved with a branch-and-cut algorithm based
on the framework IBM ILOG CPLEX 12.6. In this section we mention
non-default settings of CPLEX, details about the cutting plane algorithm,
and methods to obtain primal bounds. All settings have been identified in
preliminary tests with a diverse subset of the instances. We denote by 2™
the solution of the LP relaxation in some branch-and-bound node.

7.1. General Settings

We use default settings for CPLEX with the following exceptions: The
solution emphasis is set to “optimality” and general-purpose heuristics are
switched off since primal bounds are provided by our own problem-specific
heuristics. All variables are declared to be integral since this turned out to be
beneficial for the presolving and branching phase of CPLEX, but branching
on the x-variables is prioritized.
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7.2. Cutting Plane Algorithm

In each cutting plane iteration within a branch-and-bound node we search
for violated inequalities of all sets considered in a particular setting. However,
to appropriately deal with a possibly large number of added inequalities and
slow cutting plane convergence (cf. Uchoa, 2011), we apply the following
rules:

e Suppose that a valid inequality in graph G has the form x(A’) > b,
then we only add a violated cut if 27 (A’) < Ag - b with Ag € (0,1].
Similarly, we use parameters A, and Ag,, for valid inequalities in Gy,
and Gpy,, respectively.

e [f the LP relaxation value did not increase in the last five cutting plane
iterations within a branch-and-bound node we continue with branching.

e We add at most 100 violated inequalities per considered set of inequal-
ities within one cutting plane iteration.

e After solving a maximum flow to search for violated cut sets we might
obtain multiple minimum cuts. In this case we only consider the mini-
mum cut with the smallest and the largest set S, and only add the cut
inequality for which the number of cut arcs is minimal.

Next to the exact separation algorithms described in the previous sections,
we apply in each cutting plane iteration the heuristic by Hernandez-Pérez &
Salazar-Gonzalez (2009) to identify further violated inequalities: Essentially,
we perform a restricted enumeration of node sets S and check for violated
inequalities (34)—(36), and (49).

7.8. Primal Heuristics

Since primal bounds are essential for pruning the branch-and-bound tree
and fixing variables based on reduced costs we also use heuristics in each
of the branch-and-bound nodes. These heuristics are called after each cut
iteration in the root node of the branch-and-bound tree, in every 5th branch-
and-bound node within the first 100 nodes, in every 25th node within the
first 1000 nodes, and in every 50th node in the rest of the nodes. In the
remaining of this subsection we give a brief overview of the heuristics that
we use.

To construct a feasible solution we apply a nearest neighbor heuristic
(Rodriguez-Martin & Salazar-Gonzalez, 2012) guided by the LP solution of
the current branch-and-bound node in the sense that we use modified arc
costs ¢j; = ¢;;(1 — x;7) for each (4,j) € A: The solution path is extended
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step-by-step by choosing the cheapest unvisited successor node without vi-
olating the vehicle capacity and the precedence relations. We memorize all
solutions in a hash-based archive to prevent duplicates. If we are not able to
construct a feasible solution or if we obtain a duplicate we start again in a
GRASP manner (Feo & Resende, 1995), i.e., we randomly choose among the
N cheapest extension nodes, with N being increased from 2 to 10 in case of
infeasibility. If after ten tries we obtain no feasible solution we continue with
the branch-and-cut algorithm.

To further improve a created solution, we run a generalized variable neigh-
borhood search (GVNS) (Hansen & Mladenovi¢, 2001). We stop the GVNS if
after 30 iterations no new global best solution can be found. With a probabil-
ity of 50% we choose the global best solution for a GVNS iteration, otherwise
we use the best solution in the current heuristic call. To locally improve the
solution an embedded variable neighborhood descent (VND) based on two
neighborhood structures is applied: i) One node is shifted to another position
in the path, and ii) two nodes are swapped. In each iteration in the VND we
choose randomly among the ten most improving feasible moves from both
neighborhoods. To diversify the solution in the shaking phase of the GVNS
we apply two random node shifts. If after a GVNS iteration no new global
best solution can be found the number of shaking moves are increased by one
(up to at most 10).

8. Experiments

This section shows and discusses experimental results for instances of the
m-PDTSP and the TSPPC (or sequential ordering problem). Each test run
was performed on a single core of an Intel Xeon E5540 or E5649 machine both
with 2.53 GHz. Preliminary tests showed that both machines have nearly
the same performance with respect to our type of experiments. The memory
limit per test run was set to 8 GB.

8.1. Results for the m-PDTSP

The maximum CPU time to obtain the optimal solutions for the in-
teger models and the respective LP relaxations of the m-PDTSP was set
to 7200 seconds. We used three different classes of instances introduced
by Hernandez-Pérez & Salazar-Gonzélez (2009): Class 1 has been derived
from instances for the TSPPC, each precedence relation corresponding to a
commodity with demand 1 (Suffix “max1”) or with a randomly chosen de-
mand in {1,...,5} (Suffix “max5”). Class 2 and 3 have n points randomly
placed in a square with costs corresponding to the Euclidian distances and
different numbers of commodities with randomly chosen origin, destination,
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Table 2: Comparison of LP relaxations of different models for class 1 instances. Bold
values denote the best LP gaps.

