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Cancer is the second most cause of death in Austria and around 38000 people are diagnosed with cancer each 
year [1]. The goal of this paper is to analyze methods for evaluation of risk factors in order to parametrize a 
micro simulation model for cancer prevalence. The focus of this paper is on modeling the survival time. This 
is done by the methods of survival analysis and model selection. Firstly, the survival function is estimated by 
the Kaplan-Meier estimate. Afterwards, a Cox proportional hazards regression is performed with all possible 
sets of parameters. These models are tested by twos with the likelihood ratio test in order to compare them. 
Another approach is the so-called Lasso method. This method puts a constraint on the sum of the absolute 
values of the regression coefficients and in most cases forces some of the coefficients to go to zero. The 
Akaike Information Criterion is also applied. All three methods are compared and the parameters which are 
supported, at least to a certain extent, by all of them are included in the estimation of the survival time of the 
prevalence model. 

1 Introduction 
Cancer is the second most cause of death in Austria 
and around 38000 people are diagnosed with cancer 
each year [1]. So, it is of great importance to find out 
the risk factors on one side, but also to model the 
incidence and prevalence to be able to evaluate health 
policy measures on the other side. An important step 
for doing a simulation is to find out the potential 
influences on the course of the disease and to quan-
tify them in order to parametrize the model. The goal 
of this paper is to test methods for identification of 
possible influence factors on the course of cancer and 
to do a survival analysis for finding out the factors on 
which the course of the disease depends. Also, meth-
ods of model selection are used. These analyses will 
be used for the parametrization of a micro-simulation 
model for cancer prevalence later on. 

2 Data 
The following six categories are examined to find 
out, if they are possible influences on the develop-
ment or the course of cancer: sex, age at the diagnosis 
date, chronic diseases X, Y and Z and the stage of 
cancer at the date of the diagnosis. In Table 1, an 
overview of these categories with according types 
and ranges is presented.  

Table 1. Overview of categories with according types 
and ranges 

3 Methods 

3.1 Survival Analysis 
In order to examine the survival time of the individu-
als depending on the possible influence factors, 
methods of survival analysis are applied. These 
methods allow the estimation and the analysis of the 
survival function and the hazard function. The sur-
vival function 𝑆(𝑡)is defined as the probability that an 
individual will survive up to time 𝑡 and the hazard 
function ℎ(𝑡) is defined as the instanteneous rate of 
death at time 𝑡.  

Another important aspect regarding survival analysis 
is censoring. In the field of survival analysis often the 
data collection ends before the event of interest has 

Number Category Type Range 

1 Age ratio 23-83 

2 Sex nominal 0,1 

3 Chronic disease Y ordinal 0,1 

4 Chronic disease Z ordinal 0,1 

5 Chronic disease X ordinal 0,1 

6 Stage of disease ordinal 2-4 
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occurred for all individuals. For those individuals, the 
survival time cannot be determined. The only thing 
that is known is that the survival time exceeds the 
time of the observation of the particular patient.  

The Kaplan-Meier estimate is an estimate for the 
survival function 𝑆(𝑡). It makes use of the informa-
tion of the exact date of the occurrence of death. The 
estimated survival probability 𝑠𝑡 at time 𝑡 is: 

𝑠𝑡 = 𝑛𝑡−𝑑𝑡
𝑛𝑡

            (1) 

 𝑛𝑡 is the number of people alive at time 𝑡 and 𝑑𝑡 is 
the number of people that died at time 𝑡. So, 𝑠𝑡 is 
simply the ratio of the people alive who survive time 
𝑡. Thus, the probability of surviving up to a certain 
point of time 𝑡𝑗 is calculated with the so-called prod-
uct-limit formula [2]: 

𝑆�𝑡𝑗� = ∏ 𝑆(𝑡𝑖)
𝑗
𝑖=1             (2) 

A common approach to do regression analysis on 
survival data is the so-called Cox regression, also 
known as proportional hazards regression. It assumes 
that the ratio of the hazards comparing different ex-
posure groups remains constant over time. This is 
called the proportional hazards assumption. The 
mathematical form of the proportional hazards model 
is: 

 ℎ(𝑡) = ℎ0(𝑡) ∗ exp (∑ 𝑏𝑖 ∗ 𝑥𝑖)𝑛
𝑖=1               (3) 

ℎ0(𝑡) denotes the baseline hazard which refers to a 
particular group of individuals (for example, the indi-
viduals with value zero in all binary categories, with 
mean age and with stage of illness two), 𝑛 is the 
number of covariates, 𝑥𝑖 is the value of the 𝑖th co-
variate and 𝑏𝑖 is the corresponding regression coeffi-
cients [3,4].  

3.2 Model Selection 
The methods of model selection can be used to find 
the significant covariates for our model depending on 
given data. The goal of model selection is to elimi-
nate some of the covariates from the full model with 
six covariates to get a simpler model which still ex-
plains most of the effects correctly. In order to find an 
appropriate model, three approaches are considered: 
Likelihood ratio tests, Lasso – Method and Akaike 
Information Criterion (AIC).  

Firstly, the Cox regression is performed with all pos-
sible sets of parameters. That means the parameter 

sets of the models are all possible subsets of the full 
set with six parameters.  

For each two nested models the likelihood ratio test is 
applied. With this test we examine, if the bigger 
model of the two significantly provides additional 
information in comparison to the smaller nested 
model. The significance level is set to 0.05. 

