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This paper deals with the principle of groundwater pollution. The basic equation for pollution distribution
is the diffusion equation. In the natural but also economical science different kinds of this equation are
used. This work focuses on the convection-diffusion equation. Using this equation the diffusive behavior of
the pollution influenced by a velocity field is described. Several approaches, ranging from analytical solu-
tions to some chaotic particle movement approaches, are used for realization in one- and two-dimensional
domains.

1 Introduction

In chemistry as well as in biology the reaction-
diffusion equation plays a very important role. This
equation can be used to recreate pattern formations of
a fish’ skin or cat’s fur. There are also many physi-
cal applications of diffusion, e.g. the heat equation.
However, diffusion is also used to foresee the behav-
ior of buyers of stocks in the financial market. In the
following the convection-diffusion equation is used.

∂c
∂ t

= D ·∇2c− v ·∇c (1)

Equation (1) describes diffusive distribution influ-
enced by a velocity field. The used velocity field
is constant and only nonzero along x-direction. The
groundwater pollution is a vivid application of (1).

Figure 1: A schematic illustration of the described area.

Instead of using a difficult realistic geometry of a sur-
rounding a two-dimensional rectangle is considered.

This rectangle is embedded in a Cartesian coordinate
system. In the origin a source of pollution is placed
as shown in figure 1. There are two different types of
source. On the one hand a constantly releasing pollu-
tion source can be used. On the other hand the pollu-
tion distribution of an instantaneous releasing source
can be considered. In the following the second kind
of source is used for various simulation approaches in
one and two dimensions.

2 Analytical Solution

Usually it is not easy or even possible to find an ana-
lytical solution. Due to the used initial and boundary
conditions an analytical solution can be given. Both
solutions, one- and two-dimensional, are used to vali-
date the different methods.

2.1 One-dimensional

The regarded equation and its condition are given as
follows

∂c
∂ t

= D
∂ 2c
∂x2 − v

∂c
∂x

with c(x,0) = δ (x)

lim
x→±∞

c(x, t) = 0.
(2)
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Using different substitutions [1] the equation (2) can
be written as

τ = Dt, b =
v
D

y = x−bτ, y0 = bτ0

∂c(y,τ)
∂τ

=
∂ 2c(y,τ)

∂y2 .

(3)

After multiplying equation (3) by e−pτ and integrat-
ing it with respect to τ one obtains an ordinary dif-
ferential equation which can be easily solved. Using
the inverse Laplace-transformation and the substitu-
tions backwards we obtain the solution of the one-
dimensional problem.

c(x, t) =
1√

4πDt
e−

(x−vt)2
4Dt (4)

2.2 Two-dimensional

In order to solve the two-dimensional equation

∂c
∂ t

= D · ∂
2c

∂x2 +D · ∂
2c

∂y2 − v · ∂c
∂x

with

c(x0,y0,0) = δ (x)δ (y)

lim
x,y→∞

c(x,y, t) = 0

lim
x,y→−∞

c(x,y, t) = 0

(5)

a solution of the following form is assumed. [2]

c(x,y, t) = g1(x,x0, t)g2(y,y0, t) (6)

The functions g1 and g2 are solutions of the one-
dimensional convection-diffusion equation with con-
stant coefficients. Therefore g1 and g2 can be taken
from the one-dimensional analytical solution (4).

g1(x,x0, t) =
A1

2
√

Dπt
exp
(
−(x− x0− vt)2

4Dt

)
g2(y,y0, t) =

A2

2
√

Dπt
exp
(
−(y− y0)

2

4Dt

) (7)

The source is located at the origin therefore the values
x0 = 0 and y0 = 0 can be inserted. Additionally the
integral over the whole domain has to be 1.

1 =
∫

∞

−∞

∫
∞

−∞

c(x,y, t)dxdy =

=
∫

∞

−∞

g1(x,0, t)dx
∫

∞

−∞

g2(y,0, t)dy = A1A2

(8)

This integration result leads to the analytical solution
in two dimensions.

c(x,y, t) =
1

4Dπt
exp
(
−(x− vt)2− y2

4Dt

)
(9)

3 Numerical Approximation

This section introduces two types of numerical ap-
proximations. On the one hand there is the finite
difference method (FDM). In this approximation the
derivative of the differential equation is approached by
taking the difference quotient of the neighboring grid
points. The method is easy to use but slightly weak
concerning the accuracy. The second method is the
finite element method (FEM) and is based on formu-
lating variations of the differential equation. FEM de-
termines approximated solutions consisting of piece-
wise defined polynomials on a fine resolution of the
domain. The advantage of FEM is the suitability for
any geometry.

