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The use of object—oriented modelling approaches for modelling physical or mechanical systems leads to
differential-algebraic equations which cannot be directly transformed into ordinary differential equations,
because they have a differential index greater than zero. The transformation into an odrinary differential
equation is important for the numerical solving. This paper is intended to provide an overview of com-
mon regularisation approaches for differential-algebraic equations with high differential index. First there
are some mathematical definitions and basic findings. After a short overview of the discussed methods,
including a classification of the techniques in the areas differentiation, projection and transformation, the
different methods are demonstrated using the commonly known example of a rotational pendulum de-
scribed in Cartesian coordinates. With respect to this example a comparison of the numerical solutions of

the used methods is possible.

1 Introduction

A component-based acausal model description for
physical or mechanical systems, such as Modelica
or MATLAB/Simscape, usually leads to differential—
algebraic equations (DAEs) with a non—trivial differ-
ential index. Solving DAEs with a high index using
methods designed for ordinary differential equations
(ODEs) is generally very complex and therefore nu-
merically extensive or may even be impossible. This
problem leads to the so—called index reduction, in
which the given DAE is reformulated as a DAE with
lower index or an ODE. Due to the large differences
(structure, properties, etc.) of DAEs a lot of different
index reduction methods can be found in the literature,
see [1] and [2]. The different techniques discussed in
this paper can be classified into the following areas:

e methods using differentiation
e methods using projection

e methods using transformation of the state space
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On the following pages these methods are discussed
and a short example is given to illustrate their func-
tionality.

2 Basics

In this section there are some basic definitions which
are used later on. A differential-algebraic equation
(DAE), see [1], is given by an implicit equation

F(t,x,%) =0, (1

with a function F: I X D, X Dy — R", where I C R is
a real interval and D, Dy C R” are open sets, n € N
and x: I — R” is a differentiable function, where x
is the derivative of x with respect to . According to
the implicit function theorem F can be solved for X if
the matrix %—‘; is regular. The algebraic equations of
the differential-algebraic equation system F(¢,x,%) =

0 are of the form
g(x) =0, (2)
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where g: R” — R™ is a function with m < n, and they
are called constraints. A differential-algebraic equa-
tion has differential index k € Ny (see [2]) if k is the
minimal number of derivatives, so that an ODE can be
extracted from the system

dF (z,x,%)
dr

d*F (1, x,%) _0
ek
3
This generated ODE can (through algebraic transfor-
mations) be written in the form x = ¢(z, x) with a func-

tion @: I x D, — R".

F(t,x,%) =0, =0,...,

3 Regularisation Approaches

The regularisation approaches are split into three dif-
ferent parts like in [2].

3.1 Regularisation by Differentiation

There are various approaches which are using differ-
entiation.

3.1.1 Differentiation of the Constraint

The procedure of this appoach is to differentiate the
constraint g(x) = 0 and substitute the constraint by
its derivative until the system has differential index 1.
The problem of this approach is that due to the dif-
ferentiation there is a loss of information. Therefore
the necessary initial values for the integration are un-
known and numerical "drift—off" occurs, i.e. the nu-
merical solution departs from the exact solution.

3.1.2 Baumgarte—-Method

This method can only be used for DAEs of index
3. The initial point of this approach is the index—1—
formulation of the index—3-system. The constraint
g(x) = 0 is substituted by a linear combination of g,
g and g of the form (see [3])

§+2ag+B*g=0. )

Because of the consideration of the original constraint
there is no loss of information. o and 8 have to be

chosen, so that the differential equation is asymptoti-
cally stable. Therefore follows & > 0. The problem
of this appoach is the exact choice of the constants o
and f3.

3.1.3 Pantelides—Algorithm

For each equation of the constraints the following pro-
cedure has to be used.

1. Each constraint has to be differentiated.

2. The differentiated constraint has to be added to
the DAE. If there is an algebraic variable in the
constraint, then the derivative of this variable is a
so—called dummy derivative.

3. An integrator which has a connection to the con-
straint and the derivative of the constraint respec-
tively is eliminated, i.e. for example X is elimi-
nated and instead of X a new variable called dx is
used.

4. Through differentiation of the constraint it can
occur that a new variable is generated, i.e. for
example through differentiation y (algebraic vari-
able) becomes dy and there is an equation where
y can be computed in the system.

5. Therefore this equation also has to be differenti-
ated.

6. The proceeding of the points 4—5 continues until
no new variables are created.

A disadvantage of this algorithm is that during the pro-
cedure a lot of variables and equations may be created
and therefore the system of the resulting equations can
be confusing.

