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Abstract

A multidimensional data set is homogeneous when the dimensions have the same nature. For
instance, these dimensions can represent the probabilities for a sample to belong to different
classes, or item memberships of multiple sets. Such data appear very often in different domains
to describe how a relatively large number of items are related to a relatively small number of
classes or categories. For examples, a homogeneous data set might record which genes (rows)
appear in which individuals (columns), or how many times books (rows) are sold in different
countries (columns). Analyzing these relations reveals several patterns in the data such as genes
that are observed frequently or never together, or books that sell mostly in a specific country.
Both automated methods and visualization have been applied to analyze homogeneous data.
However, state-of-the-art visualization techniques are lacking either in scalability with the num-
ber of data points or in addressing the specific nature of different classes of homogeneous data,
and the tasks associated with them.

In this dissertation, I propose novel visual metaphor and interactive exploration environ-
ment for analyzing large homogeneous data. The proposed wheel metaphor allows analyzing
and selecting the data points based on their relations with the different dimensions. Moreover, it
emphasizes the dimensions and the relations between them as the central part of the visualiza-
tion, and allows analyzing these relations based on the data points defining them. The proposed
interactive exploration environment allows analyzing different aspects of the data at multiple
levels of detail. I illustrate how the proposed approach can be applied to analyze three classes of
homogeneous data: set-typed data, probabilistic classification data, and categorical data. Each
class has its own characteristics that imply specific requirements and tasks. These different tasks
are supported by the proposed approach, thanks to its flexibility and extensibility.

I demonstrate the applicability of my approach by means of usage scenarios and case stud-
ies with various datasets from multiple domains. Also, both user studies and interviews with
domain experts were conducted to assess the utility of the proposed methods. The major ad-
vantages of the proposed visual metaphor is its scalability in the number of data points, thanks
to dedicated aggregation methods for homogeneous data, and to the rich sets of interactions it
supports to select the data based on a variety of criteria. The major disadvantages are the com-
plexity of the visual metaphor that requires sufficient user training, the limited scalability in the
number of dimensions, and the low sensitivity to small differences in the data being analyzed.
Nevertheless, the wheel metaphor is suited to gain an overview of large homogeneous data, with
complementary analytical methods, interactions, and coordinated views being used to cope with
the limitations. As a result, novel analysis possibilities and insights in the data are possible,
beyond state-of-the-art techniques.
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Kurzfassung

Homogene multivariate Daten umfassen eine Vielzahl an Variablen mit ähnlichem Verhalten/
ähnlicher Struktur. Diese Variablen können Unterschiedliches repräsentieren – zum Beispiel die
Wahrscheinlichkeit, mit der ein Element in eine bestimmte Gruppe gehört, oder die Zuordnung
eines Elementes zu einer Reihe von Mengen. In vielen Anwendungsgebieten werden solche
Daten genutzt, um die Zugehörigkeit von einer relativ großen Menge an Elementen zu einer
relativ kleinen Anzahl an Gruppen oder Kategorien zu beschreiben. Eine homogene Tabelle zeigt
beispielsweise, welche Gene (Zeilen) in welchem Individuum (Spalten) vorkommen, oder wie
oft ein Buch (Zeilen) in verschiedenen Ländern (Spalten) verkauft wurde. Die Analyse solcher
Zusammenhänge ermöglicht es, Muster in den Daten zu erkennen – etwa Gene, die oft oder
nie zusammen vorkommen, oder Bücher, die hauptsächlich in bestimmten Ländern verkauft
werden. Für die Untersuchung derartiger Muster in großen homogenen Datenmengen wurden
bereits automatisierte Methoden und Visualisierungen angewandt. Allerdings mangelt es selbst
bei der Verwendung neuester Visualisierungstechniken an der Skalierbarkeit in Bezug auf die
Anzahl von Elementen, und an der fehlenden Miteinbeziehung der speziellen Eigenschaften,
die verschiedene Gruppen homogener Daten, bezogen auf die konkreten Aufgabenstellungen,
haben.

In dieser Dissertation stelle ich neue visuelle Metaphern und interaktive Explorationsumge-
bungen für die Analyse großer homogener Daten vor. Die vorgeschlagene Rad-Metapher ermög-
licht es, basierend auf den Zusammenhängen mit anderen Spalten, Elemente auszuwählen und
zu untersuchen. Darüber hinaus liegt das Hauptaugenmerk der Visualisierung auf den Spalten-
variablen und den Relationen zwischen den Spalten. Dieser Fokus ermöglicht die Analyse dieser
Beziehungen basierend auf den Zeileneinträgen, die diese Relationen definieren. Die interaktive
Explorationsumgebung erlaubt es, verschiedene Aspekte der Daten und der Element-Attribute
in verschiedenen Detailgraden zu betrachten. Ich veranschauliche meinen Ansatz mit drei un-
terschiedlichen Arten von homogenen Daten: mengenartige Daten, wahrscheinlichkeitstheore-
tische Klassifikationsdaten, und kategorische Daten. Jede dieser drei Gruppen weist bestimmte
Charakteristika in den Daten auf, wie etwa spezielle Anforderungen und Aufgaben. Damit zei-
ge ich, dass die visuelle Metapher ausreichend flexibel und erweiterbar ist, um diese Aufgaben
skalierbar zu lösen.

Ich belege die Anwendbarkeit meines Ansatzes anhand von Usage-Szenarien, Insight-Studien
und Fallstudien mit unterschiedlichen Daten aus mehreren Domänen. Zur Beurteilung der Brauch-
barkeit der vorgestellten Methoden wurden Benutzerstudien und Interviews mit Experten durch-
geführt. Die größten Vorteile der visuellen Metapher sind die Skalierbarkeit in Bezug auf die
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Anzahl der Elemente anhand von geeigneten Aggregationsmethoden für homogene Daten, so-
wie die zahlreichen Interaktionsmöglichkeiten, um die Auswahl der Daten basierend auf einer
Vielzahl von Kriterien zu unterstützen. Nachteile zeigen sich in der Komplexität der visuellen
Metapher, welche es für den Benutzer notwendig macht, diese ausreichend zu erlernen, in der
limitierten Skalierbarkeit in Bezug auf die Anzahl der Spalten und in der niedrigen Sensitivität,
kleine Unterschiede in den Relationen zu analysieren. Dennoch ist die Rad-Metapher geeignet,
die Limitierungen mit komplementären analytischen Methoden, Interaktionen und koordinierten
Ansichten zu überbrücken und damit einen Überblick über große homogene Daten zu erlangen.
Als Ergebnis entstehen neuartige Analysemöglichkeiten sowie neuartige Erkenntnisse in den
Daten, und zwar über den aktuellen Stand der Technik hinaus.
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CHAPTER 1
Introduction

1.1 Motivation

Background

Information Visualization (InfoVis) and Visual Analytics (VA) have emerged as new data analysis
paradigms that complement automated techniqus with visualization. InfoVis has been defined as
“the use of computer-supported, interactive, visual representations of abstract data to amplify
cognition” [24, p. 7]. Such data have usually no inherent spatial structures that characterize
scientific data such as blood flow or air density. Abstract data often represent non-physical
entities and concepts such as friendship relations between people, tags on documents, or the
hierarchy of an organization. The data can originate from a variety of domains, and hence can
vary strongly in form (e.g., tabular, hierarchical, relational, etc.), semantics, and dimensionality.
VA has been defined as “the science of analytical reasoning, facilitated by interactive visual
interface” [151, p. 4].

A large number of InfoVis and VA techniques have been developed over the past two decades
to support the analysis of different types of data such as trees [128], graphs [161], and time-
oriented data [105]. Besides reference collections of such techniques, a lot of effort has been
made to develop data type and task taxonomies which help the systematic development, un-
derstanding, and evaluation of these techniques [20, 139]. Understanding the characteristics
of different data types and identifying common analytical tasks associated with them enable
better analysis of the design space of visualization techniques for these types, and fosters the
re-usability and the wide applicability of these techniques. Shneiderman’s Task by Data Type
Taxonomy [139] was the first and most foundational work on developing InfoVis data type and
task taxonomies. With respect to data type, Shneiderman identified seven generic data types
that have different characteristics: “one-, two-, three-dimensional data, temporal and multi-
dimensional data, and tree and network data”. Besides these types, he identified seven generic
tasks that can be applied to these datatypes: “one-, two-, three-dimensional data, temporal and
multi-dimensional data, and tree and network data”.
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In his taxonomy, Shneiderman illustrated how relational and statistical databases can be con-
veniently manipulated as multidimensional data in which items with m attributes become points
in an m-dimensional space. These attributes might represent real-world concepts having differ-
ent nature such as length and weight, making the data potentially heterogeneous. Heterogeneous
data encompass multiple attributes that can potentially have different forms (e.g. numerical /cat-
egorical / Boolean attributes), different measurement units (kg, meter, USD), or different ranges
of possible values.

Homogeneous Data: A Special Type of Data

In some applications, all the attributes of a multidimensional dataset have the same nature and
value ranges. As an example, the data can represent the probabilities computed by a classifier
for a set of n handwritten letters to belong to each of the 26 letter classes. In this case, all the
attributes have the same nature: the probability for a sample to belong to a class. Also, the
values of these attributes can be compared directly as they belong to the same value range [0, 1].
Moreover, the attribute values for one sample can be aggregated meaningfully. For example, the
sum of these values is equal to 1. Also, the maximum value indicates the class with the highest
probability, which is selected as the predicted class for the given sample by the classifier.

In this thesis, I refer to multidimensional datasets whose attributes have the same nature
and value ranges as homogeneous data. I argue that these special characteristics provide new
possibilities to analyze and visualize such data, beyond the possibilities available for hetero-
geneous data (Chap. 3). I demonstrate these possibilities with three classes of homogeneous
data: (1) set-typed data that encompass element-set memberships, (2) classification data that
encompass sample-class probabilities, and (3) two-way contingency tables that describe the re-
lation between two categorical variables. Each of these classes has been treated separately in
the literature, with several methods proposed to visualize data of this class. These methods have
limitations either in terms of scalability, or in the level of detail they reveal in the data. I demon-
strate how the similar structure of the above-mentioned classes allows specifying many tasks
with the data in similar ways and developing common visualization and interaction methods to
solve these tasks.

Besides homogeneous attributes, many datasets contain additional heterogeneous attributes
that describe the row entities. For example, in addition to class probabilities, the data about
classification samples such as handwritten letters might encompass classification features used
by the classifier to compute these probabilities. These attributes often determine the values of
homogeneous data or influence certain tendencies in them. I demonstrate how the methods I
propose allow analyzing these heterogeneous attributes in relation to the homogeneous data.

1.2 Problem Statement

As proposed by Miksch and Aigner [104], I define the VA problem addressed in this work by
means of the data being analyzed, the users who will use my methods, and the tasks these users
need to solve with the data. Additionally, I state the hypothesis behind my research and the
corresponding research questions.
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Figure 1.1: A classification dataset containing three groups of attributes of the classification
samples: (1) heterogeneous data features used for classification, (2) classification results (actual
and predicted class names), (3) homogeneous attributes representing the probabilities computed
for the samples to belong to each of the classes.

1.2.1 Data

This work is dedicated to analyze homogeneous data, as a special type of multidimensional data.
I define homogeneous data as a dataset of n entities E described by a set of m homogeneous
numerical attributes A1 . . . Am having the same nature and value ranges. The entities E can
have additional p heterogeneous attributes F1 . . . Fp as well.

In particular, I address homogeneous data having a relatively small number of homogeneous
attributes m (in the order of tens), but a relatively large number of entities n (in the order of tens
of thousands). I identify three classes of data that can be modeled as homogeneous data:

• Element-Set memberships (set-typed data): givenm sets S1 . . . Sm, the membership of
the n entities E to these sets can be represented by m homogeneous attributes A1 . . . Am.
The values of each binary attribute Aj denote the membership of the elements to the
respective set Sj , with Aj(ei ∈ E) = 1 ⇐⇒ ei ∈ Sj (Fig. 1.2a).

As an example, the entities E can represent survey participants and the sets can represent
m possible answers to a multiple-choice question. The attributes A1 . . . Am denote which
participant selected which answer(s) to the question. The participants might further have
other heterogeneous attributes F1 . . . Fp such as age, sex, or political affiliation.

I refer to this class data as set-typed data throughout this thesis.

• Probabilistic classification data: Probabilistic classifiers compute the probability pij ∈
[0, 1] that a sample ei ∈ E belongs to one ofm classes C1 . . . Cm. These probabilities can
be represented by m homogenous attributes A1 . . . Am where Aj(ei) = pij . The attribute
values for item ei sum up to

∑
Aj(ei) = 1. In addition, the samples can have a number

of heterogeneous data features F1 . . . Fp used for the classification (Fig. 1.2b).