LP gap in % LP time in seconds

HS CUT- LCUT- PLCUT- HS CUT- LCUT- PLCUT-

Instance VI[IK|]|Q BEf[MCF| K | R |[R"| R |R. |R{ | Ry | R{ |BE|MCF [K|R|R"| R | Ry | R} | Ry | R}
ESC07Q3max1 9 6| 3| 0.0 0.0/ 0.0 0.0 0.0| 0.0| 0.0| 0.0| 0.0 0.0 0 0] 0|0 O 0 0 0 0 0
ESC07Q10max5 9/ 6|10] 0.0 0.0/ 0.0| 0.0/ 0.0| 0.0| 0.0/ 0.0| 0.0| 0.0 0 01010 O 0 0 0 0 0
ESC12Q4max1 14| 7| 4|17.8] 17.8|18.4|184|18.4|144| 0.0| 0.0 0.0/ 0.0 0 0 0]0] O 0 0 0 1 1
ESC12Q5max1 14| 7| 5|13.8| 13.9/14.0/13.9/13.9|125| 0.0| 0.0| 0.0| 0.0 0 0 0] 0] O 0 0 0 1 1
ESC12Q15max5 | 14 7(15(13.8| 14.0/14.0/13.9/13.9|12.5| 0.0| 0.0| 0.0| 0.0 0 0 0] 0] O 0 0 0 2 2
ESC25Q3max1 27 9| 3|12.2 10.112.5(11.6| 9.4|11.2| 7.0| 69| 5.1| 5.1 0 110[0[ 0 0 1 1 tl tl
ESC25Q4max1 27| 9| 4| 9.0| 14.7|156|13.5| 9.6|10.3| 74| 69| 5.0/ 5.0 0 110/ 0 0 0 2 2 tl tl
ESC25Q5max1 27 9| 5| 0.6 41| 41| 23| 0.0 23| 0.0] 0.0| 0.0| 0.0 0 0 0|0 O 1 1 1] 146| 139
ESC25Q15max5 | 27| 9|15| 1.2 41| 41| 23| 12| 21| 0.0] 0.0| 0.0| 0.0 0 0 0] 0| O 2 2 3| 931| 922
ESC25Q20max5 | 27| 9|20 2.1 41| 41| 23| 1.0 21| 0.0] 0.0| 0.0| 0.0 0 0 0|0 O 4 4 5| 1582 | 1585
ESC47Q3max1 49| 10| 3| 7.6 66| 7.0/ 7.0 64| 70| 50| 49| 69| 6.8 0 100 21| 1 2 7 11 tl tl
ESC47Q4max1 49| 10| 4| 4.0 32] 32| 32| 26| 32| 1.8| L.7| 50| 3.0 0 81211 2 4 15| 27 tl t1
ESC47Q10max5 | 49| 10|10| 7.6 70| 7.0| 7.0 64| 7.0] 4.3| 4.3|100.0|100.0 0 81 2|1 2 9| 179| 173 tl tl
ESC47Q15max5 | 49| 10|15] 4.0 32| 32| 32| 26| 3.2| 1.6| 1.6|100.0|100.0 0 8| 1| 1] 1 14| 261| 238 tl tl
ESC47Q20max5 | 49| 10|20 4.0 3.2| 32| 32| 26| 3.2| 1.6| 1.6|100.0|100.0 0 81 1] 1| 2 17| 346 260 tl tl
br17.10Q3max1 18| 10| 31|[24.0| 20.7|32.9|31.7|23.2|31.7|25.6|18.3| 2.4| 2.4 0 110[0[ 0 0 0 2 tl tl
br17.10Q4max1 18| 10| 41[24.7] 32.9|41.1]39.7|24.7|37.0|30.1{21.9| 17.8| 17.8 0 110[0[ 0 0 2 2 tl tl
br17.10Q5max1 18| 10| 5| 0.0| 20.0{25.5|21.8| 0.0|21.8|14.5| 0.0| 3.6 0.0 0 110/ 0 0 0 8 0 tl 57
br17.10Q10max5 | 18| 10|10/ 16.1| 22.7|34.8|30.3|16.7|28.8|12.1| 7.6 76| 6.1 0 11 0] 0 0 0 28 75 tl tl
br17.10Q15max5| 18| 10|15| 0.0| 23.6|25.5|21.8| 0.0|21.8| 7.3| 0.0| 5.5| 0.0 0 0 0|0 O 1|1082 1 tl| 93
br17.12Q3max1 | 18] 12| 3[47.6| 42.9(53.8|52.9(44.5]|52.1|42.9(37.0| 0.0| 0.0 0 0 0|0 O 0 0 03196 | 3952
br17.12Q4max1 18| 12| 4(25.7| 33.8(43.2|40.5|25.7|36.5/24.3|18.9| 13.5| 13.5 0 11 0]0[ 0 0 2 3 tl tl
br17.12Q5max1 18| 12| 5| 0.0| 20.0|25.5|21.8| 0.0|21.8/12.7| 0.0| 0.0| 0.0 0 110]0] O 0 1 0 tl 18
br17.12Q10max5 | 18| 1210 (25.7| 33.840.5|36.5(25.7|35.1|13.5[12.2| 1.4| 1.4 0 11 0]0f 0 0 50 60 tl tl
br17.12Q15max5 | 18| 12|15 9.1 25.5(25.5(21.8] 9.1/21.8| 5.5| 1.8 3.6 3.6 0 0 0] 0] O 1|1264 4741 tl tl
p43.1Q2max1 44| 9] 2 - - - - - - - - - - - 37| 2|2 2 41 220 751 tl tl
p43.1Q3max1 44 9| 3 40 2| 2] 2 3 (1754|1218 tl tl
p43.1Q4max1 44| 9| 4 60| 2| 1| 3 8 | 1544 | 2286 tl tl
p43.1Q10max5 44| 9|10 - - - - - - - - - - - 62 1| 2| 2 12 tl tl tl tl
p43.1Q15max5 44| 9|15 - - - - - - - - - - - 29| 1] 2] 3 55 tl tl tl tl
p43.2Q10max1 44| 20|10 - - - - - - - - - - -| 1154| 3| 3| 4 64 tl tl tl t1
p43.2Q40max5 44| 20|40 - - - - - - - - - - - 223 2| 2| 4| 964 tl tl tl tl
p43.3Q10max1 44| 37|10 - - - - - - - - - - -| 2837 4] 7| 8 63 t1 tl tl tl
p43.3Q40max5 44| 37|40 - - - - - - - - - - -| 1006| 3| 5| 81750 1 tl tl tl
p43.4Q10max1 44| 50|10 - - - - - - - - - - - 341 1|1] 3 15 t1 tl tl tl
p43.4Q40max5 44| 50|40 -| 21.5|21.5|16.2| 0.1|16.2|16.2| 0.1]100.0|100.0 - 17| 1} 1| 2| 265 t1 4296 tl t1

and demand in {1,...,5}. The difference between the last two classes is that
in class 3 each node is the origin or destination of exactly one commodity
whereas in class 2 this restriction does not hold. Class 1 are single instances
whereas the other two classes contain sets of ten instances with the same
general properties (number of nodes, number of commodities, vehicle capac-
ity). We only considered instances from these sets which are not shown to
be unconstrained or infeasible in the preprocessing phase with respect to the
associated vehicle capacity.

Tables 2 and 3 compare the LP relaxations of the different models shown
in Fig. 1. Additionally, we enhance model CUTR by considering all valid
inequalities described in Section 6.1 and 6.3, and denote it by CUTR*. Sim-
ilarly, we denote model LCUTR, with all valid inequalities in Section 6 by
LCUTR?, and PLCUTR, with the same inequalities formulated in graph
Gpr, instead of G, by PLCUTRY. For the last three models (with suffix *)
we also perform heuristic separation as described in Section 7.2. Because of
this and the heuristic liftings the LP relations to the models with exact deter-
ministic separation are not consistent. Similarly, the Benders decomposition
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Table 3: Comparison of LP relaxations of different models for class 2 and 3 instances.
Bold values denote the best LP gaps. Each set contains 10 instances.