3.1 Finite Difference Method

The finite difference method is implemented for the
one- and two-dimensional case.

3.1.1 One-dimensional

Using finite differences to approximate the first and
second derivatives the partial differential equation (1)
transforms into an ordinary differential equation.

dc
dt

= D · ci+1−2ci + ci−1

x2 − v · ci− ci−1

dx
(10)
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The time derivative can be replaced as follows

dc
dt

=
ck+1− ck

∆t
. (11)

Using (11) equation (10) can also be written as a ma-
trix product

ck+1− ck

∆t
= S · ck = S ·

c1
...

cn

 (12)

with

S :=



− D
h2 +

v
h

2D
h2 − v

h 0 . . . 0
D
h2 +

v
h

2D
h2 − v

h
D
h2 . . . 0

0
. . .

. . .
. . .

...
...

... D
h2 +

v
h

2D
h2 − v

h
D
h2

0 . . . 0 − D
h2 +

v
h

D
h2 − v

h



whereas ck is the current concentration of pollution
and ck+1 the concentration in the next time step. In
order to determine ck+1 using the Explicit Euler equa-
tion (12) is rearranged.

ck+1 = (∆tS+ I)ck (13)

It is well known that the Explicit Euler can be unsta-
ble using the wrong step size relation. Notation (12)
can be also used to find the Implicit Euler formula-
tion. The current concentration on the right hand side
in equation (12) is replaced by the concentration of the
future time step in order to obtain the implicit formu-
lation.

ck+1 = (I−∆tS)−1ck (14)

3.1.2 Two-dimensional

Regarding the problem formulation in two dimensions
the finite difference method looks a little bit different.
Due to the fact that an equidistant grid, dx= dy is used
the approximation can be given as follows

dc
dt

=D ·
cx+1,y + cx−1,y−4cx,y + cx,y+1 + cx,y−1

dx2

− v
cx,y− cx−1,y

dx
.

(15)

In contrary to the two-dimensional case the matrix no-
tation is not as easy as in one dimension.

cx,y(t +∆t) = cx,y(t)+h · dc
dt

(16)

Therefore only the Explicit Euler method is imple-
mented as shown in (15).

3.2 Finite Element Method

The finite element method was only realized for the
convection-diffusion equation in one dimension.

∂c
∂ t
−D

∂ 2c
∂x2 + v

∂c
∂x

= 0 in Ω

c = 0 on ∂Ω

(17)

First of all the weak solution of (17) is formalized
using a test function of the according Sobolev space
φ ∈ H1

0 .

∫
Ω

∂c
∂ t

φdΩ+
∫

Ω

(D∇c∇φ + v∇cφ)dΩ = 0 (18)

The formulation of the Galerkin approximation is nec-
essary to formulate the solution equation of the finite
element method.

cn(x) =
n

∑
j=1

c jϕ j(x)+ c0(x) (19)

The unknown variables c j in equation (19) have to be
determined. Using linear basis functions called ’hat-
functions’ for φ a linear system of n equations with
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n unknowns, called the Galerkin formulation, results.
[3]

ne

∑
j=1

∂c j

∂ t

∫
Ω

ek
ϕ j ϕidΩ

+
ne

∑
j=1

c j

∫
Ω

ek
(D∇ϕ j∇ϕi +∇ϕ jϕi)dΩ = 0

(20)

In equation (20) ne is the number of elements in every
finite element and Ωek is the domain of element ek.
Equation (20) can also be written in a short form.

ċ ·M+ c ·S = 0 with

mi j =
∫

Ω
ek

ϕi ϕ jdΩ

si j =
∫

Ω
ek
(D∇ϕi∇ϕ j +∇ϕiϕ j)dΩ

(21)

The matrices of (21) are called mass matrix M and
stiffness matrix S. Considering the mentioned ’hat-
functions’ it is clear, that only a few of the possible
integrals are not equal zero. Those basis functions
which correspond to the corner points of the element
will lead to non trivial results. Because the element i is
connected to i−1 and i+1 the profile of the matrices
is a band matrix with width three.