As an example, the items E can be a large set of images that contain handwritten digits.
The classes C1 . . . Cm represent the digits. The attribute value Aj(ej) indicates the prob-
ability that image ei represents digit Aj , as computed by the classifier. The heterogeneous
attributes F1 . . . Fp represent classification features extracted from the images.
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Figure 1.2: Three examples of homogeneous data having similar dimensionality: (a) sample-
class probabilities, (b) element-set memberships, (c) a contingency table.

• Contingency tables / Categorical data: An n × m contingency table records the fre-
quency of observations fij ∈ N for each combination of categories (ei, cj) ∈ E × C of
two categorical variables E and C. In a skewed contingency table withm << n, the vari-
able C has few categories while the row variable E has a large number of categories. This
table can be modeled as m homogenous attributes A1 . . . Am representing the categories
of variable C where Aj(ei) = fij (Fig. 1.2c).

As an example,E can be a large set of books andC a set of countries, with fij representing
the purchases of book ei ∈ E in country cj ∈ C. In addition, these books can have a set
of heterogeneous attributes F1 . . . Fp such as release date, author(s) and publisher(s).

1.2.2 Users

The techniques I propose can be potentially applied to data of the above-listed classes, in a
generic way. When applied to a specific application domain, these techniques require users who
are experts in this domain and understand the data and their characteristics. Domain expertise
is important to (1) determine if and how the proposed methods are applicable to the particular
domain, (2) steer computational analysis, e.g., to choose appropriate algorithms, measures, and
parameters for a specific dataset, and (3) interpret the visualization correctly, e.g., to relate the
visual findings to the data and the problem domain, and to draw correct conclusions about them.

As an example, I assume that users who aim to analyze sample-class probabilities are
machine-learning experts who are aware of the classification algorithm and data feature used
to compute these probabilities. Similarly, users who want to analyze relation between genes and
individuals are assumed to be biologists who can interpret the data.
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1.2.3 Tasks

It is important to understand which particular tasks need to be carried out by the users during
the analysis process, in order to design effective VA solutions that address these tasks [104].
In his Task by Data Type Taxonomy [139], Shneiderman identified seven abstract tasks that
arise when using InfoVis applications: overview, zoom, filter, details-on-demand, relate, history,
and extract. Schultz et al. [130] propose a design space of visualization tasks according to the
following dimensions: goal, means, data characteristics, data target and cardinality, the order of
tasks, and the (type of) user. They apply this space to recommend suited visualization for a given
visualization task. Brehmer et al. [20] propose a multi-level typology of abstract visualization
tasks. Their topology aims to connected low-level and high-level task taxonomies by describing
complex tasks as a sequence of interdependent simpler ones. They organize this typology on
three dimensions: why the task is performed, how the task is performed, and what are the task’s
inputs and outputs.

For each of the three classes of data listed in the previous section, there are specific task
requirements. For example, typical tasks with set-typed data involve analyzing how the elements
belong to the sets and how the sets intersect. On the other hand, Analyzing classification data
involves finding which samples have high or low probabilities to belong to a certain class, and
comparing confusions between the classes. Analyzing contingency data, also involves finding
categories that appear more often together than other categories.

A comprehensive list of tasks related to set-typed data has been proposed recently [5]. It
encompasses tasks related to the elements E, tasks related to the sets A1 · · ·Am, and tasks
related to the attributes F1 · · ·Fp. Chapter. A illustrates which of these set-related tasks are
addressed in this thesis. Chapter. B discusses analysis tasks with classification data proposed
in the literature, and demonstrates the ones addressed in this thesis. Chapter. C demonstrates
statistical analysis tasks of large contingency tables extracted from categorical data.

The structural similarity between the classes allows formulating many of their tasks in a
unified way. For example, analyzing data of any of these classes involve finding data points
that are highly associated with a specific homogeneous dimension e.g. by belonging exclusively
to the respective set or by having very high probability to belong to the respective class. This
suggests developing common interactive solutions for these tasks as I show in Chapter 3.

1.2.4 Hypotheses and Research Questions

The two main hypothesis of the proposed research are:

• H1: VA methods provide new insights in- and analysis possibilities of homogeneous data,
that are difficult to gain or perform using automated data analysis methods.

• H2: The structural similarities between different classes of homogeneous data enable
re-using VA solutions across these classes.

Based on the research problem and hypotheses stated above, I investigated VA methods to
address the following research questions about homogeneous data:
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• Q1: How to analyze the association relations between a large number of row entities E
and the m homogeneous column categories represented by the attributes A1 . . . Am?

For example, a basic question about set-typed data is to which sets (column categories) an
element (row entity) belongs. Likewise, analyzing classification results involves finding
at which probability certain samples belong to certain classes. Finally, finding pairs of
categories that frequently appear together is a typical task in analyzing contingency tables.

• Q2: How to analyze the correlation between homogeneous attributes A1 . . . Am?

Besides being dependent on the application domain, the definition of attribute correlation
highly depends on the narrow class of the homogeneous data. For example, two attributes
that correspond to a highly overlapping pair of sets take the same values (0 or 1) for a sig-
nificant number of row entities. Also, when analyzing classification results, it is desirable
to find classes that are frequently confused for each other. In contingency table analy-
sis, correlations are usually computed using statistical methods such as correspondence
analysis.

• Q3: How to analyze the influence (in both directions) of an additional attribute Fk of the
row entities on the row-column associations (Q1) and attribute correlations (Q2)?

For instance, elements that belong to a certain set (or set combinations) might predom-
inantly have a high or a specific value for a certain attributes. As an example, movies
that belong exclusively to genre “Horror” receive lower ratings on average than those of
other genres. Also, the handwritten digits frequently confused between two classes might
be written mainly be a certain test subject. Finally, row entities that have certain values
for Fk might have disproportionally high frequencies with certain column categories in a
contingency table. For example, language and publisher are usually factors that impact
book purchases in specific countries, e.g., German books usually have disproportionately
large purchases in German-speaking countries.

1.3 Contributions

The research contributions of this thesis are twofold. On one hand, this thesis contributes a set
of tools for analyzing and visualizing three specific classes of data, in particular:

1. Novel VA methods for analyzing set-typed data: This technique, called Radial Sets,
provides an overview of how a large number of elements (in order of tens of thousands),
belong to about 30 to 40 sets. As demonstrated in Chapter A, Radial Sets enable flexible
analysis of the data and provide new insights into the data that is not possible in state-of-
the-art set visualization techniques.

2. Novel VA methods for analyzing probabilistic classification data: These methods pro-
vide novel ways for analyzing classification results in relation with classification probabil-
ities computed by a probabilistic classifier. They can handle tens of thousands of samples
classified into about 20 classes. As demonstrated in Chapter B these methods reveal sev-
eral patterns in the classification results that allow improving the classifier design.
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3. Novel VA methods for categorical data: These methods allow analyzing associations be-
tween the categories of two categorical variables, with one of them having a large number
of categories. The respective skewed contingency table (tens of thousands × 30) cannot
be handled using previous techniques such as mosaic displays [58] or Parallel Sets [13],
that are usually restricted to a total number of categories in the order of tens.

On the other hand, this thesis identifies the class of homogeneous data as a subclass of multi-
dimensional data. It describes the characteristics of this sub-class and demonstrates the limi-
tations of generic multidimensional data analysis and visualization techniques when applied to
homogeneous data. Based on that, the thesis makes the following contribution:

1. A unified view on different classes of homogeneous data that is based on the structural
similarities between them, and that takes into account the variations between them. This
view enables a common VA framework for these different classes.

2. Unified automated analysis of large homogeneous data to reduce the data volume and
extract the most important information and relationships in the data. The common ab-
straction of the data takes the specific nature of different data classes into account, by
employing class-specific analytical methods.

3. A unified visual metaphor for homogeneous data based on their common abstraction.
This metaphor provides overview of major relationships in the data by visualizing, and
allows various interactions to brush the data for exploration in other views.

4. A unified interactive exploration environment for homogeneous data that incorporates
class-specific views and allows exploring the data at multiple levels of abstraction.

5. Scalable analysis of homogeneous data w.r.t the number of data points, thanks to au-
tomated analysis that aggregates the data and to the multi-level exploration environment.

1.4 Structure of the Thesis

This thesis is divided into two parts:

• Part I (Overview) illustrates the context of the work and motivates the special class of ho-
mogeneous data as well as the research questions of this thesis. Chapter 2 provides a sum-
mary of most related state-of-the art methods for visualizing multidimensional data, and
why they are insufficient to visualize homogeneous data. It also provides an overview of
general data reduction approaches for multidimensional data, and how they can be applied
in the context of homogeneous data. Chapter 3 introduces the VA approach proposed in
this thesis, along with a comparison with existing multidimensional visualization methods
mentioned above, in addition to a summary of the evaluation results as well as the scalabil-
ity and perceptual limitations of the proposed visualization. Chapter 4 demonstrates four
selected applications of the proposed approach in different domains. Chapter 5 reflects
on the lessons learned and illustrates how the proposed approach addresses the research
questions presented in Sect. 1.2.4.
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• Part II (Papers) explains how the proposed VA approach is applied to each of the three
classes of homogeneous data addressed in this thesis. It consists of three research papers
published in the IEEE Transactions on Visualization and Computer Graphics:

– Paper A is about visualizing element-set memberships (set-typed data).

– Paper B is about analyzing probabilistic classification data.

– Paper C is about visualizing categorical data and contingency tables.

These papers provide details about the three classes of data and the concrete tasks as-
sociated with them. Each paper provides state-of-the-art methods designed specifically
for visualizing the respective class of data. The paper also illustrates in detail how the
proposed VA approach is applied to this class by (1) explaining the automated analysis
methods employed, (2) showing how the visual metaphor is adjusted to fit the nature of
the data, and (3) illustrating additional class-specific views that are developed to support
the interactive exploration of the data. The three papers provide several usage scenarios
for different datasets and summarize feedback by domain experts when the method is used
to analyze data in a specific applications domain. The papers reflect also on encountered
limitations and propose extensions for future work.

10



CHAPTER 2
State of the Art

As discussed in Chapter 1, homogeneous data are a special class of multidimensional data.
Therefore, visualization techniques for multidimensional data can basically be applied to homo-
geneous data, however, without addressing or exploiting the characteristics of such data.

Section 2.1 surveys related multidimensional visualization techniques, and discusses their
applicability to homogeneous data Section 2.2 provides an overview of data reduction methods
for multidimensional data. Section 2.3 provides an overview of exploration environments that
employ multiple views to explore the data at multiple levels of detail. Part II elaborates on state-
of-the-art visualization techniques to visualize sets, classification data, and categorical data.

2.1 Visualizing Multidimensional Data

A large portion of InfoVis research focuses on visualizing multidimensional data. Many cate-
gorizations have been proposed to classify existing visualization techniques [24, 81, 162], for
example, based on the graphical primitives used in the rendering [162]: points, lines, regions, or
combinations thereof. Keim [81] classifies the techniques into five categories, according to the
visual representations they use to encode the data values:

• Geometric techniques project the data in a geometric space using position or size as
primary visual variables [17] to encode the data values. Examples for this are scatterplot
matrices (SPLOMs) [56], parallel coordinates [69], and RadViz [68].
• Pixel-oriented techniques encode the data values in a compact display using color as a

primary visual variable. Examples for this are heat maps and pixel bar charts [78].
• Icon-based techniques use icons that encode the data values for individual data items.

Examples for this are stick figures [111] and color icons [91].
• Hierarchical techniques recursively divide the data space to show the values of multiple

attributes. Example for this are dimensional stacking [90] and tree maps [138].
• Graph-based techniques use node-link diagrams to show relations between data items

and dimensions. Examples for this are Ploceus [93] and PivotSlice [175].
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The above categories are not exclusive, as some techniques combine ideas from multiple
categories. The following sections overview of representative techniques from three of the above
categories. The techniques are selected based on (1) their relatively high scalability with the
number of data points (compared with other techniques) and (2) their generic applicability to
multidimensional data from different domains. To illustrate the applicability of the following
techniques to visualize homogenous data, I provide a screenshot when possible of how they
visualize the example dataset depicted in Fig. 1.1. The dataset comprises probabilities computed
by a probabilistic classifier for 1000 patent images to belong to 9 classes of patent images. The
data was collected during the CLEF-IP 2011 classification evaluation campaign [113]. Sect. 3.6
compares the proposed VA approach with these techniques in terms of scalability and the new
insights it reveals in homogeneous data.

2.1.1 Scatterplot Matrices (SPLOMs)

SPLOMs [56] use a matrix layout to show the relations between pairs of dimensions by means of
scatterplot. Each scatterplot depicts the whole data points projected on the respective pair of di-
mensions. The scatterplots are synchronized: brushing certain data points in one plot highlights
these points in the other plots.