avg. LP gap in % avg. LP time in seconds

HS CUT- LCUT- PLCUT- HS CUT- LCUT- PLCUT-

Set. [VI[IK]|Q|BE/[MCF| K | R |[R*| R |R; |R,|R; | R} |[BEIMCF|K | R |R'R|R; | R, | R, |R}
nl0m5Q10 | 11| 5|10] 1.7 1.7] 19| 1.6 0.5] 0.6 0.0{0.0| 0.0 0.0 0 0| 0| 0] 0] 0O 0 0 0 0
nl0mb5Q15 | 11| 5[15| 1.2 0.6| 0.6| 0.5/ 0.0| 0.2 0.0/0.0| 0.0 0.0 0 0| 0| 0] 0] O 0 0 0 0
nl0m5Q20 | 11| 5|20 - 0.6| 0.6| 0.5/ 0.0| 0.2 0.0/0.0| 0.0 0.0 - 0| 0| 0] 0] O 0 0 0 0
nl0m10Q10| 11| 10|10| 0.0/ 0.0| 0.0| 0.0| 0.0| 0.0| 0.0/0.0| 0.0 0.0 0 0| 0| 0] 0] O 0 0 0 0
nl0m10Q15| 11| 10|15| 3.5 04| 1.6| 1.6| 1.5| 0.0| 0.0/0.0| 0.0 0.0 0 0| 0| 0] 0] O 0 0 0 0
n10m10Q20| 11| 10]20| 1.0 12| 14| 14| 0.0/ 0.0| 0.0({0.0| 0.0 0.0 0 0| 0| 0] 0] 0 0 0 0 0
nl0m10Q25| 11| 10|25 - 0.0 0.0 0.0 0.0| 0.0| 0.0(0.0| 0.0| 0.0 - 0o 0 0of 0] O 0 0 0 0
n10m10Q30| 11| 10|30 -| 0.0/ 0.0/ 0.0/ 0.0|] 0.0|] 0.0{0.0| 0.0 0.0 - 0| 0] 0] 0] 0O 0 0 0 0
nl0m15Q10| 11| 15|10 - - - - - - - - - - - inf|inf|inf| inf|inf| inf| inf| inf| inf
nl0m15Q15| 11| 15|15|| 0.0/ 0.0| 0.0| 0.0| 0.0| 0.0| 0.0(0.0| 0.0| 0.0 0 0| 0| 0] 0] O 0 0 0 0
nl0m15Q20| 11| 15|20| 0.0/ 0.0| 0.0| 0.0| 0.0| 0.0| 0.0|0.0| 0.0| 0.0 0 0| 0| 0] 0] O 0 0 0 0
nl0m15Q25| 11| 15|25| 0.0 0.0| 0.0| 0.0| 0.0| 0.0| 0.0/0.0| 0.0 0.0 0 0| 0| 0] 0] O 0 0 0 0
nl0m15Q30| 11| 15|30| 0.0/ 0.0| 0.0| 0.0| 0.0| 0.0| 0.0/0.0| 0.0 0.0 0 0| 0] 0] 0] O 0 0 0 0
nl5m5Q10 | 16| 5[10| 4.7 76| 83| 5.1| 31| 43| 1.3]1.1] 0.0 0.0 0 0| 0] 0] 0] O 4 4| 782] 688
nl5m5Q15 | 16| 5[15| 4.0 6.3| 6.3| 32| 1.9| 28| 0.6]05| 0.1 0.1 0 0] 0] O 0| O 15| 35| 735| 732
n15m5Q20 16 5120 - 6.3] 63| 3.2 19| 28| 06]0.5]| 0.1| 0.1 - 0o 0] 0] O] 0 22 46| 739| 734
n15m10Q10| 16| 10|10| 9.3 9.614.7/104| 6.6| 96| 3.6|2.7| 0.0] 0.0 0 0| 0] 0] 0] 0O 5 8| 549| 670
n15ml10Q15| 16| 10[15( 6.1 59| 7.1| 48] 27| 42| 0.1/0.0| 0.0| 0.0 0 0] 0] Of 0| O 41| 39| 44| 46
nl5m10Q20| 16| 10|20 5.6 56| 6.2| 35| 1.8| 2.8 0.1/0.0/ 0.0 0.0 0 0| 0| 0] O] O 97| 146| 83| 72
nl5m10Q25| 16| 10|25| 4.8 53| 54| 24| 1.2| 23| 0.1/0.0/ 0.0 0.0 0 0| 0| 0] O] 1| 230| 144| 115| 111
nl15m10Q30| 16| 10|30 - 53| 53| 23| 1.2| 22| 0.1/0.0| 0.0 0.0 - 0| 0| 0] 0] 1| 251| 202| 142 103
n15m15Q10| 16| 15|10 - - - - - - - - - - - 0| 0] 0| O] O inf| inf| inf| inf
nl15m15Q15| 16| 15|15(13.4| 11.1|{12.6|11.6| 9.8| 9.9| 0.1|0.0| 0.0 0.0 0 0| 0| 0] 0] 0 1 5 4 4
n15m15Q20| 16| 15]20| 4.3 23] 38| 33| 12| 1.8/ 0.0/0.0| 0.0] 0.0 0 0o 0 0of 0] O 0 0 4 4
n15m15Q25| 16| 15|25| 1.7 0.1] 04| 0.1/ 0.0 0.1 0.0({0.0| 0.0| 0.0 0 0| 0] 0] 0] 0O 0 0 4 4
n15m15Q30| 16| 15|30 1.7 0.1] 04| 0.1] 0.0 0.1/ 0.0/0.0]| 0.0] 0.0 0 0| 0] 0] 0] O 0 0 5 4
n20m5Q10 | 21| 5[10] 2.6 53| 5.7| 40| 19| 31| 0.2/ 0.2] 0.0] 0.0 0 0] 0] of 0] 0 1 1| 207 117
n20m5Q15 | 21| 5[15| 2.0 3.5] 35| 1.3] 04| 1.2 0.0(0.0| 0.0| 0.0 0 0] 0] of 0] 1 1 1| 219| 126
n20m5Q20 | 21| 5|20 - 3.5| 3.5| 1.3| 04| 1.2 0.0/0.0/ 0.0 0.0 - 0| 0| 0] 0] 1 1 1] 247| 130
n20m10Q10| 21| 10|10| 6.4 9.3|14.1/10.0| 58| 86| 29|2.0| 3.8| 24 0 1/ 0] 0] 0| O 127| 119|5453|4926
n20m10Q15| 21| 10|15| 7.0 11.0{13.0| 87| 59| 7.9| 3.2|2.5| 3.8| 2.7 0 1| 0| 0] 0] 1]1000| 948|5102|4431
n20m10Q20| 21| 10|20| 3.7 8.6| 88| 43| 1.8 4.2| 1.3|0.6| 1.7| 1.0 0 0| 0| 0] 0] 2|1672|1672|2707 |2440
n20m10Q25| 21| 10|25| 3.4 81| 81| 35| 15| 35| 1.1{0.5| 1.5 0.8 0 0| 0] 0] O] 3|1511|1274|2822|1988
n20m10Q30| 21| 10|30 - 81| 81| 35| 15| 35| 1.1[0.5| 1.5] 0.8 - 0] 0] O 0| 3|1555|1475]|2881|2103
n20m15Q10| 21| 15|10 - - - - - - - - - - - 21 0] 0] O O 25 60 tl tl
n20m15Q15| 21| 15]15|/13.4| 17.1]20.5|{17.9]13.6|16.3| 6.8| 55| 6.4| 5.2 0 20 0| O 0| 1[1195|1248 tl tl
n20m15Q20| 21| 15|20|[11.3| 15.2(17.0|13.8| 85|13.3| 3.9|2.7| 6.1| 4.2 0 1| 0] 0| 0| 2[4886 4677|6585 |6430
n20m15Q25| 21| 15(25(12.2| 11.5|12.2| 89| 4.5| 86| 2.6|1.7| 42| 25 0 1| 0] 0| 0| 3[4334|3259|5096 |4519
n20m15Q30| 21| 15|30|11.2| 10.6|11.1| 7.7| 3.3| 74| 2.2|1.1| 3.6| 1.7 0 1| 0] 0| 0| 5[4381|3499|5767 | 4333
n25m5Q10 | 26| 5[10| 3.6 6.7| 72| 54| 3.7| 46| 1.6(1.3| 21| 1.8 0 1/ 0] 0] O] 1| 35| 37]4605]|3519
n25mb5Q15 | 26| 5[15| 3.5 47| 48| 30| 21| 28| 0.7(0.6| 1.1| 0.9 0 0] 0] O 0| 3| 120| 16743394269
n25m5Q20 | 26 5(20| 3.2 45] 45| 27 19| 26| 0.7]0.6] 1.1 0.9 0 0O Of O O] 3| 211| 234|4172 (4077
n25m10Q10| 26| 10|10} 10.0 11.9(17.7|14.5|10.2|13.7| 7.6|5.6|10.3 7.6 0 31 00 0] O 1] 218| 171 tl tl
n25m10Q15| 26| 10|15| 9.1 12.5(14.0(10.9| 7.6/10.6| 4.7|3.3| 84 6.0 0 1] 0] 0] 0| 3|2849]2656 tl tl
n25m10Q20| 26| 10|20 7.5| 10.9|11.2| 7.9| 50| 7.7| 3.2|1.7| 6.8| 4.5 0 1/ 0] 0| 0| 5[5682|5109|6801|6707
n25m10Q25| 26| 10|25| 7.2| 10.5[10.5| 7.3| 45| 7.2| 3.3|1.8| 6.7| 4.7 0 1| 0] 0| 0| 8[6480 5107|6651 |6736
n25m10Q30| 26| 10|30 -| 10.5|10.5| 7.3] 45| 72| 35(1.8| 7.1| 4.9 - 1| 0] 0] 0| 9[6480 5287|6686 | 6698
n25m15Q10| 26| 15|10 - - - - - - - - - - - 50 0] 0] 0 1| 115| 153 tl tl
n25m15Q15| 26| 15|15| 7.7 15.320.3]17.5/10.5/16.7| 8.2|6.0|13.2| 9.0 0 50 01 0| 0| 2[4071 4540 tl tl
1n25m15Q20| 26| 1520 9.6| 15.2|16.8|13.2| 7.6|13.1| 6.8{4.5|11.5 71 0 31 0] 0] O] 7]6340|5781 tl tl
n25m15Q25| 26| 15|25|10.5| 14.1]14.5/10.9| 5.4]10.7| 6.1|3.0|10.6 6.2 0 2| 0| 0] 0|11|6665]|5853 tl tl
n25m15Q30| 26| 15]30|/10.6| 13.7]13.8/10.0] 4.6| 99| 64|3.0[11.2] 9.2 0 1| 0| 0] 0]19]6802]|6102 tl tl
mb5Q5 12| 5| 5| 0.7 14| 22| 1.6 1.4] 1.0] 0.6]/ 0.5 0.0| 0.0 0 0| 0| 0] 0] O 0 0 0 0
mb5Q10 12| 5|10 21 24| 3.0| 23| 08| 14| 0.1|0.1| 0.0 0.0 0 0| 0| 0] 0] O 0 0 0 0
mbQ15 12| 5|15 1.6 16| 1.6| 09] 06| 0.8 0.1]/0.1| 0.0] 0.0 0 0| 0] 0] 0] O 0 0 1 0
ml0Q5 22| 10| 5| 4.6 2.41104| 9.7 7.3| 73| 45|34| 09| 0.4 0 0| 0| 0] 0] O 0 011941 | 2262
m10Q10 22| 10|10 8.8 9.9|17.9|16.7(12.7|15.3|10.6 | 8.5| 9.6 7.7 0 2| 0| 0] 0] 0 26| 28 tl tl
ml10Q15 22| 10|15| 8.6| 10.5[12.3|104| 88|10.1| 6.8]6.2| 7.1| 6.5 0 1/ 0] 0] 0] 1| 359 39858025796
m10Q20 22| 10|20 6.2 8.7| 89| 6.8 54| 6.6| 3.5(2.9| 43| 38 0 1| 0 0] 0| 2|2290|2865 5863|5861
ml10Q25 22| 10|25 5.7 84| 85| 64| 48| 6.1| 3.1{2.6| 4.0 3.6 0 0 O] 0] O] 4|5450]5258|5942 | 5927
m10Q30 22| 10|30 5.8 8.2| 82| 6.1] 45| 59| 29|2.4]| 38| 34 0 0] 0] 0] 0] 5|5460 5254|6063 | 6357
m15Q5 32| 15| 5| 74| 2.9(14.8]14.4|10.5/11.9| 8.6| 6.5| 85| 6.5 1 6] 0] 0O 0] O 1 1 tl tl
m15Q10 32| 1510 9.2 10.5]20.6|18.7|10.8|16.7|12.8|8.1|15.1 9.7 0 230 0 0 1| 1 7 81 tl tl
m15Q15 32| 15|15|] 9.2 11.8(154|13.4|10.2|12.8| 9.7|8.2|11.9| 10.8 0 13] 0] 0 0| 3|1255|1414 tl tl
m15Q20 32| 15|20([10.4| 13.2|14.7|12.9(10.5|12.4| 9.2|8.3|18.6| 22.1 0 7| 0| 0| 0| 8[6903 tl tl tl
m15Q25 32| 15(25| 9.1| 11.7|12.1]10.2| 83| 9.8| 7.2|6.6|68.0| 62.8 0 4| 0| 0] 0]15|6843|6536 tl tl
m15Q30 32| 15]30| 89| 11.9/11.9]10.0| 82| 9.6| 7.9|7.3|92.7|100.0 0 4] 0| 0] 0]21|6690|6484 tl tl
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approach (BE) based on the MCF model by Herndndez-Pérez & Salazar-
Gonzélez (2009) (HS) also contains heuristic elements. In the cutting plane
algorithm for computing the LP relaxation we set Ag = Ag, = Ag,, =1
and do not perform early branching to obtain the correct LP relaxation value.
Let copr be the optimal integer solution value and cpp be the optimal value
of the LP relaxation. The LP gap value for one particular model and in-
stance in the tables is given by (copt — cLp)/copr. If value copr or cpp is not
available we skip the corresponding LP gap value (“-” in the tables). The
CPU times do not involve instances which are determined to be infeasible
after solving the LP relaxation. If all instances of a set are infeasible we
write “inf” in the tables. If the time limit is reached before the cutting plane
algorithm was finished we write “t1” in the tables or use 7200 seconds to
compute the average values.