M
ck+1− ck

∆t
+θSck+1 +(1−θ)Sck = 0 , 0≤ θ ≤ 1

(22)

Equation (22) is called θ -method and will be used to
present implicit and explicit methods for solving (21).
The most common values for θ are:

• θ = 0, Explicit Euler

• θ = 1, Implicit Euler

• θ = 1
2 , Implicit Heun

Using this method the Explicit and Implicit Euler al-
gorithm can be given.

ck+1 = M−1(M−∆tS)ck (23)

ck+1 = (M+∆tS)−1M ck (24)

4 Random Walk

An alternative method for simulating transport is the
so-called random walk. This approach is contrary to
the numerical solutions . The focus changes from a
macroscopic view to the simulation of microscopic
behavior of diffusion by analyzing movements of sin-
gle particles.

4.1 Intuitive Approach

The intuitive approach describes a model which uses
no grid or collision rules. It is implemented again for
both dimensions.

4.1.1 One-dimensional

At the beginning t = 0 all the particles are placed in
the origin presenting the source of pollution. The pol-
lution injection happens only at t = 0. The simulation
focuses on the convection and diffusion behavior of
these initial particles. In this approach the movement
of particles is described by:

pnew = pold + r+ v ·∆t

r = X ·∆x
(25)

The particle motion in (25) consists of three parts. In
order to get the new position pnew at time t +∆t these
three components are summed up. The variable pold
stands for the position at time t. The velocity field v
is multiplied by the step size. The variable r describes
the diffusive movement of a particle for one time step
and is added to the former particle position pold . The
second equation in (25) defines the movement r in par-
ticular. It consists of the step size in space ∆x and
a normally distributed random variable X with mean
zero and unit variance. In every time step the new
position of every particle is calculated with equation
(25). The simulation ends when the chosen simula-
tion time tend is reached.

4.1.2 Two-dimensional

For expansion in a two-dimensional domain the move-
ment has to be defined in a different way. There is no



Convection-di�usion simulation in two di�erent dimensions

initial velocity but there is an initial direction of ev-
ery particle d0. The diffusive transport is realized by
using a normally distributed random variable X and a
uniformly distributed random number U . X is used to
generate a random length and U chooses a coinciden-
tal direction.

r = X ·∆x α =U ·2π

d0 =

(
1
0

)
dn+1 =

(
cosα −sinα

sinα cosα

)
·dn

(26)

In (26) r stands for the distance the particle moves in
a certain time step. The influence of this parameter
is similar to the diffusion coefficient. X is the men-
tioned normally distributed random variable and ∆x
describes the step size in space. The second equation
of (26) sets the direction for the particle’s next move.
The initial direction d0 is only necessary for the re-
cursive definition. During simulation the direction of
the last movement is used to calculate the next one.
The convection is realized by a shift in flow direction
along x. The final formulation of the random walk
movement can be given as follows

pnew = pold +d · r+ vdt. (27)

4.2 Gaussian Approach

This approach shows the connection between a ran-
dom walk approach and the analytical solution.

4.2.1 One-dimensional

The analytical solution of the convection-diffusion
equation (2) is used to define the particle movement.
Considering the probability density function of a nor-
mal or Gaussian distribution

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (28)

the formal equivalence to the analytical solution (4)
is obvious. The parameters used in (28) stand for
the mean value µ and the standard deviation σ which
characterize the position and the width of the Gaussian

bell curve in a unique way. Therefore the according
parameters in (4) can be read out. [4]

µ = v · t
σ

2 = 2 ·Dt
(29)

Due to the properties and meaning of the parameters
in (29) the height and width of the concentration peak
depending on time is given. The corresponding parti-
cle movement using (29) can be formulated as follows

pnew = pold + v∆t +
√

2 ·D∆tX . (30)

The variable X stands for a normally distributed ran-
dom number with mean zero and unit variance as in
the intuitive approach. X is newly generated in ev-
ery step for each particle. Identifiable by the velocity
v the second term stands for the convective motion.
This term is equal to the term of the intuitive approach.
The radical term describes the diffusive motion and is
based on the standard derivation.