Fig. 2.1 shows a SPLOM of the classification probabilities depicted in Fig. 1.1. Each scatter-
plot shows the relation between classification probabilities of the samples in the respective pair
of classes. The majority of samples in Fig. 2.1 are located along the two axis in their scatterplots.
These samples were determined by the classifier to possibly belong to one of the class, and not to
the other class in the respective scatterplot. Fewer samples were assigned non-zero probability
in both of the classes. These samples appear more often when the respective pair of classes are
more likely to be confused for each other (e.g. “graphs”, “drawings”, and “flow chart”).

Depending on the complexity of the data, SPLOMs can fit up to 10-20 dimensions at a suf-
ficient resolution. Also, since the plots are allocated small areas, they can fit only a relatively
small number of data points (up to few hundreds). SPLOMs are usually used to depict the raw
data values, without additional aggregated information about the data elements. This further
limits their applicability to homogeneous data, when such aggregations are required. For exam-
ple, if the homogeneous variables represent binary set memberships, the data is mapped to one
of the four points (0, 0), (0, 1), (1, 0), (1, 1), which provides limited insights into the data.

2.1.2 Parallel Coordinates

Proposed by Inselberg [69], parallel coordinates are one of the popular geometric techniques to
visualize multidimensional data in one plot. The dimensionsA1..Am are represented as equidis-
tant parallel axes. The data items e1..en ∈ E are represented as polylines. Each polyline
connects the points on the parallel axes that correspond to a tuple in E.

Fig. 2.1 shows a parallel-coordinates plot of the classification probabilities depicted in Fig. 2.1.
Each of the 9 axes represents a class and each of the 1000 polylines represents a sample. It is
evident that samples having high probabilities in one class have low probability in other classes.
This finding is already, as the probabilities sum up to 1. Also, few samples have high proba-
bilities in class “gene seq” compared with class “graph”. this finding would have been possible
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Figure 2.1: A scatterplot matrix of the class probabilities depicted in Fig. 1.1.

Figure 2.2: A parallel-coordinates plot of the class probabilities depicted in Fig. 1.1.
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to observe using simple histogram charts of the sample probabilities in each class. Several in-
teractions are possible, e.g., to change the axes ordering or scale and to filter the elements by
brushing certain value ranges.

The main drawback of parallel-coordinates plots is clutter, which obscures several relations
and patterns in the plot. Another problem is their sensitivity to axis ordering: certain patterns
are revealed only when certain ordering is used. There has been a lot of work to reduce clutter
and to compute suitable axis orders. Nevertheless, parallel-coordinates plots remain less suited
to visualize homogeneous data, as they do not address the characteristics of such data that need
specific aggregations to emphasize relevant patterns in the data.

2.1.3 Biplots

A biplot [50] is a 2D projection of multidimensional data, based on Principal Component Anal-
ysis (PCA) [75]. The dimensions are also projected on this plane, as vectors, to represent their
contribution to the variance and their relations to the data values. The data points are projected
on the 2D plane spanned by the first two principal components that capture the majority of the
variance in the data. Fig. 2.3 shows the biplot of the classification probabilities depicted in
Fig. 1.1. It reveals several patterns such as clusters of samples having similar projections. These
samples have similar class probability profiles, compared with other samples. Furthermore, it is
evident that classes “drawing” and “graph” have large contribution to the overall variance. Their
samples appear in different forms in the data set, leading to varying probability profiles.

The main drawbacks of biplot are clutter and difficulty of interpretation. The principal com-
ponents cannot be directly associated with the data dimensions that have clear interpretation.
Also, overplotting restrict the usefulness of the plots to small datasets.

Several other projections of multidimensional data are possible, such as Multidimensional
Scaling (MDS) [86]. Recently, Turkay et al. [154] propose a simplified projection on their Dual
Analysis technique. This projection includes dimensions only, and allows users to select an in-
terpretable 2D projection space. The authors showed how using common statistical measures to
define this space, such as mean and variance, enables selecting attributes that exhibit interesting
behavior and analyzing the respective values in the data space.

2.1.4 Table Lens

Instead of projecting multiple dimensions on the same plot, table lens [120] visualizes the val-
ues in each dimension individually, using a table layout. The table columns represent the di-
mensions, while rows represent the data items. The data values are represented as lines of
proportional length and of 1-pixel thickness to fit a large number of items in one screen.

Fig. 2.4 shows a table lens view of the classification probabilities depicted in Fig. 1.1. Each
column represents a class, with the bars showing sample probabilities to belong to this class.
Columns have the same size and scale to enable direct comparison of lines. The table rows are
sorted by their probabilities to belong to class “graph”. This reveals the probability distribution
of the samples in this class, in addition to how the other class probabilities correlate with class
“graph”. For example, it is evident that there are several samples which have relatively high
probability value both in “drawing” and in “graph”.
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Figure 2.3: A biplot of the class probabilities depicted in Fig. 1.1. Labels in black represent
the data points while labels in red represent the classes (the homogeneous dimensions).

Figure 2.4: A table lens view of the classification probabilities depicted in Fig. 1.1.
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Table lens combines features from both geometric and pixel-based techniques to provide a
simple and compact overview of homogeneous data. However, the view is limited in the insights
it reveals. The table can be sorted by one column at a time. This makes it hard to analyze the
distribution of the other columns and to compare them against each other. Furthermore, the
view suffers from over-plotting when showing more data items than pixels available. Finally, the
metaphor restricts data aggregation possibilities that are needed to analyze certain homogeneous
data such as set-typed data. This is because the values for a data point should be placed in the
same row and cannot be aggregated to groups lying in different rows.

2.1.5 Heat Maps and Matrices

Heat maps offer an alternative pixel-based representation that encodes the data values by means
of color. Fig. 2.5 shows a heat map of the same data depicted in Fig. 2.5, Fig. 2.2 and Fig. 2.3.
The columns represent the homogeneous attributes (i.e. the classes). The rows represent the
data items (i.e. the samples). Color represents the probability for each sample to belong to each
class. The same color scale is used for all attributes, which is possible in case of homogeneous
attributes that have the same nature and value ranges (probabilities in the depicted example). The
rows and columns are ordered to reveal clusters of samples that exhibit similar class probabili-
ties. The map can be augmented with dendrograms that explicitly depict hierarchical clustering
of the rows (resp. columns), according to their similarities (Fig. 2.5).

Heat maps provide a clear overview of homogenous data. They help estimating the distri-
bution of the values, and how it changes across different row and columns. As illustrated by
Bertin [18], ordering has a vital impact on the patterns revealed by heat maps and matrices in
general. Ordering simplifies the heat map by placing similar rows and columns close together,
and reveals clusters of cells having similar values. Heat maps offer a good scalability with the
number of attributes: About one hundred columns can be fit in one screen. On the other hand,
heat maps offer fair scalability in the number of data points: few hundreds rows of can be fit in
one screen, with minimum row visibility. Depicting larger number of items requires aggregation
techniques to map multiple items into a 1-pixel row. Color is used by heat maps as the primary
visual variable to show the values of homogeneous data. This limits the possibilities to use
color for other purposes, such as showing selected items, or showing additional heterogeneous
attributes of the data 1.2.

Instead of showing item-class relations (i.e. attribute values), heat maps and matrices can
also be used to explicitly show relations between the attributes. In this case, both the rows and
the columns of the map represent the attributes, with cell colors encoding their mutual relations.

Fig. 2.6 shows an example of a heat map depicting class confusions in the classification data
of Fig. 1.1. The actual and predicted classes of the samples are mapped to the rows and columns
respectively. The cells on the diagonal represent samples that are correctly classified in their
actual classes. The remaining cells encode class confusions by color, with light color encoding
fewer confusions. Other encodings of the class confusions are possible, such as cell size instead
of cell color (Fig. B.2a).

Fig. 2.7 shows another example of a heat map depicting how multiple sets mutually overlap.
The sets are mapped both to the rows and to the columns, with cell color encoding the overlap
between the respective pair of sets.
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Figure 2.5: A heat map of the classification probabilities depicted in Fig. 1.1. Rows represent
samples. Columns represent classes. Cell colors encode sample-class probabilities.

Figure 2.6: A confusion matrix of the classification results in Fig. 1.1.
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Figure 2.7: A heatmap showing how the 11 ACM classes [1] overlap as sets over ACM papers.

The matrix representation of pair-wise relations between the attributes gives a clear overview
of value distributions by emphasizing these relations as primary objects in the visualizations.
However, the information related to one attribute is rather scattered in multiple row and column
cells. Besides, color is used as primary visual variable to show the attribute relations, which hin-
ders the possibility of using it to show more details about their values or about other information
about the data.

Node-link diagrams are alternative representations to matrix. They have been used to visu-
alize multidimensional data, as explained next.

2.1.6 Ploceus: Network-based Visual Analysis of Tabular Data

Node-link diagrams can visualize relations between data values in a multidimensional dataset.
The Ploceus [93] visualization system provides possibilities to create and interact with such dia-
grams. Fig. 2.8 shows the relation between two categorical attributes in a dataset: organizations
(in orange) and funding programs (in blue).

It is also possible to contract the network into a one-mode network, which visualizes the re-
lations between the values of one categorical variable. These relations can be analyzed in context
of other attributes, by using small multiple. Fig. 2.8 shows collaboration between organizations
on NSF grants, broken down by year and amount [93].

Node-link diagrams suffer from inherent limitation scalability. Depending on the network
complexity (measured by number of edges and nodes), tens of nodes can be shown in one dia-
gram. As the number of nodes and edges increases, the clutter caused by line crossings increases
and hinders gaining insights in the data. Instead of using node-link diagrams to show single data
items, these diagrams can be used to show aggregated similarity relation or correlations between
the attributes, as explained next.
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Figure 2.8: Ploceus view showing relation between the values of two attributes as a two-mode
network [93].

Figure 2.9: Ploceus view showing relation between values of one dimension [93].
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2.1.7 Circos

The Circos system [87] is developed for analyzing genomic data by facilitating the comparison
of genomes. It allows identifying similarities and differences between genomes by employing a
variant of chord diagrams (Fig. 2.10). To analyze these similarities and to correlate them with
the data properties, additional information is embedded in the radial layout using line charts and
bar charts.

Figure 2.10: The Circos system [87] for visualizing genomic data.

Circos uses both geometric as well as graph-based techniques to visualize multidimensional
data. It provides a variety of interactions to select certain genomes and to adjust the layout.
While Circos is originally designed to visualize genomic data, it has been applied in other
domain as well. In particular, Circos was demonstrated to be suited for visualizing relations
between categorical variables, whentwo the number of categories is relatively smalls (tens of
categories).
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2.1.8 Summary

The previous sections give an overview on certain geometric, pixel-oriented, and graph-based
techniques for visualizing multidimensional data. Icon-based techniques were not included in
this overview due to their inability to handle large volumes of data, which is a primary goal
of this thesis. Hierarchical techniques are also unsuited for homogeneous data, as they assign
the attributes different degrees of visual primacy. On the other hand, visualizing homogeneous
data requires techniques that treat the dimensions equally, as they are all of the same nature and
generally of the same importance and relevance for the analysis.

Geometric techniques often suffer from clutter when they combine multiple dimensions in
one plot or when they represent individual data items without aggregation. This is because
projection can lead to overplotting or line crossings, depending on how the data points are rep-
resented. On the other hand, geometric techniques are potentially suited to show quantities of
aggregated data values, e.g. using bar charts. This is because they use position and size which
are effective visual channels for showing quantitative information.

Pixel-oriented techniques are efficient at providing overview of how the values are distributed
in a dataset having a large number of items. Color can be used to show additional information
about items that are laid out using geometric techniques. When used without aggregation, pixel-
oriented techniques offer moderate scalability, depending on the number of available pixels. The
insights gained in such visualizations depend heavily on how the items are ordered in the screen
(which also applies to some geometric techniques as well).

Graph-based techniques are suited to show aggregated relations between a few number of
dimensions or attributes, as in Circos. They can hence be used in combination with other tech-
niques that show information about the data items.

As Chapter 3 demonstrates, the visualization technique for homogeneous data proposed in
this thesis combines features from geometric, graph-based, and pixel-oriented techniques. It
uses bar charts to show aggregated information about the data, visual links to show relations
between the multiple attributes, and color to show further information about the items aggregated
in the bar charts. Furthermore, the presented approach employs a multi-level overview+detail
exploration environment to show different different aspect about the data at multiple levels of
detail. Such use of multiple views has been proposed in various interactive visualization systems,
as discussed in the next section.