3.2 Regularisation by Projection

A DAE with differential index k > 1 is given. If the
numerical solution does not fulfill the constraint, the
numerical solution is projected onto a manifold, which
is given by the constraint g(x) =0 and the 1¥,..., (k—
2)™ derivatives with respect to ¢ of the constraint. The
solution manifold is

d'g(x)
dri

M—{xeR":g(x)—O, —O,Viel}, (5)
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with 7 ={1,...,k—2}. The algebraic variables can be
expressed by the (k — 1)/ derivative of the constraint
and are inserted into the differential equations of the
DAE. This procedure leads to a system of differential
equations y = f(#,y) on the manifold M.

3.2.1 Standard Projection Method

One step y,, — y,+1 of the Standard Projection Method
is calculated in the following way, see [4]:

o i1 =Dy(ty,yn) is calculated, where Py, is a nu-
merical integrator applied to y = f(¢,y) (for ex-
ample a Runge—Kutta method).

o For getting y,11 € M, y,1 is projected orthogo-
nally onto the manifold M.

In figure 1 the Standard Projection Method is repre-
sented.

),’\n+l

Yn+1
Yn

Figure 1: Illustration of the Standard Projection Method

This method is also called Orthogonal Projection
Method.

3.2.2 Symmetric Projection Method

A one—step—method @, is called symmetric, if ®;, =
-1

D,

One step y, + y,+1 of the Symmetric Projection

Method is calculated in the following way, see [5]:

T .
® $n=ynt %7 (yn) 1 with g(y,) = 0.

e .11 = Dy(P,) is calculated, where Py, is a sym-
metric one—step—method applied to y = f(y).

-9 9T i
® Yurt = Pus1 + 35 Omsr)p with g such that
g(n+1) =0.
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It is important that the same u is used in the step y,, —
VYn+1. In figure 2 the Symmetric Projection Method is
shown.

M

),’\nJrl

Figure 2: Illustration of the Symmetric Projection Method

3.3 Regularisation by Transformation

The DAE with differential index k is not solved on
the whole state space, but on a manifold, see [4]. The
manifold is implicitly given by the constraint g(x) =0
and the 1%,.. ., (k —2)"* derivatives with respect to ¢
of the constraint. The manifold M is given by equa-
tion (5). The algebraic variables can be expressed by
the (k — 1) derivative of the constraint and are in-
serted into the differential equations of the DAE. This
procedure leads to a system of differential equations
y = f(t,y) on the manifold M. This ODE on the man-
ifold M is solved through the introduction of local co-
ordinate transformations.

Let a local coordinate function y: U — R"*, U C
R"™ open, y(U) C M be given on the m—
dimensional manifold M. The transformation y =
y(z) transforms the differential equation y = f(z,y)

into 5
P~ v, ©
Z

With the assumption f(z,y) € T,M, where T,M is the
tangent space in a fixed point y € M and has dimension
m, the differential equation (6) is equivalent to

:=F(t,72). 7)

One step y, — yn+1 using local coordinates is calcu-
lated in the following way:

e Local coordinates are chosen and z,, is calculated
with y, = W(Zn)-

o 2,411 = Py(t,,2,) is calculated with a numerical
method @, applied to (7).
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® Vi1 =Y(Znt1)

The coordinates y = y/(z) can be changed in each step.
The difficulty of this method is to find suitable coor-
dinates.

4 Case Study

The circular motion of a pendulum in Cartesian co-
ordinates is used as illustrative model. The equations
(see [6]) of this model are given by

X =V
y=vy
vy =—Fx ®)
vy=g—Fy
P +yr=1,
where g is the gravitational acceleration on earth and
F the Lagrange multiplier. The constraint is given by
the equation x> +y> = 1. In figure 3 the motion is
schematically represented.

Figure 3: Illustration of the Circular Motion of a Pendulum

4.1 Analysis of the DAE

The constraint is used to determine the differential in-
dex of the DAE. The constraint and the first, second
and third derivative with respect to ¢ are given by

¥+yP—-1=0
XV +yvy =0
VitV —F(x*+)*) +gy=0
4F (xvy +yvy) — 3gvy + (x2 + Y1) F =0.