By aggregating the commodities in model CUTK we loose some informa-
tion about the demand structure which can be observed in the weaker gaps
with respect to model MCF. However, by adding further valid inequalities
in CUTR and CUTR* this disadvantage can be compensated for most of the
instances, except for very tight vehicle capacities. It can be clearly seen that
the layered graph models obtain significantly lower LP gaps than the other
models defined on the original graph. However, for several instances it was
not possible to compute the optimal LP relaxation value within the time
limit, especially for large models on the 3-dimensional layered graph. Note
that we observed that for some instances infeasibility can be shown in the
LP relaxation only with the strong models.

Tables 4 and 5 show the results of our branch-and-cut algorithms in com-
parison to the Benders decomposition approach (BE) by Herndndez-Pérez
& Salazar-Gonzélez (2009). Here, we only consider a subset of our models,
namely CUTR* (C), LCUTR? (L), and PLCUTR? (PL). In the embedded
cutting plane algorithms we set Ag = 0.75,Ag, = Agp, = 0.25. Let ¢
and cyp be the best global lower and upper bounds, respectively, obtained
by the algorithm within the time limit. The gaps in the tables are given
by (cup — cLB)/cup. If at least one of the bounds is not available we skip
the corresponding gap value (“-” in the tables). Note that these gaps are
not available for the BE approach. Again, the CPU times do not involve in-
stances which are shown to be infeasible in the solution process. If the time
limit is reached before proving optimality we write “t]” in the tables or use
7200 seconds to compute the average values. Additionally, the tables include
the number of instances which are shown to be infeasible and the number of
instances for which the algorithm reaches the time limit. Note that the CPU
times of BE have been obtained on a different hardware with CPLEX 10.2.