2.2 Data Reduction

Visualizing large volume of multidimensional data comprising hundreds of thousands of items
is challenging and quickly leads to issues with clutter if all the data values are presented at once
in one screen. Therefore, it is important to reduce the amount of data to volumes that can be
visualized effectively at a sufficient resolution and clutter. Keim [80] classifies data reduction
methods into the following categories:
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• Dimension Reduction: These techniques reduce the dimensionality by projecting the data
on a low-dimensional space. Examples for that are Principal Component Analysis (PCA)
[75] and Multidimensional Scaling (MDS) [86]. However, as illustrated in Sect. 2.1, these
techniques are not suited for homogeneous data, as the results are hard to interpret in
the projection space. To avoid impacting interpretability, data reduction should rather
preserve the original homogeneous dimensions.

• Sampling: These techniques reduces the number of the data points by selecting a repre-
sentative subset thereof. In fact, the data points available in a given dataset are usually a
subset of all points that occur in a studied phenomenon. Sampling can be basically ap-
plied to reduce the volume of homogeneous data, especially if the number of data points is
very large (e.g., in the order of millions) and would impose performance limits. However,
when this is not the case, sampling should be avoided as it might mask important patterns
such as outliers, and might cause certain queries and assumptions about the data to fail if
the related data points are not included.

• Querying (Filtering): Instead of randomly selecting a subset of the dataset, this subset
can be described in a deterministic way. For example, a sales analyst might restrict the
analysis to data from a certain region or shop. This avoids the issues of failed queries when
using sampling, as the analyst is aware of what is included in the active subset. However,
filtering limits the generalizability of insights and findings to the respective subset, as
these might not necessarily apply to other subsets.

• Segmentation: As a divide-and-conquer strategy, segmentation allows dividing a large
dataset into subsets that can be analyzed individually. As with filtering, this is usually
done based on certain attributes, e.g., to divide sales data by region. This also means that
the insights found are limited to the respective subsets of data.

• Aggregation: To reduce the volume of data involved in the analysis, it is possible to
perform the analysis with groups of data points instead of individual points. This is per-
formed by aggregating multiple data points in a group, based on similar characteristics.
The visualization is restricted to visualize the resulting groups as visual elements of pro-
portional sizes. Hence, the number of data points aggregated in each group can be infer
from the visualization. It is also possible to retrieve these points on demand using interac-
tion. The inclusion of all data points, even in an aggregated form, is advantageous: Points
that match a specific user query are always retrieved and highlighted in the visualization,
which does not always hold with the other data reduction methods.

Other methods for data reduction include statistical methods that summarize a large amount of
data by appropriate model parameters. The approach adopted in this thesis is based mainly on
data aggregation and partially on filtering, as explained in Chapter. 3.
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2.3 Coordinated and Multiple Views

One way to cope with the complexity of visualizing multidimensional data is to display the data
in multiple views using different visualizations. These views show different aspects about the
same data, and can be linked together using brushing and linking techniques [30, 122]. Sev-
eral systems use such coordinated and multiple views (CMV) to enable rich visual analysis of
multidimensional data in different domains such scientific simulation [38], finance [25], and
GeoAnalytics [72]. Also, several models and architectures were devised for building CMV
system [19, 32, 108, 109]. Roberts [122] surveyed different models and techniques for imple-
menting such views and the challenges of applying them in VA. He discusses many aspects of
implementing CMV system, including data processing and oreparation, view generation and
multiple views, exploration techniques, coordination and control, tools and infrastructure, hu-
man interface, and usability and perception.

Fig. 2.11 shows an example of a CMV system called ComVis. It integrates various views
that show different aspects of the data, including bar charts, histograms, line charts, heat maps,
scatterplots, parallel coordinate plots, and sortable tables. Brushing items in one view updates
the selected items in the other views, highlighted in red.

Figure 2.11: Coordinated and multiple views in ComVis [97].

Fig. 2.12 shows another example of a CMV system called Improvise. This system is de-
signed for building highly-coordinated visualizations, by means of a shared-object coordination
mechanism coupled with an expression-based visual abstraction language.
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Figure 2.12: The Improvise [164] for building highly-coordinated visualizations.

The use of multiple views enables an overview+detail paradigm for exploring multidimen-
sional data. This paradigm follows Shneiderman’s visual information-seeking mantra: “overview
first, zoom and filter, then details-on-demand” [139, p. 2]. It uses spatial separation as the main
scheme to allow users to work at, and move between, focused and contextual views [30].

An overview+detail exploration environment is well-suited to support visual analysis using
aggregation-based visualizations. It allows to interactively explore certain aggregated elements
at multiple levels of detail. Each level of detail has its specific view which is linked with the other
views to update the information it shows upon changes in the selection. Appropriate brushing
and linking techniques are need to select elements of interest, e.g., using mouse interaction, and
to highlight them in linked views, e.g., using color.

The Visual-Analytic approach proposed in this thesis follows the above-mentioned paradigm
to analyze homogenous data. It uses both aggregation and overview+detail exploration, as ex-
plained in detail in the next chapter.
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CHAPTER 3
The Proposed Approach

This chapter outlines the approach adopted in this thesis for analyzing homogeneous data 1.
After motivating the use of a VA paradigm, I explain how VA is applied to computationally
analyze and aggregate the data (Sect. 3.2). Then, I propose a novel visualization that is suited
to display and interact with the aggregated data (Sect. 3.3). Sect. 3.4 elaborates on the design of
the interactive environment for exploring the data at multiple levels of detail.

I close this chapter by comparing the proposed approach with the state-of-the-art methods
presented in Chapter. 2, and emphasizing its scalability advantages and limitations (Sect. 3.6). I
also report an overview of qualitative and quantitative evaluation results of the proposed design,
applied to the different data classes (Sect. 3.7).

3.1 Visual-Analytics Paradigm

Classical visualization methods suffer from inherent limitation: they cannot always depict more
data than pixels available on the screen. Depending on the visual representation used, and the
complexity of the data depicted, the visualization might become quickly cluttered even with
hundreds of data items. The field of Visual Analytics [151] aims to intertwine automated anal-
ysis techniques with interactive visualizations enriched by cognition and perception to allow
solving tasks and gaining insights that are cumbersome to perform using either paradigm inde-
pendently [79]. Automated methods exploit the computational capabilities of modern computers
to find the desired information and patterns in huge amounts of data. Interactive visualizations
allow involving the user in the analysis loop and incorporating domain knowledge to guide the
analysis process and toassess the results. Moreover, the human visual system is excellent at de-
tecting unexpected patterns and anomalies that are hard to be captured in advance by automated
methods.

1 Part II elaborates in detail on the specific analytical methods used to aggregate the data for each of the three
class of homogeneous data addressed in this thesis. It also explains how the generic visual metaphor and exploration
environment are customized to visualize the data and solve related tasks for each of these classes.
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The VA paradigm proposed in this thesis follows Keim’s VA Mantra [79, p. 82]: “Analyse
first – show the important – zoom, filter and analyse further – details on demand”. The next three
sections show how analytical methods compute the important information in homogeneous data,
how the visualization is designed to show this information, and how the interactive exploration
environment allows conducting further analysis and obtaining details on demand.

3.2 Automated Analytical Methods

Automated analysis helps in analyzing large amount of data by computing the important in-
formation. This reduces the volume of data and makes it appropriate for visualization and ex-
ploration. The next sections give a unified overview of how automated analysis is applied to
three classes of homogeneous data. These sections cover five common aspects of data analysis
that arise in all of the three classes of data: (1) associations within the data (2) aggregation (3)
filtering (4) relations between the homogeneous attributes (5) correlation with other attributes.
Further details about the analysis of each of these classes are provided in Part II.

3.2.1 Entity Association with Homogeneous Attributes

A major analysis task of homogeneous data is to understand how the row entities differ in their
relation with the homogeneous attributes. These relations can be expressed by means of an
association function r(ei, Aj) between the entities e1≤i≤n ∈ E and the attributes A1≤j≤m. This
function differentiates between data points that have high or low association with an attribute
Aj , depending on the class of homogeneous data being analyzed:

• Probabilistic classification data: The association values with attribute Aj are equal to
the probabilities computed for the samples in the respective class:

r(ei, Aj) = Aj(ei) (3.1)

The association with attribute Aj is hence larger for samples that are more likely to fall in
the respective class.

• Element-set memberships: The association value of an element ei with attribute Aj is
based on the set membership degree of ei [8], and whether ei is an element of the respective
set Sj represented by attribute Aj :

r(ei, Aj) =


(m− degree(ei))/(m− 1) ei ∈ Sj

−1 otherwise

(3.2)

where degree(e) = |{Sj : 1 ≤ j ≤ m ∧ e ∈ Sj}| indicates the number of sets to
which this element belong. Elements ei that are exclusive to a set Sj have a degree of
1, and hence are assigned the highest association value r(ei, Aj) = 1 with attribute Aj .
On the other hand, elements that exist in all the sets have a set membership degree of m
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and are hence assigned the lowest association value of 0 with all attributes, as they are not
specifically associated with any of these attributes. Elements that are not members of set
Sj are assigned a negative association value of −1 with attribute Aj , and can hence be
excluded when analyzing the elements of this set.

• Categorical data: The association value of an element ei with attribute Aj is based on
comparing the actual frequency Aj(ei) of the category combination (ei, Aj), and the ex-
pected value eij of this frequency under H0, assuming 0 association (Eq. C.1):

r(ei, Aj) = tanh

 Aj(ei)− êij√
êij ·

(
1− fi+

n++

)
·
(

1− n+j

n++

)
 (3.3)

where ni+ =
∑m

j=1Aj(ei) and n+j =
∑n

i=1Aj(ei) are the marginal row- and column
frequencies in the homogeneous data table, and n++ is the sum of all table frequencies.

Sect. C.2.1 provides more details about the associations measures used in Eq. 3.3. The
association is positive when the frequency is higher than expected under H0, with +1
being the largest positive association value. Likewise, the association is negative when the
frequency is lower than expected under H0, with -1 being the largest negative association
value (e.g., when the respective row and column categories never appear together).

3.2.2 Aggregating Homogeneous Data

The proposed approach aggregates the values of each homogeneous attribute A1≤j≤m individ-
ually. The association values r(ei, Aj) are used to divide the entities into b groups Gj1, ..., Gjb

with respect to attribute Aj . This is performed by binning the value range of r into b bins
B1 = [low1, high1] .. Bb =]lowb, highb], as illustrated in Fig. 3.1. Entities that fall in the same
bin B1≤k≤b are aggregated together in one group Gjk:

Gjk = {e ∈ E : r(e,Aj) ∈ Bk ⊂ R} (3.4)

Figure 3.1: Binning the value range of the association function with attribute Aj .

The choice of the number of bins b and the value ranges of the bins B1 ... Bb depend on
the class of homogeneous data being analyzed, on the data distribution, and on the tasks to be
solved based on the data:
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• In case of element-set memberships, it is possible to define the bins to be the set-
membership degrees, so that elements of the same degree in a set fall in the same bin.
It is also possible to define bins of different ranges, for example, to group the elements
into those that are exclusive to their sets (degree(e) = 1), those that are shared between
2-4 sets (2 ≤ degree(e) ≤ 4), 5-9 sets (5 ≤ degree(e) ≤ 9), and between 10+ sets
degree(e) ≥ 10.

• In case of probabilistic classification data, equal bin sizes should be used, which allows
depicting the bins over a linear and equally-divided probability axis. It is possible to re-
strict the bins to the effectively-used probability range ⊆ [0, 1] instead of spanning the
whole range [0, 1]. It is also possible to aggregate samples classified with 100% proba-
bility in a special bin, to aid easy access to these samples. The number of bins can be
selected to be equal to the number of classes m. It can also be selected according to the
probabilistic classification algorithm used, e.g., a multiple of k in case of k-NN classifi-
cation.

• In case of categorical data, a fixed number of equally-sized bins is used to show the
proportion of entities at multiple levels of associations with each column category. This
number can be determined by statistical rules such as Scott’s normal reference rule [131].

Aggregating homogeneous data inm×b bins enables a massive reduction of the data volume,
compared with the number of row entities n. Each entity is aggregated in up to m different
bins, according to the m attributes individually. As explained in Sect. 3.4, a list of the entities
aggregated in a specific bin can be obtained interactively for further analysis.

It is also possible to aggregate homogeneous data “vertically” along the homogeneous at-
tributes, instead of the row entities. For example, when analyzing set-typed data, it is possible
to aggregate multiple sets into one set, using set union. This allows focusing the analysis on
certain sets without ignoring the remaining sets that can be aggregated in one group, e.g., “oth-
ers”. Similar aggregations can be applied to frequency and probabilistic data by summing up
frequencies or probabilities cell-wise to combine the respective column categories or classes.