€))

From the third derivative with respect to ¢, F can be
expressed. Therefore the DAE has index 3. A remark-
able fact is that F' can be expressend from the second

derivative with respect to f. Thus F can be inserted
in the differential equations. In table 1 the generated
ODE:s of the given DAE are shown.

index—0-system index—1-system
X =Vy X =Vy
y=vy Y=y
2,2
. Lo vyt tgy
Vy=—Fx Ve = )52 ﬂz'z
. L Vytvy+gy
Vy=g—Fy W=8T T
F— —4F (xvy+yvy)+3gvy
x2+y2

Table 1: Different ODEs for the Motion of the Pendulum

4.2 Regularisation by Differentiation
4.2.1 Differentiation of the Constraint

The constraint has to be differntiated twice which re-
sults in

vivE—F(x*+)%) +gy=0. (10)

Therefore this approach leads to a DAE with index
1. This DAE is solved with the ode—solver odelSs
of MATLAB. In figure 4 the result of this method is
shown where the "drift—off" phenomenon is visible,
whereby the simulation is calculated till 100 seconds.

=y
T

y-coordinate
N
i

W
T

S————————— . circular path

] —_————— ——numerical solution
3 2 -1 0 1 2 3

x-coordinate

Figure 4: Result of the Method with Differentiation of the
Constraint

In figure 5 the increasing error from the numerical so-
lution to the circular path is shown.
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Figure 5: Error of the Method with Differentiation of the
Constraint

The observed "drift—off" shows that this method is not
suitable for the solving of the given DAE. Therefore
other approaches for solving this DAE are necessary.
The results of this other approaches are discussed in
the following.

4.2.2 Baumgarte-Method

The Baumgarte—Method computes a linear combina-
tion of g, ¢ and g and substitutes g by this linear com-
bination. The variable F' can be expressed of this lin-
ear combination and can be inserted in the other equa-
tions. This results in four differential equations

X=Vy
y=vy
2(v2+vi+gy)Ha(rvetyny)+B2 (42 1)
20 +y%) *
22 +v2+gy)+H4a(xvtyyy)+B2 (P +y?—1)
2(x24y2)

Vy = —

Vy=¢g— .
(1D
This equations are solved with the ode—solver ode45
of MATLAB.

The numerical solution calculated with the
Baumgarte-Method stays close to the cirular
path, which can be explained by the choice of the
parameters @ and . The parameters have to be
chosen so that equation (4) is asymptotically stable.
The numerical solution of the method, which uses the
differentiation of the constraint, shows "drift—off",
whereas the result of the Baumgarte-Method shows
no "drift—oftf".

In figure 6 the result of this method is shown for
a =10and 8 = 100.
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Figure 6: Result of the Baumgarte-Method

The error of the numerical solution to the circular path
is shown in figure 7.

0

10

error
—
(=]

107, 20 40 60 80 100

time

Figure 7: Error of the Baumgarte-Method

4.2.3 Pantelides—Algorithm

Application of the Pantelides—Algorithm with intro-
duction of the dummy derivative dx leads to a system
of nine equations and nine unknows (x, dx, d2x, d2y,
¥, Vx, dvy, vy and F). These equations are

dx=v,

d2x = dvy,

Y=y

d2y = v,

dvy, = —Fx (12)
vy=g—Fy
)C2 +y2 =1
xdx+yy=0

(dx)? +xd2x + (y)? +yd2y = 0.
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For solving this problem it is necessary to use the
Pantelides—Algorithm twice. Therefore it is necessary
to introduce the dummy derivative dy instead of dx.
This leads to the equation system

dy=v,
d2y = dv,
X =V
d2x = v,
dvy=g—Fy
vy =—Fx
P+yr=1
xi+ydy=0
()2 +xd2x + (dy)? +yd2y = 0.

With this two equation system four cases are consid-
ered:

13)

e cquation system (12) and x = /1 —y?2

e cquation system (12) and x = —/1 —y?

e cquation system (13) and y = /1 — x2

e equation system (13) and y = —/1 — x2.
Each of this equations is solved with the ode—solver
odel5i of MATLAB. The result of the simulation us-
ing the Pantelides—Algorithm stays close to the circu-

lar path for the chosen initial values. The result looks
similar to figure 6.

4.3 Regularisation by Projection

In the following two methods using projection are
considered.

4.3.1 Standard Projection Method

After each solving step, the numerical solution is pro-
jected orthogonally onto the manifold M which is
given by

M = {(x,y,vx,vy) ER*: X2 4y — 1 =0, xvy +yvy =0}.