4.2.2 Two-dimensional

In order to enlarge this approach in two dimensions
the movement along y-direction has to be added. For
an expansion in a two-dimensional domain the y-
component of the movement has to be defined. Due
to the fact that there is no flux the new particle posi-
tion can be calculated using

pnew
x = pold

x + v∆t +
√

2 ·D∆tXx

pnew
y = pold

y +
√

2 ·D∆tXy.
(31)

The variables Xx and Xy stand for independent nor-
mally distributed random numbers which are newly
generated in every step for each particle. The term
v∆t describes the convective transport. Due to the fact
that the diffusion coefficient is equal for the x- and y-
direction the diffusive movement

√
2 ·D∆t in the ran-

dom walk definition (31) is the same.
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5 Results

In the following section the analytical solutions in
both dimensions are compared to the various ap-
proaches. The different concentration errors are dis-
cussed. In general the parameter setting is: diffusion
coefficient D = 0.02 and velocity v = 0.02. The step
sizes ∆t and ∆x are variable. The regarded simulation
time varies between tend = 250 and tend = 500.

5.1 Analytical vs. Numerical

First of all the numerical solutions are considered.

5.1.1 FDM 1D

Figure 2: Comparison of the analytical solution and FDM
using matrix notation.

In the upper plot in figure 2 the red curve is the ana-
lytical solution and the blue line sketches the numeri-
cal approximation using the Implicit Euler algorithm.
In the lower plot the difference of both solutions is
shown.

The results in table 1 show the instability of the Ex-
plicit Euler method. The Implicit Euler algorithm is
not only ultra-stable but also faster and more exact
than the Explicit Euler. The approximation using fi-
nite differences is well-fitting.

Explicit Euler Implicit Euler

∆t ∆x ‖.‖∞ ‖.‖1 ‖.‖∞ ‖.‖1

1 1 0.016 4.231E−4 0.016 4.753E−4

1 1
2 0.009 1.404E−4 0.010 1.600E−4

1
2

1
4 0.005 0.831E−5 0.005 7.323E−5

1
2

1
16 NaN NaN 0.002 3.531E−5

Table 1: Error values of FEM using Explicit and Implicit
Euler.

5.1.2 FDM 2D

The results regarding the two-dimensional implemen-
tation show a similar behavior.

Figure 3: The analytical and numerical solution is shown.

In figure 3 the surface plot shows the concentration of
the numerical result. In the following the error values
are studied in detail.

explicit Euler

∆t ∆x ‖.‖∞ ‖.‖1

1 1 0.0027 1.5624E−4

1
2

1
4 9.1479E−4 1.4640E−5

1 1
2 0.0017 3.7791E−5

1
4

1
8 .E119 .E120

1
2

1
2 0.0016 3.8172E−4

1
8

1
8 4.7570E−4 8.5291E−6

1 1
4 .E32 .E33

Table 2: The error values for FDM using Explicit Euler are
shown.

Also in the two-dimensional case the Explicit Eu-
ler works not for all parameter choices. The error
values are again quite good. The finite difference
method of the two-dimensional domain approximates
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the convection-diffusion equation in an appropriate
way.

5.1.3 FEM 1D

The accuracy of the finite element method is better
than of the finite difference method.

Figure 4: The error for the Implicit Euler algorithm of the
FEM is shown.

In figure 4 above the upper plot shows the analytical
solution as well as the finite element method using
Implicit Euler. It is hard to distinguish the different
curves.

Explicit Euler Implicit Euler

∆t ∆x ‖.‖∞ ‖.‖1 ‖.‖∞ ‖.‖1

1 1 7.18E−4 3.16E−5 9.95E−4 3.03E−5

1 1
2 6.23E−4 8.60E−5 6.09E−4 8.54E−5

1
2

1
4 3.13E−4 1.02E−4 2.74E−4 1.01E−4

1
2

1
8 NaN NaN 2.49E−4 1.05E−4

Table 3: Depending on the used FEM the error values are
shown.