3.2.3 Filtering Homogeneous Data

Besides aggregating the entities, it is also possible to filter out certain entities either to hide them
from the visualization or by completely excluding them from the analysis. This enables reducing
the amount of information displayed and exploring the remaining entities at greater detail. The
entities e can be filtered out based on their associations r(e,Aj) with certain homogeneous
attributes Aj or on other criteria. Each of the classes of homogeneous data can employ filtering
for specific purposes:

• When analyzing element-set memberships, it is possible to filter elements by their set-
membership degrees. For example, filtering out elements that ar eexclusive to their sets
allows focusing on elements involved in set overlaps. This is especially useful when
the sets in a set system do not exhibit a lot of overlap, leaving the majority of elements
belonging to one set only. On the other hand, when a set system exhibits a high degree of
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overlap, it is possible to filter out elements that belong to the majority of sets. This enables
focusing on elements that are specific to certain sets or set combinations and analyzing if
they have specific features compared with other elements.

• When analyzing probabilistic classification data, it is advantageous to filter out non-
class samples that are classified as such, especially when they are assigned low probabil-
ity in this class. Such true negatives usually form the majority of the samples, and are
less relevant when analyzing classification results. Filtering out these samples enables
focusing the analysis on misclassified samples that are more relevant for improving the
classification performance.

• In case of categorical data, it is possible to filter out row entities that have low overall
support in the database (i.e. low marginal row frequency). The associations computed
for these entities are usually less significant (e.g., based only on one occurrence in the
database). Filtering out these entities enables focusing the analysis on significant associa-
tions that imply generalizable association rules.

Instead of filtering data points, it is also possible to filter certain homogeneous attributes.
This allows analyzing associations between a subset of these attributes, and how they relate to
the data points. This is useful when the number of attributes exceeds the visual limits of the
visualization design. For example, when analyzing set-typed data, it is possible to restrict the
analysis to a small number of sets to find out how they overlap, regardless to the remaining sets.
These relations between the attributes is a central information in the data, as explained next.

3.2.4 Relations Between Homogeneous Attributes

The homogeneity of the data described by homogeneous attributes enable new forms of comput-
ing the relation between the real-world entities they represent, beyond the general case of mul-
tidimensional data. In the general case, the relation is computed based on statistical measures
such as the covariance between the attributes by treating them as dimensions. Alternatively,
these relations can be computed to address the specific nature and characteristics of the data,
and how the comparison tasks are defined. This facilitates the interpretation of these relations
and what the computed measures represent. The proposed approach employs different measures
to compute the relation between attributes, depending on the class of homogeneous data they
represent (the relation is denoted as rc(j1, j2)):

• Set similarities: When the homogeneous attributes represent sets, their pair-wise relations
can be computed as similarities between these sets. Many set-related tasks involve finding
pairs of sets S1 and S2 that exhibit higher similarity than other pairs, with respect to the
number of elements shared between them |S1 ∩ S2|. Several similarity measures between
finite sets have been proposed in the literature [8]. The choice of an appropriate measure
depends on the data characteristics and on the tasks to be solved. Jaccard [55] proposed a
symmetric similarity measure:

Jaccard(S1, S2) = |S1 ∩ S2|/|S1 ∪ S2| (3.5)
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Though this measure is intuitive to interpret, it is, however, biased with respect to the set
sizes: Larger sets have higher chance to overlap, and hence are systematically assigned
high pair-wise similarities. One way to address this issue is to compute the similarity
based on overlap probability of the sets. This can be performed by treating the sets as
events and computing the deviation between the actual probability and the probability in
case of conditional independence. A normalization using the χ2 statistic can be used to
eliminate bias toward set sizes (Eq. 3.6):

rc(j1, j2) =
P (Sj1 ∩ Sj2)− P (Sj1) · P (Sj2)√

P (Sj1) · P (Sj2)
(3.6)

Other measures of set similarity can be employed such as Tversky [155] generalized index:

Tversky(S1, S2) =
|S1 ∩ S2|

|S1 ∩ S2|+ α · |S1 \ S2|+ β · |S2 \ S1|
(3.7)

It is also possible to weight shared elements differently when computing the similarity,
instead of just using their count. For example, elements of degree 2 in S1 ∩ S2 can be
weighted higher than other elements, as they belong exclusively to the overlap. Also,
elements exclusive to their sets can be excluded from the computation of the denominator.
This allows focusing on shared elements especially in sparse family of sets that exhibit
little overlaps.

It is also possible to compute the similarity between multiple sets S1, S2, · · · , Sk based on
their intersection S1∩S2∩· · ·∩Sk. The above-mentioned measures can be generalized to
accommodate multiple sets, e.g., using |S1 ∪S2 ∪ · · · ∪Sk| for normalization and P (S1) ·
P (S2) · ... · P (Sk) for computing the probability in case of conditional independence.

• Class confusions

In probabilistic classification, the classifier returns the class with the highest probability
as the predicted label lp(e) for a given input sample e ∈ E [7]:

lp(e ∈ E) = argmax
1≤j≤m

Aj(e) (3.8)

The confusion between classes j1 and j2 is computed by comparing the predicted labels
lp(e) with their actual labels la(e):

rc(j1, j2) = |e ∈ E : (la(e) = j1) ∧ (lp(e) = j2)| (3.9)

The relation between two attributes representing two classes is based on the confusion
between these classes. This relation is generally asymmetric because when samples of
one class are confused with another class, the opposite does not necessarily happen [7].

• Categorical similarities

When the homogeneous data represent a contingency table, the similarity between two
columns is computed based on how similar their relations with the row entities are. Two
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columns are high relation if the row entities exhibit positively (or negatively) high asso-
ciation with both of them (Eq. 3.3). One way to express this relation is to compute the
correlation between these row-column association values:

rc(j1, j2) =
1

n+j1 + n+n2

·
∑
e∈E

r(e,Aj1) · r(e,Aj2) (3.10)

Correspondence Analysis offers another possibility to compute the relations between the
attributes [52, 126]. It is designed to compute a 2D reduction of contingency tables in a
similar way as with Principal Component Analysis, and can compute the similarity be-
tween the table dimensions according to their cell values.

3.2.5 Correlations with non-Homogeneous Attributes

As explained in Sect. 1.1, the datasets containing homogeneous attributes usually exist along
with other heterogeneous attributes. The methods proposed in this thesis treat homogeneous
data as the primary focus of analysis. Nevertheless, many analysis tasks involve analyzing the
heterogeneous attributes in relation to the homogeneous data.

One generic analysis task is to compare the attribute distributions between different groups
of data. For example, users often want to know if elements that belong to a specific set or sets
combination have different values of their other attributes than the remaining elements. The
same applies when analyzing classification data, to figure out if high probability to belong to
class is associated with certain attributes values.

One way to support the comparison of numeric attribute values between two groups of en-
tities X1 ⊆ E and X2 ⊆ E, is to use a significance statistic. Welch’s t-statistic [34] is suited
when the groups are of unequal sizes. The statistic for each feature fk can be computed as
follows:

tk =
mean(fk(X1))−mean(fk(X2))√

var2(fk(X1))/|X1|+ var2(fk(X2))/|X2|
(3.11)

The corresponding p-values according to Student’s t-distribution should be used to enable a di-
rect comparison of the resulting t-values. Features with more significant differences betweenX1

and X2 will have lower p-values. It is also possible to infer whether the differences are signifi-
cant or not by applying a t-test to the values, to figure out if the differences can be explained by
random sampling only.

Binning is another way to compare attribute distributions. This is not only suited for a
numerical attribute, but also for a categorical attribute as categories naturally define bins. The
χ2 statistic is suited to compare two binned histograms having b bins:

χ2
k =

b∑
l=1

(fk(X1)− fk(X2))
2

fk(X2))
(3.12)

This is suited to compare a set of selected entitiesX1 (i.e. observed behavior) against the remain-
ing entities X2 (expected behavior), as used for testing the goodness of fit between observed and
theoretical distributions. In contrast with the t-statistic which is a holistic mean and variance,
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binning allows capturing differences that are masked by holistic measures. For this purpose,
an appropriate number of bins should be used, based on the underlying feature distributions.
Other statistics that are independent of the distributions can be used to compare two numerical
distributions such as the Kolmogorov-Smirnov statistic [96].

Another task related to the additional attributes is to find out if two or more groups of entities
can be separated (i.e. distinguished from each other) by means of an attribute. This task arises,
for example, when analyzing classification data in order to find if certain confusions between
true positive and false positives can be resolved by means of data features extracted from the
samples. For this purpose, separation measures can be used to assess the separation power of
individual attributes or attributes combinations. Variants of the F-Measure [115] can be used
for this purpose, applied to histograms h1k and h2k of a feature fk in X1 and X2 respectively
(where b is the number of histogram bins):

Fk =

bh∑
b=1

h1k(b) · h1k(b)

h1k(b) + h2k(b)
(3.13)

The above-mentioned tasks can be generalized to analyze the behavior of pairs of attributes
among different subsets of the data. Other attribute-related tasks can also be defined for specific
instances and applications. It is important to choose appropriate analytical techniques that fit (1)
the task, e.g., finding differences vs. separability, and (2) the data characteristics, e.g., numerical
vs. categorical attributes, specific attribute distributions, etc. For these purposes, many other
data analysis techniques can be applied beyond the above mentioned exemplary ones.

3.2.6 Summary

The previous sections demonstrate how automated analysis can be applied to compute associ-
ations within homogeneous data tables and relations between the homogeneous attributes, as
well as correlations with other heterogeneous attributes in the dataset. The previous sections
also demonstrate how automated analysis is vital to reduce large volumes of homogeneous data
by means of aggregation and filtering.

It is essential to mention that the presented techniques exploit the homogeneity of the data
which offers new analysis possibilities that are not possible to use in the general case of (het-
erogeneous) multidimensional data. This was demonstrated when computing the associations
(e.g., based on set-membership degrees) and the attribute relations (e.g., set similarities), as well
as when aggregating and filtering the data (e.g., based on set-membership degrees, or using set
operations).

Part II gives further details about how automated analysis is applied for each class of ho-
mogeneous data addressed in this thesis. Employing a common analysis paradigm make the
outcome of automated analysis similar for all these classes: binning-based aggregated associ-
ations, as well as quantified attribute similarities. This enables developing a common visual
metaphor to visualize this outcome, as the next section illustrates.
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3.3 Visual Representation

Despite the different nature of the data classes addressed in this thesis, they share several com-
monalities that allow developing a common visual metaphor for them. This is possible, thanks
to the computational analysis which creates a unified abstract representation of the data. The
association measures introduced in Sec. 3.2.1 convert the values of a homogeneous data table
into associations in the range [0, 1] or [−1, 1], depending on the measure used. These associa-
tions r(ei, Aj) have similar interpretation: strong / weak association between the entities ei ∈ E
and the respective column category Aj . This enables to visually treat these values in a simi-
lar manner, unlike the raw data that have different interpretations, i.e. binary set memberships,
probabilities, and frequencies. Moreover, this enables aggregating these association values simi-
larly into binned histograms (Sect. 3.2.2). The histogram bins differentiate between row entities
that have strong or weak associations with the respective columns.

The wheel metaphor

This thesis proposes a common visual metaphor called the wheel metaphor to visualize homo-
geneous data. This metaphor consists of the following components (Fig. 3.2):

• The attributesA1, ..., Am are represented as sectors of a ring chart, with the attribute labels
being depicted next to these sectors.

• The aggregated associations rc(ei, Aj) are depicted as binned histograms into these sec-
tors along the radial dimension. The outermost histogram bin represents entities having
highest association with the respective attribute. The innermost histogram bin represents
entities having the lowest association with the respective attribute. The length of his-
togram bar k in sector j represents the number of entities |Gjk| at association level k with
attribute Aj (Eq. 3.4).

• The relation between the attributes rc(j1, j2) are represented as links between the sectors,
depicted in the inner circle ring chart. The thickness of a link encodes the relation (e.g.,
similarity) between the respective attributes.

The ring sectors are reordered to optimize the visual layout by reducing clutter and grouping
related attributes. This is done by selecting an order that makes thicker links as short as possible,
which has two advantages:

• Reducing the ink used to depict the links and the clutter caused by crossings between thick
links.

• Placing sectors of attributes having strong mutual relations close together, to reveal groups
of inter-related attributes.

Computing an optimal ordering for the above criteria is an NP-Complete problem [95]. In this
thesis, an O(m2) greedy algorithm is proposed to produce an approximate solution (where m is
the number of attributes), as explained in detail in Sect. A.3.1.
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Figure 3.2: The proposed visual metaphor for visualizing homogeneous data: (a) sectors for
attributes, (b) histograms for aggregated entities, (c) links for attribute relations.