For class 2 and 3 instances with a large number of commodities the de-
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Table 4: Comparison of branch-and-cut algorithms based on different models for class 1
instances (C ... CUTR*, L ... LCUTRZ, PL ... PLCUTRY ). Bold values denote the best
CPU times.

gap in % time in sec. infeasible time limit

Instance VIIK||Q PL|BE| C L |PL |BE|C|L|PL|BE|C|L|PL
ESC07Q3max1 9] 6| 3] 0.0] 0.0 3.5 0 0 0 0 0] 0{0] 0O 0] ojof o
ESC07Q10max5b 9 6[10( 0.0 0.0 0.0 0 0 0 0 0] 0f0 0 0] 0]0 0
ESC12Q4max1 14 7| 4| 0.0] 0.0| 0.0 0 0 0 3 0] 0f0 0 0] 0]0 0
ESC12Q5max1 14| 7| 5| 00| 00| 0.0 0 1 0 1 0] 0{0] 0O 0] 0{0] 0O
ESC12Q15max5 | 14| 7]15| 0.0| 0.0 0.0 0 1 0 2 0] 0]0] 0 0] 0]0] 0
ESC25Q3max1 | 27| 9| 3| 0.0 0.0] 0.0 43| 13| 10{1291 ojojofl o o] ojof] o
ESC25Q4max1 | 27| 9| 4| 0.0 0.0 0.0 5 7| 10]1063 0jojol o 0| 0|0] 0O
ESC25Q5max1 | 27| 9] 5| 0.0| 0.0| 0.0 0 1 2| 104 0| 0|0 0 0| 0|0] 0O
ESC25Q15max5 | 27| 9]15| 0.0 0.0 0.0 0 1 2| 886 0| 0|0] 0 0| 0|0] 0O
ESC25Q20max5 | 27| 9]20] 0.0| 0.0 0.0 0 1 6| 1497 0| 0|0] 0 0| 0]0] 0
ESC47Q3max1 | 49| 10| 3| 0.0| 0.0]47.1 61| 40| 175 tl 0 0{0] 0 0] 0{0] 1
ESC47Q4max1 | 49| 10| 4| 0.0| 0.0{56.4| 12| 12| 22 tl 0| 0j0] 0 0| 0|0 1
ESC47Q10max5 | 49| 10[10| 0.0| 0.0 -| 61| 83|1706 tl 0| 0|0] 0 0| 0|0 1
ESC47Q15max5 | 49| 10{15| 0.0| 0.0 - 10 12| 403 tl 0] 0(0 0 0] 0]0 1
ESC47Q20max5 | 49| 10|20] 0.0] 0.0 -| 10] 17| 311 tl 0] 0j0] 0 0] 0j0] 1
br17.10Q3max1 | 18| 10| 3| 0.0| 0.0] 0.0 28 7 4] 126 ojojof o 0] 0{0] 0O
br17.10Q4max1 | 18| 10| 4| 0.0| 0.0| 0.0 6868|2284 | 2796355 0| 0j0] 0 0| 0|0] 0O
br17.10Q5max1 | 18| 10| 5| 0.0 0.0] 0.0 0 0 o 13 0| 0j0] 0 0| 0|0] 0O
br17.10Q10max5 | 18| 10[10| 0.0| 0.0 0.0 73| 25| 23| 802 0| 0j0] 0 0| 0|0] 0O
br17.10Q15max5 | 18| 10]15] 0.0| 0.0] 0.0 0 0 1] 40 0] 0[0] O 0] 0]0] 0O
br17.12Q3max1 | 18| 12| 3|l 0.0| 0.0 0.0|1820| 57| 18| 515 0| 0|0 0 0| 0|0] 0O
br17.12Q4max1 | 18| 12| 4| 0.0| 0.0 0.0|3049| 888| 27|5265 0| 0j0] 0O 0| 0j0] 0O
br17.12Q5max1 | 18| 12| 5| 0.0| 0.0 0.0 0 0 0 5 0| 0|0] 0O 0} ojol o
br17.12Q10max5 | 18| 12|10|| 0.0 0.0| 0.0 2040| 191| 581735 0] 0f0 0 0] 00 0
br17.12Q15max5| 18| 12|15 0.0 0.0| 0.0 1 1 5| 186 0] 0[0] 0 0] 0[{0] 0O
p43.1Q2max1 44 9| 21[48.7|48.7(49.0 - tl tl tl -1 0]0 0 1)1 1
p43.1Q3max1 44| 9| 3| 04| 04| 1.5 - tl tl tl 0jo|] 0 - 1)1 1
p43.1Q4max1 44 9| 4 0.0] 0.1]48.9 - tl tl tl -1 0]0 0 111 1
p43.1Q10max5 44| 9]10| 0.0| 0.3 - - tl tl tl -1 0j0| 0 -1
p43.1Q15max5 44| 9]15] 0.1| 0.2 - - tl tl tl -1 0]0] 0 -1 1
p43.2Q10max1 44| 20]10| 0.4| 0.6 - - tl tl tl -l 0jo| 0 -1
p43.2Q40max5 44| 20]40] 04| 0.6 - - tl tl tl -1 0]0] O BRIEIER!
p43.3Q10max1 44| 37]10| 1.2| 1.7 - - tl tl tl -l 0jo|l o -1
p43.3Q40max5 44| 37140 04| 0.7 - - tl tl tl -1 0j0| 0 - 111
p43.4Q10max1 44| 50(10] 0.1| 0.3 - - tl tl tl -1 0jofl 0 -1
p43.4Q40max5 44| 5040 0.0| 0.0 - - 12 tl tl -1 0j0| 0 -l oj1 1
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Table 5: Comparison of branch-and-cut algorithms based on different models for class 2
and 3 instances (C ... CUTR*, L ... LCUTRY, PL ... PLCUTRY). Bold values denote
the best CPU times. Each set contains 10 instances.