The instability of the Implicit Euler is shown in the
last row of table 3. In general the error results are
smaller compared to the results of the finite difference
method in one dimension. The finite element method
approximates the convection-diffusion equation better
than the finite difference method.

5.2 Analytical vs. Stochastic

The accuracy of the random walk approaches is dis-
cussed in the following paragraph.

5.2.1 One-dimensional

The two random walk implementations are compared
to the analytical solution.

Figure 5: Comparison of intuitive and stochastic based ran-
dom walk are shown.

The two graphics in figure 5 show both random walk
approaches colored in red and the analytical solution
in blue. In the upper plot the intuitive implementa-
tion is shown. The lower plot sketches the Gaussian-
based version of random walk. In the numerical com-
parisons the simulation time is tend = 500s. Due to
long execution times for the particle movement this
parameter is reduced to tend = 250s. The diffusion co-
efficient is usually set to D = 0.02 but modifies if the
intuitive approach is used.

The table 4 shows all the error results of the param-
eter study comparing the analytical solution and both
random walk approaches. Adapting the diffusion co-
efficient both approaches fues into one single random
walk implementation. The diffusion coefficient for the
Gaussian-based algorithm is set to D = 0.02. Using
the intuitive approach the diffusion coefficient of the
analytical solution changes to D∗ to enables compara-
bility. Due to the dependency on ∆x and ∆t the intu-
itive random walk cannot reach its performance. On
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intuitive RW Gaussian RW
∆t ∆x D∗ ‖.‖∞ ‖.‖1 ‖.‖∞ ‖.‖1

1 1
5 0.01 0.007 8.948E−7 0.012 8.948E−7

1 1
10 0.005 0.014 4.441E−16 0.008 9.707E−7

1
2

1
5 0.04 0.006 3.342E−5 0.007 8.948E−7

1
2

1
10 0.01 0.009 8.419E−12 0.010 9.707E−7

1
2

1
15 0.0045 0.016 8.882E−16 0.009 9.969E−7

1 1
5 0.01 0.010 0.948E−7 0.007 8.948E−7

1 1
10 0.005 0.015 6.661E−16 0.005 9.707E−7

Table 4: Comparison of the random walk approaches and
the analytical solution.

contrary a parameter study would be necessary to find
the perfect variable value for all step size combina-
tions to perform this algorithm. Therefore, regarding
simulation of the convection-diffusion equation, the
implementation of the Gaussian-based random walk
fits better. In the last two rows the used particle num-
ber is raised from 6000 to 8000.

5.2.2 Two-dimensional

In order to compare the analytical solution to a ran-
dom walk approach the results have to be adapted. In
the random walk the output describes the smoothed
amount of particles in every cell. Due to the initial
Dirac-function the integral at the beginning has value
one. The area of the random walk domain is dis-
cretized. Therefore the output has to be divided not
only by the number of particles but also by the area of
the cells used for the flattening.

Figure 6: Analytical and Gaussian solution are shown.

Figure 6 shows the concentration results of the ran-
dom walk approach. The difference between these
two implementations cannot be read out exactly.
Therefore a closer look to the simulation data itself
is given.

Table 5 shows the approximation results. The parame-
ter r describes the used radius for the flattening. If the

Gaussian RW
∆t ∆x r N ‖.‖∞ ‖.‖1

1 1 3 4000 3.395E−3 6.349E−4

1 1
2 8 4000 5.033E−3 3.737E−5

1
2

1
2 15 4000 1.063E−2 1.071E−3

1
2

1
4 15 4000 4.526E−3 1.005E−4

1
2

1
8 20 4000 2.801E−3 2.206E−3

1 1
4 20 8000 6.764E−3 3.338E−5

1
2

1
4 20 8000 6.825E−3 1.826E−4

Table 5: Error values for the Gaussian approach are shown.

spatial step size is decreasing a greater radius r can be
used. If r is chosen too big compared to ∆x the re-
sult loses the shape of a bell curve. Compared to the
results of the numerical simulation the random walk
approach leads to greater error values.

6 Conclusion

In general the finite element method approximates the
convection-diffusion equation the best. Of course the
very best solution is the analytical one. In spite of it
all random walk approaches are quite good approxi-
mations of the convection-diffusion equation.
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