The design rationale of the wheel metaphor is to depict the attributes as primary objects of
the visualization (as labeled sectors), which contain all related information about these attributes.
This information encompasses entity associations (depicted as histograms), and relations with
other attributes (depicted as links). This is because the homogeneous attributes are central ob-
jects in the analysis and should be easily identifiable, along with all related information. There
are two main reasons for choosing a radial layout for the attributes:

• The inner circle of the layout is a natural and compact place to depict the relations be-
tween the attributes as links. Placing the sectors in a grid would hinder depicting the arcs.
Placing the sectors in one linear row imposes an artificial ordering on the attributes since
the row has a start and an end. It also requires about π times more space in width (due
to circle unfolding) and is unsuited to show the links as they would vary highly in length.
Visualization expert, Stephen Few, comments on circular data visualizations [45]:

“One of the few things that they can display well are the relationships between a sin-
gle list of items ... The circular arrangement of a single list of comparable items ... lends
itself nicely to the display of relationships between them, represented by lines that connect
them. In this case, a linear arrangement would not work as well.”

• The placement of the histograms simulates the magnet metaphor of Yi et al. [173], with
sector labels acting as magnets on the radial dimension. The items aggregated in the
outermost bars (closer to the labels) are highly associated with the respective attributes,
and have a weak or no association with the other attributes. These items represent, for
example, set-exclusive elements, or samples having high probability ≥ 90% to belong to
a class. The items aggregated in the innermost bars (closer to the inner circle) are less
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associated with the respective attributes, as they have association with the other attributes.
For example, a sample having 30% probability to belong to a class, has 70% probability to
belong to the other classes, and is hence attracted to the middle area that represents shared
elements. Likewise, an element in set S that exists in most other sets in a set system is
aggregated in the inner bins. This element is less attracted by the magnet representing the
label of S, as it is closer to the inner circle which attracts shared elements.

• The depiction of the histograms and the links in one view facilitates a better interpretation
and richer analysis. Each element can be aggregated into multiple histograms in different
sectors (e.g., being a member of multiple sets). Links explicitly reveal this redundancy
by encoding the existence of shared elements that contribute to the relation between two
homogeneous attributes (e.g., overlap relation between the sets). Additionally, integrating
links and histograms in one view enables to visually relate these pieces of information.
For example, when the link encodes a confusion between two classes, it is possible to
infer which probability the confused samples are assigned in both classes. Interaction is
important to perform this kind of analysis, as explained in Sect. 3.4.

The wheel metaphor combines both geometric and graph-based techniques to represent mul-
tidimensional data, according to Keim’s classification [81] (Sect. 2.1). It uses position and size
to represent aggregated entity associations with homogeneous attributes, as well as links to show
relations between these attributes.

Use of color The metaphor as presented so far uses only spatial and size variables to represent
the data. This allows using color to support brushing and highlighting of selected elements, as
illustrated in Fig. 3.3. For a given selection the entities Esel ⊆ E, it is possible to compute the
fraction of selected elements in the elements Gjk aggregated in each histogram bar (Eq. 3.4).
The selection can be indicated by coloring selected fractions of the histogram bars. Likewise, it
is possible to compute the fractions of attribute relations contributed by the selected elements,
e.g., portion of selected elements in an overlap between two sets. These fractions can also be
highlighted in the links.

Figure 3.3: Color indicates fractions of bars and links representing selected elements.
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Color can also show additional information about the data in the histograms, such as values
of an attribute fk for elements aggregated in the bars. In case the attribute fk is categorical, each
bar can be divided into colored sections to show the breakdown of its elements by the respective
categories (Fig. 3.4a). In case the attribute fk is numerical, the bar color can be used to encode
an aggregation of the attribute values in the bar elements, such as the average or the median of
these values (Fig. 3.4b).

Figure 3.4: Coloring histogram bars by (a) a categorical attribute indicating classification
results (Chapter. B), (b) a numerical attribute (only the medians per histogram bar is shown).

The attribute values can alternatively be explored in additional views using suited visualiza-
tions, such as bar charts and boxplots (Fig. 3.5). These views can also show selected fractions
of the elements. Interaction allows exploring the elements aggregated in certain bars in detail,
along with their attributes as explained in the next section.

Figure 3.5: Visualizing attributes in additional views (a) a bar chart of an attribute with fractions
representing selected entities highlighted in color. (b) box plots to give an overview of multiple
attribute distributions and compare them among selected and unselected entities.
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3.4 Interactive Exploration Environment

The wheel metaphor is designed to show a rich overview of homogeneous data, which provides
information both on entity-attribute associations and on attribute relations. For this purpose, the
metaphor makes use of aggregation by showing groups of entities (Eq. 3.4) instead of individ-
ual items. To enable exploring individual items aggregated in a certain group, multiple-view
exploration is needed (Sect. 2.3).

The structural similarity between the classes of homogeneous data, and the unified abstrac-
tion employed by the wheel metaphor, both allow (re-)using similar exploration environments
for all of these classes. Depending on the concrete tasks associated with each class, the respec-
tive environment might still contain specific views that support these tasks.

Figure 3.6: The interactive exploration environment with customized views for analyzing set
overlaps. The two views on the left-hand side provide a summarized overview of the dimensions
(top-left) and the entities (bottom-left). The central view shows gives a richer overview of the
dimensions and the entities at once using the wheel metaphor. The right-hand side view shows
detailed information about selected entities as in tabular lists.

The basic exploration environment, shared between all classes of homogeneous data, is de-
signed following Shneiderman’s visual information-seeking mantra: “overview first, zoom and
filter, then details-on-demand” [139]. Fig. 3.6 shows an example exploration environment for
exploring overlapping sets. The left-hand side views show a high-level overview of the data,
showing the sets by their cardinality and elements by their degrees. The central view shows a
more detailed overview of the data using the wheel metaphor. The right-hand side views show
details about selected elements on demand, including a list of these elements and their attributes,
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as well as fractions they make up of the set overlaps. Part II explains in detail how the explo-
ration environment is customized for three classes of homogeneous data, in particular which
specific views and interactions are included to aid the analysis of the data.

Interaction is vital to explore the data at multiple levels of detail. It allows selecting certain
elements in one view, and checking these elements in the other views. The elements can be
selected by clicking on the respective visual items. In Fig. 3.3, the elements shared between two
sets are selected by clicking on the respective link. In Fig. 3.6, the elements of degree 2 in a set
are selected. In both cases, all occurrences of these elements in the wheel view and in the other
views are highlighted. A textual description of the query used to select the elements is displayed
in red at the top of the detail views. The selected elements can be refined further by iteratively
refining this query. This can be done by combining multiple selections using set operations
(set union, set intersection, and set difference). For example, it is possible to exclude elements
in set „VEGA“ from the active selection (using set difference) by clicking on the respective
bar or sector while holding a special key modifier (Fig. 3.7). Alternatively, using other key
modifiers, it is also possible to restrict the selection to elements that belong to set „VEGA“
(using set intersection), or to add the elements of this set to the selection (using set union). The
visualization interactively updates the list of selected elements and the fractions highlighted in
the bars, as well as the textual description of the query. This allows to visually guide the creation
of the queries, by showing which elements are affected by a new filter a priori.

Figure 3.7: Defining visual queries on the elements interactively.

Interaction is also vital to steer the automated analysis of the data (Sect. 3.2), based on the
insights gained by the visualization. For example, the data can be filtered and re-aggregated
based on how they are distributed in the initial visualization. In Fig. 3.6, elements of degree ≥ 5
are filtered out, as these were correctly retrieved by the majority of the depicted classifiers. This
aims to focus on classifiers that often succeed together, while the majority of the other classi-
fiers fail. Interaction also, allows examining and comparing different association and similarity
measures, to find ones that are suited for a given data set. Finally, interaction is vital to analyze
if a subset of the data correlates with certain attributes (Sect. 3.2.5), by iteratively selecting this
subset and exploring its element attributes in other views.
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3.5 Visual-Analytics Paradigm - Revisited

The previews sections illustrate the three components of the proposed VA approach: automated
analysis, visualization, and interactive exploration. These components facilitate a VA paradigm,
following Keim’s VA Mantra [79, p. 82]: “Analyse first – show the important – zoom, filter and
analyse further – details on demand”:

• Analyse first: The analytical methods presented in Sect. 3.2 are applied to the data first.
This reduces a large n×m homogeneous tables into m× b bins that summarize how the
n data points are related to the dimensions A1 · · ·Am and to m × m links that summa-
rize how the dimensions are related to each other. Additionally, the automated analysis
ranks the data features F1 . . . Fp according to how their distributions differ between certain
groups of data (e.g. selected vs. unselected).

• Show the important: The wheel visualization (Sect. 3.3) shows the important informa-
tion computed by the automated analysis. The bars reveal the elements that have high
or low association with each homogeneous dimension. The links emphasizes strong re-
lations by means of thickness. Additional visualizations, such as box plots, show the
most relevant data features for certain analysis context such as features that enable strong
separation between certain groups of data.

• Zoom, filter and analyze further: The interactive exploration environment (Sect. 3.4)
enables highlighting or filtering out certain elements based on their associations and at-
tributes. For example it is possible to filter out set-exclusive elements interactively when
they form the majority of set elements, to focus on elements shared between the sets.
Other examples of how automated analysis can be applied interactively are given at the
end of Sect. 3.4.

• Details on demand: The interactive exploration environment (Sect. 3.4) is composed
of multiple views that allow exploring the data at multiple levels of detail. Elements
that are aggregated in certain bars or links can be explored individually in tabular lists.
Also, the attributes of selected elements can be explored in additional views using suitable
visualizations such as bar charts, histograms, and box plots.

Part II explains in detail how this VA paradigm is applied to analyze three classes of homoge-
neous data: set-typed data, classification data, and categorical data.

3.6 Comparison with Related Work

The proposed VA approach enables new insights in and analysis possibilities of homogeneous
data beyond the state of the art. In the following, I compare the presented approach with the
generic visualization methods presented in Chapter 2, depending on what is represented in the
visualization and by scalability. Part II compares the approach with other techniques dedicated
to visualize each of the respective classes of homogeneous data.
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3.6.1 Comparison by What is Represented

Scatterplot matrices (SPLOMs) [56] provide details about how two dimensions correlate with
each other, by showing how individual data points are scattered with respect to each pair of
dimensions. Parallel coordinates plots (PCPs) [69] show this information between adjacent
dimensions by means of connecting lines. Biplots [50] show this information implicitly, by
means of distances between points representing projected dimensions on a 2D plane. The table
lens [120] shows this information between one dimension that defines the table sorting, and the
other dimensions. The proposed analytical methods summarize these relations between all the
dimensions by means of similarity measures that are visualized as links in the wheel metaphor.
This provides a compact overview of these relations, and additional information about groups of
dimensions that are closely related together. Details about certain relations can be explored on
demand, for example, in scatter plots. Fig.3.8 shows the same data depicted in Chapter 2 using
the generic multi-dimensional visualization techniques mentioned above.

Figure 3.8: The wheel visualization showing the homogeneous data depicted in Fig. 1.1. Chap-
ter B provides more information about the visualization.

In addition to the relation between dimensions, the proposed approach also computes aggre-
gated association information of elements with dimensions, and visualizes this information as
histograms. In contrast to the table lens [120], these histograms are depicted individually for
each dimension, providing an overview of these associations for all dimensions at once.
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Heat maps and matrices [56] offer a competing design to the node-link metaphor used to
show the relations between the dimensions. Ghoniem et al. [51] compare between matrices and
node-link diagrams and provide guidance on which metaphor is suited for which tasks and data
complexity. It is easier to visually follow the link ends to infer the involved pairs of dimensions,
than to follow separate rows and columns to infer the dimensions involved in the cells. However,
this holds only as long as the number of links is small, since otherwise, the visual clutter will
imbed visual navigation. The total number of symmetric binary relations betweenm dimensions
is
(
m
2

)
. When the number of significant relation varies relatively in small range [m..2 ∗m], the

node-links allow fast detection of these relations as thick links (assuming the remaining links
are thin and not relevant for the analysis). Heat maps are better suited to gain overview of
the relations when the number of significant relations is large. Cell color is also more suited
to reveal small differences than link thickness, as the latter varies in a small range. Finally,
matrices scale better in the number of dimensions (e.g., m = 200) than node-link diagrams.
Nevertheless, the wheel metaphor has its advantages, when the number of dimensions is small
m ≤ 30. The histograms showing aggregated associations of the entities with the dimensions
enable to visually relate this information with the dimension relations visualized via the links.
Including this information in the matrix design is cumbersome, as its layout dictates how the
space is divided, leaving limited space to show information at the boundaries. Fig. 3.9a shows
how placing the histograms in a matrix layout limits their resolution and utility, even when they
are scaled differently (which prevents direct comparison of their bars). Assigning visual primacy
to the histograms enables better utilization of the space, even when they are scaled uniformly
(Fig. 3.9b).