avg. gap in % avg. time in sec. # infeasible | # time limit

Set VITIK||Q| C L |PL|BE| C L PL |BE|C|L|PL|BE|C|L|PL
nl0m5Q10 | 11 5/10] 0.0| 0.0 0.0 0 0 0 0 0l 0] 0] 0O 0] 0j0] 0
nl0m5Q15 | 11 5(15{ 0.0 0.0{ 0.0 0 0 0 0 0 0] Of O 0070 O
n10m5Q20 | 11 520 0.0 0.0f 0.0 - 0 0 0 o] 0] O -1 0j0f 0O
nl0m10Q10| 11| 10|10| 0.0 0.0| 0.0 0 0 0 0 6| 7| 7| 7 0[0/0| O
nl0ml10Q15| 11| 10|15| 0.0 0.0| 0.0 0 0 0 0 1] 1] 1 1 0010 0
nl0m10Q20| 11| 10|20 0.0| 0.0| 0.0 0 0 0 0 0 0] O O 0 0j0| 0
nl0m10Q25| 11| 10{25| 0.0| 0.0| 0.0 - 0 0 0 -1 0] 0] O 0/0f 0
nl0m10Q30| 11| 10(30| 0.0| 0.0| 0.0 - 0 0 0 -1 0] 0 0 -1 0]0 0
nl0m15Q10| 11| 15|10 - - - - - - - -110{10] 10 -1 00 0
nl0m15Q15| 11| 15|15| 0.0 0.0| 0.0 0 0 0 0 91 9] 91 9 0070 O
n10m15Q20| 11| 1520 0.0 0.0| 0.0 0 0 0 0 6| 6| 6| 6 0/0(0] O
nl0m15Q25| 11| 15(25| 0.0 0.0| 0.0 0 0 0 0 41 4| 4| 4 0[0/0| O
nl0m15Q30| 11| 15|30 0.0| 0.0| 0.0 0 0 0 0 20 2] 2| 2 0[0/0| O
nl5m5Q10 | 16| 5]10| 0.0 0.0| 0.0 0 1 4 70 0 0| O O 0 0/0| O
nl5m5Q15 | 16| 5(15| 0.0 0.0| 0.0 0 1 16| 144 0 0] O O 0 0/0| 0
nl5m5Q20 | 16| 5(20( 0.0| 0.0| 0.0 - 1 11| 246 -1 0] 0] O -1 0]j0] 0
nl5m10Q10| 16| 10|10 0.0| 0.0| 0.0] 1801 1 4 74 6| 7| 7 7 11 0|0 0
nl5m10Q15| 16| 10|15| 0.0| 0.0| 0.0 0 1 3 36 111 1 0} 0f0 0
n15m10Q20| 16| 10|20 0.0| 8.0| 0.0 0 0 6| 48 0 0] Of O 0050 O
n15m10Q25| 16| 10|25| 0.0| 0.0 0.0 0 0 7 74 0 0] O O 0 0/0| 0
n15m10Q30| 16| 10|30| 0.0 0.0| 0.0 0 0 7| 67 -1 0] 0] O -1 00| 0O
nl5m15Q10| 16| 15|10 - - - - - - - -110]10| 10 -1 00| 0
nl5m15Q15| 16| 15|15| 0.0 0.0| 0.0 2 1 3| 21 41 4| 4| 4 0 0/0| O
nl15m15Q20| 16| 15(20| 0.0| 0.0 0.0 1 0 0 4 21 2| 2 2 0/0[0] O
nlbm15Q25| 16| 15(25| 0.0| 0.0| 0.0 0 0 0 5 0 0] 0 0 0/0(0 0
n15m15Q30| 16| 15|30| 0.0| 0.0] 0.0 0 0 0 6 0l 0] 0] 0O 0] 0{0] 0
n20m5Q10 | 21 5110 0.0 0.0| 0.0 3 1 2| 120 0| 0] 0 0 0] 0f0 0
n20m5Q15 | 21 5(15{ 0.0 0.0{ 0.0 0 0 1| 167 0 0] O O 0010 O
n20m5Q20 | 21 5120 0.0 0.0{ 0.0 - 0 2| 167 -1 0] 0] O -1 00| 0O
n20m10Q10| 21| 10|10 | 13.0|13.3| 14.8 || 1832|1806 | 1854 | 3475 20 2] 2 2 20212 3
n20m10Q15| 21| 10(15| 0.0] 0.0 2.2 67 31| 3743138 0 0] O O 0[{0/0| 3
n20m10Q20| 21| 10(20| 0.0 0.0| 0.8 53 1| 1561853 0 0] O O 0050 2
n20m10Q25| 21| 10(25| 0.0 0.0| 0.8 53 1| 2311770 0 0] O 0O 0oj0j0| 2
n20m10Q30| 21| 10(30| 0.0| 0.0 0.9 - 1| 2121835 -1 0] 0 0 -1 0]0 2
n20m15Q10 | 21| 15|10 - - - - tl t1 tl -1 8] 8| 8 -1 212] 2
n20m15Q15 | 21| 15|15 (22.3]23.4| 28.6 || 5305 | 3399 | 3684 | 6304 0 0] Of O 7| 415 8
n20m15Q20 | 21| 1520 0.6| 2.1| 5.5|3073| 910 | 2239 |4864 0 0] O 0O 41113 6
n20m15Q25| 21| 15(25( 0.0] 0.0 3.2| 172 6| 5323397 0 0] O O 0[0/0| 4
n20m15Q30| 21| 15(30( 0.0| 0.0| 0.9 114 2| 2782555 0| 0| O| O 000 2
n25m5Q10 | 26| 5(10| 0.0] 0.0| 11.3 2 10 2512784 0 0] O O 0o[f0j0| 3
n25m5Q15 | 26| 5|15| 0.0 0.0| 82 1 2 3912271 0 0] O O 0] 0f0 1
n25m5Q20 | 26| 5(20( 0.0| 0.0| 0.7 1 2 4412382 0 0] O O 0} 0f0 1
n25m10Q10| 26| 10[10| 0.9| 1.3| 9.6 3684|2004 | 3916 | 6545 1) 1] 1 1 3124 8
n25m10Q15| 26| 10(15| 0.0| 0.0| 6.3| 137 67| 1577 tl 0 0] 0 0 0 0/0| 10
n26m10Q20| 26| 1020 0.0] 0.4| 4.1 14 5| 1980 | 6631 0 0] Of O 0012 9
n256m10Q25| 26| 10(25| 0.0| 0.5| 4.6 14 4| 2367 | 6466 0 0] O O 0013 8
n256m10Q30| 26| 10(30| 0.0| 0.4| 4.1 - 4| 2146 | 6697 -1 0] 0] O -1 0|1 8
n25m15Q10 | 26| 15|10 61.5|61.9| 67.9 - tl t1 tl -1 3] 3] 3 -7y 7
n25m15Q15| 26| 15|15| 4.5| 7.3| 16.4 || 5786 | 3167 | 5333 tl 0 0] O ©O 81 4| 7| 10
n25m15Q20 | 26| 15[20( 0.7] 3.8| 9.2/3804|1385 | 4787 | 6520 0} 0| O O 5116 8
n25m15Q25| 26| 15(25| 0.0| 1.5| 6.1 1387 59 | 3545 | 6864 0| 0] 0 0 110]|3 9
n25m15Q30| 26| 15(30| 0.0| 1.8| 6.5| 565 14| 3388 tl 0| 0] 0 0 0] 04| 10
mb5Q5 12 50 5| 0.0 0.0f 0.0 0 0 0 0 0 0] O O 0070 O
mb5Q10 12 5110 0.0 0.0{ 0.0 0 0 0 1 0 0] O O 0010 O
mb5Q15 12 5(15{ 0.0 0.0{ 0.0 0 0 0 1 0| 0| O O 0/ 0/0| O
ml0Q5 221 10| 5| 0.0/ 0.0 0.0 2 2 1 93 0 0] O O 0/0(0] O
ml0Q10 22| 10{10| 0.0 0.0| 4.6 87| 165| 6125670 0 0] O O ofo0jo0| 7
ml0Q15 22| 1015 0.0 0.2| 5.2 62 30| 1741|5122 0 0] O O 0012 7
ml10Q20 22| 1020 0.0 0.0 2.6 2 2| 3284128 0 0| O O 0 0/0| 5
m10Q25 22| 10(25| 0.0 0.1 2.3 1 2| 1099 | 4086 0 0] 0] 0 0/0f1 4
m10Q30 22| 1030 0.0 0.1 21 1 2| 1294 4379 0| 0] 0 0 0] 01 4
ml15Q5 32| 15| 5| 1.1| 1.1| 12.0(2006| 2529|1053 | 5922 0 0] 0 0 2011 8
m15Q10 32| 15]10| 6.2| 9.1| 18.9 6523|6493 | 6908 tl| 0| 0| 0] 0| 9]9|9] 10
ml15Q15 32| 15|15| 24| 7.5| 15.1|/4124|3284 | 6595 tl 0} 0] O O 5(4/9| 10
m15Q20 32| 15(20| 0.0| 5.6| 43.5| 918| 269 | 7033 tl 0 0| O O 0 0/9| 10
ml15Q25 32| 15|25 0.0 4.4|92.3]| 118 40| 5971 tl 0 0| O O 0 08| 10
m15Q30 32| 15(30| 0.0| 6.0 -| 101 43| 6482 tl 0 0] O O 0/ 0/9] 10
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Table 6: Comparison of branch-and-cut algorithms for TSPPC instances from the TSPLIB.
Bold instance names mark instances solved for the first time. Bold bounds and CPU times
denote the best results.