(14)
The used projection p : R* — M onto the manifold M
is defined by

x p1(x)
y|_ | n(y)

Ploe | = | pa) (1>
Vy p2(vy)

with the mapping p;
X —=
/52142
ye xyﬂ (16)
/212
and the mapping p;
Vy = (_Pl(Y)Vx+P1(x)V,\f)(_P1(Y)) (17)

vy > (=p1(Y)ve + p1(x)vy) p1(x).

The procedure first projects the position and then the
velocity. For the numerical solving the explicit Euler
method is used. In figure 8 the orthogonal projection
is shown.

Figure 8: Orthogonal Projection

In figure 9 the result of this method is shown where
the incorrect positions caused by the increasing speed
(Euclidean norm of the velocity) are visible.
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Figure 9: Result of the Orthogonal Projection Method
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The Orthogonal Projection Method stays close to the
cicular path because the method is designed that way
but the postion is not correct because of the increasing
speed. In figure 10 the speed is shown.

speed

0 20 40 60 80 100
time

Figure 10: Speed of the Orthogonal Projection Method

4.3.2 Symmetric Projection Method

The procedure of this method leads to an equation
system with X1 1, Yni1, Va, > Yy M1 and U as
unknowns. This equation system is solved by using
Newton’s method. In figure 11 the result is shown.

T T —rr————— T T
s - circular path |
— numerical solution
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Figure 11: Result of the Symmetric Projection Method

4.4 Regularisation by Transformation
The DAE is transformed by a local state space trans-

formation to an ODE on the manifold M (see equa-
tion (14)). The transformation (x,y,vy,vy) = ¥(@,n)
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is given by
X = cos @
y=sin@ (18)
Vy=—Nsin@
Vy = 11 COS Q.
This transformation leads to the ODE
o= (19)
T = gcos Q.

The state space can be transformed globally and there-
fore an ODE can be generated, which is an advan-
tage for the numerical solution. The obtained ODE
is solved with the ode—solver ode45 of MATLAB.
Through transformation to polar coordinates the nu-
merical solution stays on the circular path. This
method leads to the most simple equations. For re-
sults of this approach see section 4.5.

4.5 Comparison

In table 2 the error e := max;(x7 +y7 — 1) and elapsed
time, where x; and y; are the numerical solutions for
the positions at each solver time step ¢;, are shown for
the chosen initial values and till time 100. In the table
below DC means differentiation of the constraint, B is
the Baumgarte—Method, P the Pantelides—Algorithm,
OP the Orthogonal Projection Method, SP the Sym-
metric Projection Method and T the transformation of
the state space. The error and the elapsed time for
the Baumgarte—method are calculated for o # B and

oa=p.

Method Error Time (s)
DC 24.731 1.095
B(a#pB) | 1.909-1073 1.696
B(a=p)| 2463-107% | 0.723
P 3.345-107% | 8.539

OoP 5.551-107°1° | 76.175

SP 2.701-10°% | 71.729

T 2.220-107° | 0.550

Table 2: Error e and Elapsed Time of the Approaches

The error of the method with differentiation of the
constraint shows "drift—off" and therefore the error is
the biggest of all approaches. The other methods have
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small errors, whereas the transformation to polar co-
ordinates has the smallest value. The Orthogonal Pro-
jection Method also has a small error, but the result is
not correct due to the falsified velocity therefore this
method is not interesting. The choice of o and 3 of
the Baumgarte—Method result in different values for
the error e. The state space transformation also has a
very small error and the position is correct. Therefore
this method would be one of the best for this prob-
lem. The elapsed times of the two projection methods
are bigger than the of the other methods because the
Orthogonal Projection Method uses a self written ex-
plicit Euler—method and the algorithm of the Symmet-
ric Projection Method solves a linear equation system
in each step. All the other approaches use for the solv-
ing of the obtained equations ode—solvers from MAT-
LAB.

5 Conclusion

Finally it has been shown that only differentiating and
substituting the constraint equations by their deriva-
tives is no suitable method for solving differential—
algebraic equations. Therefore other approaches are
necessary. These other methods are using different
backgrounds like differentiation or projection.

For the chosen example and initial values the meth-
ods show mostly results which are close to the circu-
lar path. One approach has problems with the correct
positions due to the increasing Euclidean norm of the
velocity. Another fact is that for other initial values the
method can work worse regarding the distance to the
circular path. The state space transformation is one of
the best appoaches, if the transformation is global.

At last it is possible that one of the mentioned ap-
proaches works for the chosen case study but is not
suitable for another differential-algebraic equation
system. Therefore in the future it is necessary to test
the methods also for another example.
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