Figure 3.9: Comparison between a matrix-based design and the wheel design showing the
same data. Chapter B provides more information about the depicted data.
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3.6.2 Scalability

There are three aspects of visual scalability when visualizing homogeneous data:

• Scalability in the number of dimensions: The wheel metaphor can visualize about 20−
40 dimensions as sectors in a radial layout. With a larger number of sectors, the space
assigned to the histograms becomes smaller, which undermines their value. Also, the
crossings between the links and the associated visual clutter increases. The actual limit
depends on the given dataset, and whether the histograms are divided as in Fig. 3.4a.

In some datasets, the number of actual elements included in each histogram varies strongly,
making few histograms occupy the majority of the space, while the remaining histograms
are depicted at lower resolution. One way to handle such cases is to assign equal spaces
to the sectors and to scale the histograms differently to fit in the sectors. While this hin-
ders absolute comparison of the length between different histogram bars, it still allows
comparing the overall distributions, by comparing the histograms shapes.

One way to handle a larger number of dimensions is to include only a subset that fits in the
visual limits, as explained in Sect. 3.2.2. The interactive exploration environment allows
selecting the dimensions to be included in the wheel view interactively, based on informa-
tion depicted in the overview views (Fig. 3.6). The remaining dimensions can either be
excluded or aggregated into one special group with a suitable label (e.g., “others”). For
example, dimensions that represent sets can be merged using set union. In case the dimen-
sions exhibit a hierarchical aggregation, the analysis can be restricted to the aggregation
levels that fits into the visual limits, with certain groups expanded on demand.

• Scalability with the number of data points E = {e1, ..en}: The wheel metaphor ex-
hibits high scalability with the number of entities n, thanks to the aggregations described
in Sect. 3.2.2. Only a total of m× k histogram bins are used to show aggregated entities,
instead of showing all the n entities individually (where k is the number of bins used for
binning the association values). This allows analyzing datasets where n is in the order of
tens to hundreds of thousands, as illustrated in Part II.

• Scalability with the number of additional heterogeneous attributes: The wheel metaphor
is limited in its ability to show additional attributes of homogeneous data. It can use color
to show information of how one attribute is distributed in the entities aggregated in the
histogram bars. In case the attribute is categorical, only a few categories ≤ 7 can be
displayed by dividing the bars into sections. In case the attribute is numerical, only a sum-
mary statistic about its values among the aggregated entities can be displayed, such as the
average or the median.

The detail views compensate for this limitations, by visualizing the attributes at a higher
resolution and level of detail using suited visualizations such as bar charts, histograms.
Multiple attributes can be visualized at once. Also, compact visualizations such as box-
plots can be used to compare the distribution of multiple attributes (e.g., 20 attributes)
between different subgroups of the data (Fig. 3.5).
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Figure 3.10: Scalability limitations of the wheel metaphor. The visualization shows classifica-
tion results of Latin letter in 26 classes (see Chapter B for more details about this application).

The wheel metaphor is hence more scalable with the number of data points than SPLOMs
[56] or biplots [50] that depict these points individually. It is also more scalable than PCPs [69]
both with the number and dimensions and data points. Compared with the table lens [120], the
wheel metaphor exhibits similar scalability limits, given that multiple rows can be aggregated in
one row in the table lens. Compared with a heat map showing raw data values (Sect. 2.1.5), the
wheel metaphor is significantly more scalable in the number of data points, if the heat map does
not aggregate the row items. Aggregating the rows of a heat map usually leads to information
loss, and the result heavily depends on the row order.

With respect to computational scalability, the presented methods allow fast automated anal-
ysis of large volumes of homogeneous data, encompassing tens of homogeneous attributes, tens
of additional heterogeneous attributes, and hundreds of thousands of data points. This is because
the proposed association and similarity measures (Sect. 3.2) are fast to compute in a straightfor-
ward way based on the given equations, and do not involve complex computations. Furthermore,
many of these values can be pre-computed at the beginning of the analysis, without a need to
be re-computed upon interaction. The correlations with the additional attributes, and the signif-
icance analysis of their deviations between multiple groups can also be computed efficiently for
the selected entities during the analysis. Finally, producing the visual layout from aggregated
data is computationally inexpensive. Besides simple geometric computations, an O(m2) greedy
algorithm is employed to compute the sector ordering, as explained in Sect. A.3.1.
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3.7 Evaluation and Limitations

This section summarizes the evaluation results of the proposed approach, conducted using dif-
ferent methods. I first explain how the proposed visual design was revised based on a pilot
evaluation study of an earlier design. Then I explain the evaluation methods used for each appli-
cation, and summarize the results. Finally, I report perceptual limitations of the proposed design
that impact the accuracy of perceiving the depicted information. Part II provides more details
about evaluation results for each of the three design instantiations.

3.7.1 Early Item-based Visual Design

The wheel metaphor proposed in Sect. 3.3 is based on an earlier design developed by the author
[6]. This design also uses a radial layout to show the homogeneous attributes as sectors, and
links to show relations between them. However, the data points were depicted as individual dots
inside these sectors, without aggregation into histograms (Fig. C.3c). The radial location of a dot
encodes information about the association of the respective entity and homogeneous attribute.
The angular location encodes no information and is used to alleviate overplotting the dots.

The early design was evaluated via a qualitative pilot user study to assess its utility and us-
ability [114]. The study was conducted by the Institute for Design & Assessment of Technology
at the Vienna University of Technology. The data used for the evaluation was a 94 × 9 con-
tingency table, extracted from a medical survey. The rows represent 94 survey questions, the
columns represent answer agreements between teachers and parents. The table was visualized
using the early version of the contingency wheel [6], with many features disabled to simplify
the user interface [114]. The participants were ten computer scientists, five of which were vi-
sualization experts. After a tutorial part, the participants were asked to select and filter certain
data elements and to answer questions about the visualization and the data sets. A qualitative
assessment of the visualization was conducted based on the participants’ responses.

As the study shows, most participants state that the radial layout provides a good first
overview of the entire data, without a need for scrolling, and with the ability to select certain
items for investigation. Additionally, the participants appreciated filtering and the possibility to
explore the underlying data in a linked tabular view. On the other hand, the participants found
difficulty in interpreting the links and the locations of the dots in the sectors (as the angular
location is arbitrary). They also found the overall design to be very complex to understand.

3.7.2 Revised Visual Design

The wheel metaphor as presented in Sect. 3.3 was designed by revising the original design based
on the results of the pilot user study. The main difference lies in aggregating the entities into
histograms, instead of showing them as individual dots. This avoids confusion about what the
angular locations of the dots represent, as the length of the histogram bars encodes information
about their quantity. Informal follow-feedback from four visualization experts encourages this
decision. These experts find histograms to be a good way to represent the information in aggre-
gated form since histograms are easier to interpret than individual dots, besides avoiding several
issues with overplotting and layout artifacts caused by the dots.
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The revised wheel metaphor is applied in this thesis to visualize three different classes of
homogeneous data, where different forms of evaluations were used for each class:

Classification data: This application targets machine learning users who aim to understand
and compare the behavior of their classification algorithms on a given dataset. As explained in
Chapter B, the visual design was adjusted to fit the nature of classification problem, and was
refined iteratively based on feedback from machine learning experts. Chapter B provides usage
scenarios with real datasets as well as details about expert feedback on the visualization design.
Seven machine-learning experts and practitioners provided feedback based on an interactive in-
teractive prototype. Additionally, nine experts reviewers provided anonymous written feedback
based on a manuscript that describe the work. The experts agree that the design provide a good
overview of the data, and reveals interesting patterns that explain the classifier behavior. How-
ever, about half of them find the design complex and requires extensive training and explanation
to understand. These experts consider the presented system useful for analyzing classification
data if the metaphor is understood correctly.

Overlapping sets: Overlapping sets are the simplest class of homogeneous data addressed
in this thesis. Chapter A provides usage scenarios using the wheel metaphor with real set-based
data. Chapter 4 provides case studies with domain experts in gene analysis and survey analysis,
as well as example applications in machine learning and information retrieval.

In a recent work, Rajjo [118] conducted a task-based quantitative evaluation of the wheel
metaphor for visualizing overlapping sets. The MovieLens dataset [53] was used for the evalua-
tion, encompassing membership information of 3, 883 movies into 17 genres, along with movie
release date and average rating. 32 participants were university students having different back-
grounds including computer science, engineering, management, and social sciences. After a
20-30 minutes tutorial part, the participants were asked to use the visualization to answer 53
questions about the data, as well as to provide qualitative feedback about their experience with
the visualization. The questions were divided into three groups, according to a recent task tax-
onomy [8]: tasks related to element-set memberships, tasks related to set relations, and tasks
related to element attributes. Example questions are: “Name a movie that belongs ONLY to
Thriller genre”, “How many movies belong to Musical and Children at the same time?”, and
“Name a genre that tends to have a low average rating”. The questions in each group were also
divided further into three levels of difficulty, based on the number of set operations or deaggre-
gation levels needed to solve the tasks. The performance was measured in terms of the time
needed to answer the questions and the correctness of the answers. Table 3.1 summarizes the
average performance measurements for each of the task groups and difficulty levels.

Based on the evaluation results, Rajjo concludes that the visualization is effective at solv-
ing the evaluated tasks, given that the users were provided with sufficient training and exam-
ples (about 20-30 minutes). The qualitative user feedback he collected also confirms that the
metaphor is straightforward to learn with all users agreeing that histograms were intuitive to
perceive a groups of elements. Two users found the sectors difficult to perceive as sets, and three
users found the links difficult to perceive as set overlaps. Refer to [118] for more details about
the experiment design and the result analysis.
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Element-related Tasks Set-related Tasks Attribute-related Tasks
Difficulty Correctness Time Correctness Time Correctness Time

Easy 100% 32.2 99.5 36.5 100% 57,4
Intermediate 99.5% 31.1 98.8% 40.8 100% 64.4

Hard 85.6% 58.9 86.5% 112.3 97.7% 90.7
Overall 94.7% 39.6 95.6% 59.1 99.3% 70.9

Table 3.1: Rajjo’s evaluation results [118] of the Radial Sets visualization (Chapter. A). Cor-
rectness is computed as the rate of correct answers of questions in each task group and difficulty
level. Time is computed as the average time in seconds needed to answer these questions. Refer
to [118] for information about confidence intervals of the above values.

Categorical data / contingency tables: This application scenario targets the analysis of
associations between the categories of two categorical attributes, measured as disproportionally
high (or low) frequency for pairs of categories to appear together. Chapter C provides usage
scenarios using the proposed visualization with public data sets on movies rated by users [53].
It demonstrates how the visualization helps in identifying strong associations between movie
genres and users or between user occupations and movies. It also demonstrates how coloring
helps in correlating these associations with additional attributes of the users and the movies.

The informal feedback collected by the author from more than ten visualization experts and
practitioners 2 suggests that the visualization as proposed in Chapter C is rather complex to un-
derstand. It requires a lot of explanation and a strong understanding of the mathematical notion
of categorical associations. The filtering and interaction possibilities proposed were also not
straightforward to apply, particularly in understanding their effects. This is partly due to the
inherent complexity of contingency data [114]. Based on these remarks, the depicted informa-
tion needs to be simplified and more annotation and visual aids should be provided to facilitate
understanding. Other visual representations are potentially better suited to represent association
information than histograms. In particular colored bins or matrix cells are probably suited to
show which categorical combinations are highly associated with each other, as demonstrated by
Bernard et al. [15]. More work is needed to make such matrix-based representation as scalable
as the histograms.

Based on the above findings, the wheel metaphor is best suited to visualize overlapping
sets. This is mainly due to the simplicity of this data type and the intuitive concepts associated
with sets and set algebra that are used for the visual mapping. The metaphor is also suited to
visualize probabilistic classification data, given that (1) users have enough experience with the
notion of such data and associated concepts such as class probabilities, class confusions, false
positives, etc. (2) users are given sufficient training to understand the visual mapping and the
interaction possibilities. Finally, the metaphor is less suited to show contingency data, as to the
average users, the visualization and the underlying mathematical concepts might be too complex
to understand.

2This feedback was received to a poster at the IEEE VisWeek 2012 conference in Seattle.
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3.7.3 Perceptual Limitations

The radial layout of the wheel metaphor suffers from perceptual limitations that impact the
accuracy of reading the histograms bars. The two main limitations are related to how the actual
bar lengths are perceived, and how they can be compared against each other.