LB UB time in seconds

Instance | |V]| |A| |R\ BK | BCx BK |BCx| BK | BC1 | BC2 | BC3 | BC4
ESCO07 9 40 6 2125| 2125 2125| 2125 0 0 0 0 0
ESC12 14 132 7 1675| 1675 1675 | 1675 0 0 0 0 0
ESC25 27| 622 9 1681 | 1681 1681 | 1681 1 0 0 0 0
ESC47 49| 2187 10 1288 | 1288 1288 | 1288 28 7 8 4 2
ESC63 65| 3613 95 62 62 62 62 0 9 2 1 1
ESCT8 80| 5550 77| 18230| 18230 | 1823018230 1 770 46| 8664 | 7569
br17.10 18 237 10 55 55 55 55 0 1 0 1 0
brl7.12 18| 223 12 55 55 55 55 0 1 0 1 0
t53.1 54| 2722 12 7531 7531 7531 7531 6768 183 218 91 145
ft53.2 54| 2680 25 7630| 8026 8026 | 8026 - 129842 - - -
ft53.3 54| 2306 48 9473110262 | 10262 | 10262 -| 15693 | 8629 -

ft53.4 54| 1218 63| 14425| 14425 1442514425 121 11 2 5 5
ft70.1 71| 4783 17| 39313 | 39313 3931339313 363 27 48 17 18
£70.2 71| 4714 35| 39843|40101 || 40419 | 40728 - - - - -
£t70.3 71| 4384 68 || 41413 |42535 | 4253542535 -| 6119728691 - -
ft70.4 71| 2154 86| 53072|53530| 5353053530 - 769 315 308 | 249
krol24p.1{101| 9814 | 25| 37861 |38762| 39420 | 39420 - - - - -
krol24p.2|101| 9738 49 38809|39841 || 41336|41336 - - - -

krol24p.3 101 | 9339 97 | 4157843904 || 49499 | 49570 - - - -

krol124p.4|101| 5260 | 131| 65445 |73021| 76103 | 76103 - - - - -
p43.1 44| 1778 9| 28140 | 28140 28140 | 28140 288 4 2 6 5
p43.2 44| 1724 20 || 28480 | 28375 | 28480 | 28480 279 - - - -
p43.3 44| 1600 3728835 | 28766 | 28835 | 28835 177 - - - -
pd3.4 44 795 50 | 83005 | 83005 | 83005 | 83005 88 35 11 11 13
prob.42 42| 1596 10 243 243 243 243 145 6 15 8 9
prob.100 | 100| 9579 41 1027| 1045| 1163| 1346 - - - - -
rbg048a 50| 1569 | 192 351 351 351 351 21 1 1 1 0
rbg050c 52| 1703 | 256 467 467 467| 467 3 1 1 1 1
rbgl09a |111| 1748 | 622 1038 | 1038 1038 | 1038 13979 2 1 2 2
rbgl50a | 152 | 2647| 952 1748| 1750 1750 1750 - 4 2 2 2
rbgl74a |176| 3309|1113 2033| 2033 2033| 2033 632 9 11 6 6
rbg253a |255| 5125|1721 2940 | 2950 2950| 2950 - 122 107 22 16
rbg323a |325|10021 | 2412 3137| 3140 3140| 3140 - 1714 745 159 193
rbg341a |343| 9884|2542 2543| 2568 2568 | 2568 - - - | 70997 -
rbg358a | 360 | 17998 | 3239 2529| 2545 2545 | 2545 -| 20127| 12504 | 2179| 791
rbg378a | 380 | 18412 | 3069 2771| 2809 2816 | 2816 - - - - -
ry48p.1 49| 2222 111 15805 | 15805 | 15805 | 15805 || 12483 - - - 127300
1y48p.2 49| 2188 23| 15747|16074 || 16666 | 16666 - - - - -
ry48p.3 49| 1973 421 1815619490 || 19894 | 19894 - - - - -
ry48p.4 49| 1046 58| 31446 | 31446 || 31446| 31446 97 306 92 382 234

mand aggregation discussed in Section 4 (model CUTR*) is quite beneficial in
terms of lower CPU times when compared to the BE approach. Additionally,
we are able to solve several open m-PDTSP instances. The branch-and-cut
algorithm based on LCUTR? shows significant improvements on instances
with extremely tight vehicle capacities (cf. br17.10, br17.12 in Table 4). How-
ever, both layered graph variants are not competitive on larger instances
because of the large size of the corresponding models.

8.2. Results for the TSPPC

As mentioned before, relaxing the capacity constraints in the m-PDTSP
leads to the TSPPC which is equivalent to the sequential ordering problem.
Therefore, we also provide branch-and-cut results on benchmark instances
for the TSPPC. We removed all parts from model CUTR* which are only
relevant in the capacitated case, i.e., the flow system on the f-variables. The
CPU time limit is extended to 1 day.
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Table 6 shows branch-and-cut results for instances for the TSPPC from
the TSPLIB. The best known (BK) lower and upper bounds (LB,UB) and
fastest solution times are obtained from different articles (Ascheuer, 1995;
Ascheuer et al., 2000; Gambardella & Dorigo, 2000; Gouveia & Pesneau,
2006; Anghinolfi et al., 2011; Cire & Hoeve, 2013). Note that the BK results
are obtained on different hardware so they are not directly comparable to
our CPU times. Dashes “-” in the tables mean a reached time or memory
limit. We compare four different branch-and-cut configurations BC1-4: The
heuristic separation and inequalities (39) are only active in BC1-2, we set
Ag = 0.5 for BC1/3 and Ag = 0.9 for BC2/4. Lower and upper bounds
BCx are the best over all four branch-and-cut algorithms.

Our branch-and-cut algorithms were able to solve 9 instances for the first
time (instance names marked bold in Table 6) and to significantly improve
the lower bounds of the residual 9 open instances. Since the initial model
is quite small and the cutting plane only adds violated inequalities even
large instances with hundreds of nodes could be solved to optimality (“rbg”-
instances). Inequalities (39) used in BC1-2 are able to close the gap for
instances with a large number of precedence relations but for large graphs
it was better to ignore them since the separation problem consumed too
much time. We used the same primal heuristics as for the m-PDTSP also
considering capacities and thus leading to unnecessary long CPU times in
some cases. However, heuristics for the TSPPC were not the aim of this
paper.

In Table 7 we compare two variants of our branch-and-cut algorithms to
the state-of-the-art results for the SOPLIB instances by Montemanni et al.
(2013) which consist of 200 to 700 nodes. The existing approach (MO) had
a CPU time limit of 2 days, whereas we set a limit of 1 day. For both
branch-and-cut variants we set Ag = 0.9, deactivate inequalities (39) and
the heuristic separation. In BCH we run our primal heuristics whereas in
BC we skip them to save time. We were able to solve 12 instances for the
first time and significantly improved the lower bounds for the residual 12
open instances.