Another approach to select a model is to use the 
Lasso-method. The regression coefficients of the Cox 
regression are calculated as usual by minimizing the 
partial log-likelihood, but additionally the sum of the 
absolute values of the regression coefficients is 
bounded by a constant in order to force some of the 
coefficient to shrink to zero. This results in a se-
quence of models depending on the size of the con-
straint. There are various ways to determine the 
“best” size of the constraint. It can be either chosen 
arbitrarily or automatically based on the data. For 
instance, the use of an approximate generalized cross-
validation (GCV) statistic is a common tool for auto-
matic constraint selection [5]. 

Another criterion to select a set of variables is the so-
called “Akaike Information Criterion” (AIC). The 
AIC value is calculated as follows: 

𝐴𝐼𝐶 = −2 logℒ(𝑡0|𝑦) + 2𝐾          (4) 

The first summand is the negative of twice the nu-
merical value of the log-likelihood at its maximum 
point 𝑡0 given data 𝑦 and the second summand is 
twice the number of parameters of the model. The 
smaller the AIC value of a model is, the better it is, 
because the AIC value can be interpreted as a kind of 
information loss [6]. The AIC can also be used for 
automatic choice of a constraint for the abovemen-
tioned Lasso-method. 

4 Results 
The Kaplan-Meier estimate was calculated for vari-
ous groups of the population. Figure 1 shows the 
Kaplan-Meier estimates for male and female indi-
viduals in comparison. We can see that the estimate 
for the males is lower than the estimate for the fe-
males until about 800 days after the diagnosis, when 
only 10 percent of the individuals are left alive. 
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Figure 1. Comparison of Kaplan-Meier estimates for 

male and female individuals 

The coefficients for the Cox regression with all six 
covariates included are shown in Table 2. 

𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 

-0.11 0.02 -0.05 0.09 -0.25 0.02 

Table 2. Coefficients of Cox regression in order: sex, 
age, chronic disease Y, chronic disease Z, chronic 
disease X, stage of illness 

The p-values of the Cox regression show that the p-
value of the term age is the lowest, so we start with 
the model with only term age. The likelihood ratio 
test shows that the model with added terms chronic 
disease X and sex and the model with added term 
chronic disease X, both given the term age, are statis-
tically significant, while any other extension given 
the term age is not significant.  

Figure 2 shows the values of the six regression coef-
ficients of the Cox model plotted over the 𝑙1- norm of 
the coefficient vector. On the x-axis above the plot 
also the number of non-zero coefficients is displayed.  

 
Figure 2. Cox regression coefficients over the norm of 
coefficients vector. 

In Figure 2, we see that the smaller the norm of the 
vector gets, the smaller is the number of non-zero 
coefficients. The coefficient that vanishes at last, 
when the norm of the coefficient vector goes to zero, 
is the coefficient of the parameter age, right after the 
coefficients of the parameters chronic disease X and 

sex. The other three coefficients are eliminated ear-
lier. 

The AIC value is calculated for the models with all 64 
possible sets of variables. In order to compare differ-
ent models, AIC differences are computed, because 
the relative values of the AIC are more meaningful 
than the absolute values. The AIC differences are 
computed by subtracting the AIC value of the model 
with the least AIC value from the AIC values of each 
model.  

In Table 3, the five models with the least AIC values 
and the AIC differences are listed. 

Parameters AIC AIC difference 

1; 2; 5 6788.75 0 

2; 5 6789.15 0.40 

1; 2; 3; 5 6790.27 1.52 

1; 2; 4; 5 6790.41 1.66 

1; 2; 5; 6 6790.59 1.84 

Table 3. Parameters sets with lowest AIC values and AIC 
differences, numbers referred to numbering of categories in 
Table 1 

Table 3 shows that the model with parameters sex, 
age and chronic disease X has the lowest AIC–value 
followed by the model with parameters age and 
chronic disease X. The other three listed models are 
also substantially supported by the AIC. 

5 Conclusion and Outlook 
The categories age, sex and chronic disease X are 
found to be significant by likelihood ratio tests using 
the Cox regression. The AIC ranks this model as first 
too. The Lasso-Method shows that these three param-
eters are the last three parameters that are left, when 
the norm of the coefficient vector declines. Since the 
set of parameters is not very big, in uncertain situa-
tions, where it is not obvious, if a certain parameter 
should be included or not, the parameter will be in-
cluded in the model to avoid the situation that a sub-
stantial effect is eliminated from the model by acci-
dent. So all used methods suggest that these three 
parameters definitely should be included in the esti-
mation of the survival time for the prevalence model. 
For the other categories, further analysis will be done 
to determine, if they also will be included in the fu-
ture model. 



Evaluation of Risk Factors for Parametrization of Cancer Models 

 

6 References  
[1] Jahrbuch der Gesundheitsstatistik. Statistik 

Austria, Austria, 2012. 

[2] B. R. Kirkwood and J. A. C. Sterne. Essential 
Medical Statistics, 2nd edition. Wiley-
Blackwell, United Kingdom, 2003. 

[3] G. Rodriguez. Lecture Notes on Generalized 
Linear Models. Princeton University, United 
Kingdom, 2007. 

[4] D. R. Cox and D. Oakes. Analysis of Survival 
Data. Chapman & Hall, United Kingdom, 
1984. 

[5] R. Tibshirani. The Lasso Method for Variable 
Selection in the Cox Model. Statistics in Medi-
cine Volume 16, p. 385-395, 1997. 

[6] K. P. Burnham and D. R. Anderson. Model Se-
lection and Multimodel Inference: A Practical 
Information-Theoretic Approach, 2nd edition. 
Springer, United States of America, 2002. 


	1 Introduction
	2 Data
	3 Methods
	3.1 Survival Analysis
	3.2 Model Selection

	4 Results
	5 Conclusion and Outlook
	6 References