9. Conclusions

In this paper we have addressed the one-to-one multi-commodity pickup
and delivery traveling salesman problem (m-PDTSP). We have shown that
that the m-PDTSP is equivalent to the 1-PDTSP (a different variant of
pickup and delivery problems where only a single commodity is considered)
with additional precedence constraints and have taken advantage of this re-
lation to provide models for the m-PDTSP that are built by combining two
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Table 7: Comparison of branch-and-cut algorithms to MO by Montemanni et al. (2013)
for SOPLIB instances. Bold instance names mark instances solved for the first time. Bold
bounds and CPU times denote the best results. (The UB of MO for instance R.400.1000.15
seems to be wrong.)

LB UB time in seconds
Instance |A| |R| | MO BC BCH | MO BC | BCH | MO | BC |BCH
R.200.100.1 39402 0 61 61 61 61 61 61 426 28 88
R.200.100.15 7089 | 991 1257 1560 1585 | 1792 3111 2003 - - -
R.200.100.30 2338 | 604 4185 4216 4216 4216 4216 4216 - 14 20
R.200.100.60 690 | 336|| 71749 | 71749 71749 71749 | 71749| 71749 0 0 1

R.200.1000.1 39402 0 1404 1404 1404 1404 | 1404| 1404 169 42| 628
R.200.1000.15 6315|1005 || 14565 | 18741 | 18936 || 20481 | 27598 | 21393 - - -

R.200.1000.30 | 2286 | 600| 40170| 41196 | 41196 | 41196 41196| 41196 - 9 14
R.200.1000.60 786 | 327 71556 | 71556 | 71556 71556 | 71556 | 71556 2 0 0
R.300.100.1 89102 0 26 26 26 26 26 26| 2240 199| 521
R.300.100.15 10254 | 1742 2166 2690 2802 | 3161 -1 3355 - - -
R.300.100.30 3722 982 5839 6120 6120 6120 6120 6120 -1 1366 | 2411
R.300.100.60 1066 | 500 9726 9726 9726 9726| 9726| 9726 1 1 1

R.300.1000.1 89102 0 1294 1294 1294 1294 1294 1294 || 19864 | 258 | 1581
R.300.1000.15 10191 1653 | 21096 | 26650 | 26940 || 29183 | 43873 | 31291 - - -

R.300.1000.30 | 4094 | 971| 51495| 54147 | 54147 | 54147| 54147| 54147 - 37 60
R.300.1000.60 1083 | 498109471 | 109471 | 109471 | 109471 | 109471 | 109471 2 1 1
R.400.100.1 158802 0 13 13 13 13 13 13] 4822 113| 944
R.400.100.15 14006 | 2311 2747 3414 3516 | 3906 - 4228 - - -
R.400.100.30 4708 {1253 7755 8165 8165 8165| 8165| 8165 - 12 28
R.400.100.60 1361 | 662 15228 | 15228 | 15228 15228 | 15228 | 15228 49 3 3

R.400.1000.1 158802 0 1343 1343 1343 1343 1343| 1343 3004 56| 720
R.400.1000.15 13564 | 2389 || 28159 | 35103 | 35364 | 29685 | 50600| 43268 - - -

R.400.1000.30 | 4868 | 1238 79868 | 85128 | 85128 | 85132 | 85128 | 85128 -1 224 290
R.400.1000.60 1478 | 684 140816 | 140816 | 140816 || 140816 | 140816 | 140816 42 3 4
R.500.100.1 248502 0 4 4 4 4 4 4| 9760 | 165| 1455
R.500.100.15 16775 | 2972 3543 4517 4628 | 5361 -| 5724 - - -
R.500.100.30 6649 | 1670 8600 9665 9665 9665 | 9665 | 9665 -| 2144 2073
R.500.100.60 1819 830 | 18240| 18240| 18240 18240| 18240| 18240 11 7 7
R.500.1000.1 248502 0 1316 1316 1316 1316 1316| 1316 9383 | 1101 | 1425
R.500.1000.15 17866 | 2980 || 32950 | 42222| 43134 | 50725 -| 54049 - - -
R.500.1000.30 | 6360 | 1626 || 91272 | 98987 | 98987 | 98987 | 98987 | 98987 -| 368| 397
R.500.1000.60 1805 | 840 178212 | 178212 | 178212178212 178212178212 26 7 7
R.600.100.1 358202 0 1 1 1 1 1 1| 6652 29| 857
R.600.100.15 21474 3603 3656 4713 4803 | 5684 -1 6254 - - -
R.600.100.30 73231990 | 11841 | 12465| 12465 | 12465| 12465| 12465 -| 610| 640
R.600.100.60 1980 | 9911 23293 | 23293 | 23293 | 23293 | 23293| 23293 8 13 14
R.600.1000.1 358202 0 1337 1337 1337 1337 1337| 133723005 | 246| 1083
R.600.1000.15 23395 | 3778 || 36546 | 46293 | 47042 | 57237 -| 61164 - - -
R.600.1000.30 | 7603 | 1923 || 116037 | 126798 | 126798 || 126798 | 126798 | 126798 -| 2303| 2050
R.600.1000.60 2196 | 1001 || 214608 | 214608 | 214608 || 214608 | 214608 | 214608 9 13 13
R.700.100.1 487902 0 1 1 1 1 1 113782 | 270 4842
R.700.100.15 25338 | 4334 4494 5845 5946 | 7311 - 427 - - -
R.700.100.30 8606 | 2267 || 13663 | 14510| 14510 14510 14510| 14510 - 429| 524
R.700.100.60 25141146 || 24102 | 24102 | 24102 24102| 24102| 24102 46 24 25
R.700.1000.1 487902 0 1231 1231 1231 1231 1231 123156712 | 1006 | 13341
R.700.1000.15 25845 | 4409 || 40662 | 53455| 54351 || 66837 - 73997 - - -
R.700.1000.30 | 9104 | 2327 || 118718 | 134474 | 134474 || 134474 | 134474 | 134474 - | 15865 | 7934
R.700.1000.60 2592 | 1194 || 245589 | 245589 | 245589 || 245589 | 245589 | 245589 5 24 24
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different blocks: one modeling flows and capacity constraints and the other
modeling precedence relations. With respect to the precedence relation com-
ponent, we have also introduced new inequalities based on sequences and
logical implications of precedence relations which are able to significantly
enhance the LP bounds, especially for instances with a large number of
precedence constraints. For the capacity constraint component we have also
presented alternative ways to model the capacity constraints based on load-
dependent layered graphs which are beneficial for tight capacities in terms
of LP bounds. Several variants of a branch-and cut algorithm were devel-
oped based on the presented models. These approaches were combined with
several preprocessing methods, primal heuristics, and separation routines
for the SOP inequalities. Especially for tightly capacitated instances with
a large number of commodities we are able to outperform the approaches
by Hernandez-Pérez & Salazar-Gonzélez (2009). Additionally, we have also
considered the uncapacitated m-PDTSP which is equivalent to the TSP with
precedence constraints (or sequential ordering problem). Here, an adapted
variant of our branch-and-cut algorithm is able to solve to optimality several
open instances from the TSPLIB and the SOPLIB.
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