When the wheel sectors are created by dividing a ring charts, the histogram bars need to
be bent accordingly to fit in these sectors and to have equal bar thicknesses. However, the
innermost bar of a histogram is placed on a smaller circle than the outermost bar. This makes
bars of identical length appear differently, as the innermost bar spans a larger angle than the
outermost bar, making them appear longer (Fig. 3.11a). This effect is minimized when the bars
are short, as short arcs are perceptually flattened [123]. It is also possible to manipulate the bar
lengths to make equal bars appear of the same length.

Figure 3.11: Perceptual issues with the wheel metaphor: (a) bending histogram bars causes
bias in length perception, (b) the radial arrangement of rectangular sectors causes bias in shape
perception, (c) closing the white gaps in (b) might lead to artificial 3D cues.

An alternative to bending the histogram bars is to flatten the sectors. In Fig. 3.11b, the
sectors are depicted as rectangles with a radial arrangement. However, this causes irregular
spacing between the sectors, and distorts the perception of rectangles that appear as trapezoids.
A solution for these issues is proposed in Fig. 3.11c. Sectors are extended to fill the irregular
spacing, leaving equally-sized gaps between the sectors. This however, adds artificial 3D cues
to the sectors. Furthermore, flattening the sectors distorts the symmetry of the radial layout,
especially when sectors vary significantly in size.
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Another issue with the histograms is that the bars are centered in their sectors instead of hav-
ing a baseline. The rationale behind this layout is to avoid artificial asymmetry across histograms
in different sectors, and to make comparing their shapes easier. Moreover, the symmetry facili-
tates perceiving the histograms as figures or objects in their sectors following Gestalt laws [165].
This emphasizes the fact that the elements aggregated in the histogram are contained in the re-
spective sectors which represent sets, classes, or categories.

Both the radial arrangement and the centered layout of the histograms impact the accuracy
in perceiving and comparing the length of different bars. Therefore, the wheel metaphor is
suited to provide an overview of item distributions in different sectors. Other views are needed
to perform precise comparisons between or judgment about certain values. Nevertheless, the
overview is useful to detect different distribution patterns, and to find gaps or extreme values in
certain histograms.
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CHAPTER 4
Example Applications

Chapter 3 presented the VA approach proposed in this thesis for analyzing homogenous data. Part
II explains in detail how this approach is applied to three classes of homogeneous data, along
with example applications. The next sections describe two actual applications of the approach in
case studies with domain experts, along with two additional example applications. These studies
and examples involve analyzing set-typed data, that are the most common data class addressed
in this thesis. Probabilistic classification data stem for a specific application example described
in detail in Chapter B. Contingency data are more restricted in applications than set-typed data
due to their complexity, as discussed in Sect. 3.7.

4.1 Analyzing Genetic Data

This application is concerned with the exploration of genetic data among a diverse set of indi-
viduals. This problem encompass the following aspects, following the design triangle [104] for
creating user-centered design of VA solutions:

• Users: A collaborator specialized in genetics and working as post-doctoral research fellow
in the school of medicine at Stanford University. He contacted the author after he read
about the set visualization technique proposed in Chapter A, and found it potentially suited
for his application.

• Data: The collaborator provided a dataset that encompasses 9, 651 differentially-expressed
gene transcripts for 14 individuals. Each of the individuals possesses a set of transcripts.
These sets are intersecting, since the same transcript can be expressed in multiple individ-
uals. The set elements are the transcripts. These elements have attributes such as RNA
expression, ribosome occupancy, translation efficiency, and protein level.

• Tasks: The collaborator wanted to analyze the intersection relations between these gene
sets. He was also interested in analyzing how an attribute is distributed in different sets
and set intersections.
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Figure 4.1: Visualization of gene transcripts in 14 individuals. The transcripts are colored by
their translation efficiency.

The gene transcripts × individuals data can be visualized using Radial Sets, an instantia-
tion of the proposed VA approach for visualizing overlapping sets. Fig. 4.1 shows an example
of this visualization. The sectors represent the individuals, with histograms representing their
gene transcripts. These histograms provide an overview of how many genes each individual
shares with how many other individuals, as requested by our collaborator. An arc between two
individuals represents genes shared between them. The bar color is mapped from „translation
efficiency“ of the gene transcripts and shows the median of this attribute among the transcripts
aggregated in the bar. The visualization enables flexible selection and filtering of certain gene
transcripts, such as ones exclusive to a specific individual, or shared between two specific indi-
viduals. The selected gene transcripts are accessible in a tabular list, along with their attributes.
This list can be exported for further analysis in other programs, as requested by our collaborator.
Using these features, our collaborator was able to gain the following insight in the data:

• Similarities between individuals roughly but not perfectly recapitulate the population that
they are coming from.

• The individual relationships are highly consistent globally between RNA expression and
Ribosome Occupancy.

• Overall, the type of genes that are differentially expressed fall into specific categories
when comparing RNA Expression vs. Ribosome Occupancy.
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The collaborator commented on his experience with the visualization as follows:

„I also think that the true power of the approach is to enable other researchers to look at their
favorite sets of genes or GO1 categories. Therefore, I think it will be very useful to include the
GO categories“.

More details about this application can be found in the following upcoming article: Cenik
et al: „Integrative analysis of human variation in RNA expression, translation efficiency and
protein levels“, 2014 under review.

4.2 Survey Analysis

Survey data is rich of information that enable analyzing the relation between the survey answers
and relating the subjects’ attributes with these answers. Binary yes/no survey questions define
sets over the survey subjects. Each of these sets contain those subjects who answered the re-
spective question with „Yes“. Another case where sets arise in survey data are questions that
allow crossing multi-choices as answers, such as the languages an applicant masters. Each of
these choices define a set over the survey subjects containing subjects that crossed this choice
(possibly besides other choices).

This application encompasses the following aspects:

• Users: A collaborator specialized in communication sciences and working as Assistant
Professor (affiliation removed to prevent identification). He contacted the author after
finding the visual metaphor presented in this thesis potentially suited for his application.

• Data: The collaborator provided a dataset that encompasses subject answers to 10 yes/no
questions.

• Tasks: The collaborator was interested in analyzing how the answers to certain questions
influence the answers to other questions. He was also interested in analyzing if an attribute
of the subjects influence their answers.

The survey data can be visualized using Radial Sets, an instantiation of the proposed VA
approach for visualizing overlapping sets (Chapter A). Fig. 4.1 shows an example of this visual-
ization. Each question represents a set (question names anonymized). The histogram in each set
represents subjects who answered the respective question by “Yes”. These subjects are grouped
into bars according to how many questions they answered by “Yes”. The bars are colored by an
attribute of the subject.

The collaborator appreciated the insight provided by the visualization, in particular, to find
questions that were more often answered by ‘Yes” together. He also appreciated the interaction
possibilities to select certain subjects based on their answers and to explore their attributes.

1Gene ontology.
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Figure 4.2: Visualization of survey answers, represented by sectors.

4.3 Comparing Multiple Classification Algorithms

Classification is a central problem in machine learning, involving predicting the class (out of
many classes) a given sample belongs to. When the ground truth is available, it is possible to
compare the predicted classes with the actual classes of the samples, to assess the classification
performance. Multiple classification algorithms can be compared against each other by means
of overall performance. However, even when algorithm A has higher performance than algo-
rithm B, there are samples that algorithm A classifies better than algorithm B. This leads to the
following analysis problem:

• Users: Machine learning experts.

• Data: Classification results of a set of samples by multiple algorithms. These algorithms
can be modeled as sets over the classification samples, with each set containing the sam-
ples that are correctly classified by the respective algorithm. The samples can have further
attributes such as their actual classes or the data features used for classification.

• Tasks: Comparing multiple classification algorithms in detail, beyond comparison of
overall classification rates. This involves finding which samples are correctly classified
by certain algorithms and not by other algorithms, and what the actual classes and the
data features of these samples are.
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Figure 4.3: Comparing multiple classification algorithms, represented by sectors. Each sector
contains samples classified correctly by the respective algorithm. The samples are grouped and
filtered by their degrees and are colored by their actual classes.

Fig. 4.3 shows a visualization of classification data computed by eight classifiers. These
classifiers were developed by Joanneum research center during the CLEF-IP 2011 classification
evaluation campaign2. These classifiers are depicted as sectors. The dataset being classified
comprises 1,000 patent images that are classified into nine classes as described in the color leg-
end. These samples are depicted as histograms and are colored by their actual classes. The his-
tograms reveal that all samples correctly classified by „BETELGEUSE“ were also correctly clas-
sified by at least one other classifier. This is revealed by the outermost bin, where set-exclusive
elements are depicted, being empty. To focus the analysis on samples that were more specific
to their classifiers, samples that were recognized by the majority of classifiers (five to eight) are
filtered out. This shows that the classifiers „ALPHANUMERIC“ and „BETELGEUSE“ excel
at classifying „graph“ images, compared with the other classifiers. On the other hand „PRO-
CYON“ excels mainly in classifying images of classes „drawing“ and „chemical structures“.
There is also a visible cluster of three classifiers („CANOPUS“ „SIRUS“ and „RIGEL“) that
frequently succeed on the same samples while the other classifiers fail. It is also possible to
color the samples by their attributes, to see if certain classifiers perform better than most of the
others for certain attribute values.

2http://www.ir-facility.org/call-for-participation1 - accessed Aug 1, 2014
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4.4 Supporting Faceted Search

Faceted search [153] is an information-retrieval technique which assumes that the data items
being searched can be multi-classified into facets. This classification paradigm assigns one more
facets to the data items, based on their properties. The items are retrieved based on these facets,
where users can define which facets they want to include in the search results. Very often, few
or no search results are returned that satisfy all search facets, which causes the user to iteratively
refine her search. This process is not only tedious and time consuming, but it might cause the
user to miss relevant results that partially satisfy the search constraints. The user needs to gain
an overview of how many data items satisfy each combination of her search facets. This leads
to the following analysis problem:

• Users: information seekers who search data items by their facets.

• Data: multi-faceted data items, where one data item might satisfy multiple search facets.
Each facet can be defined as a set containing data items that satisfy it.

• Tasks: (1) gaining overview of how many data items satisfy different combinations of
search facets, and (2) defining search queries iteratively based on which facets can still be
satisfied among items that satisfy selected facets.

Figure 4.4: Visualization of multi-faceted search data. Bubbles are depicted instead of links to
indicates all facet combinations. This demonstrates the extensibility of the wheel metaphor.
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Fig. 4.4 shows the proposed set visualization for multi-faceted data. The sectors represent the
search facets, with a histogram in each sector showing the data items that satisfy the respective
facet. This histogram distinguishes between the items in each facet by how many other facets
they satisfy. Items that satisfy only one facet are included in the outermost histogram bars next
to the facet label. Items that belong to two facets are included in the next histogram bar, and so
on. Hence, the histogram bars closer to the central area contain items that belong to more facets.
It is possible to see immediately from the visualization, if items satisfying a certain search facet
tend to satisfy other facets or not. For example, items satisfying ‘facet G’ in Fig. 4.4 cannot
satisfy other search facets, whereas all items satisfying ‘facet B satisfy two or three other facets.

Instead of showing links between pairs of facets, the visualization shows how the items
are distributed into all facet combinations by means of bubbles in the inner area. The bubbles
are organized into concentric rings, with the outermost ring containing combinations between
pairs of facets, the next ring contains combinations between three facets, and the innermost
ring contains combinations between four facets. The size of a bubble encodes the number of
data items that satisfy the respective facet combination. The bubbles are sorted by size in the
respective ring. To avoid visual clutter, the visualization initially does not indicate which facets
are involved in a specific bubble. This information can be obtained on demand by hovering the
mouse over a bubble. The respective facet combination is shown in a tooltip and can additionally
be highlighted by means of visual links between the bubble and the respective sectors. It is
possible to include rings starting for a specific number of facets, to focus on items that satisfy as
many facets as possible.

Interaction allows selecting certain items in the visualization to explore these items in detail.
The exploration environment allows showing selected search items in a tabular lists, along with
their attributes. The visualization helps the user in interactively defining her faceted search
query. For example, the user can start by selecting ‘English’ as an important skill when searching
for a job candidate. This highlights matching portions of all histograms for all facets. Based on
this visual guidance, the user can iteratively check and decide which facets can still be satisfied,
and then narrow the search by combining selections using ‘AND’ operator.

This application demonstrates the extensibility of the wheel metaphor to address the specific
requirements of certain applications. It was possible to replace the links between pairs of sectors
with bubbles that represent the intersection between multiple search facets, and to organize these
bubbles by the number of facets involved in them. Chapter. A provides more details about this
extension and how it can be applied to visualize information specific to set-typed data. It also
demonstrates how hyperlinks of degree 3 or 4 can be shown between the bubbles and the sectors.
Further details about the applications of this visualization to multi-faceted search are available
in [9].
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CHAPTER 5
Conclusion

I conclude this thesis by summarizing the main contributions and limitations and by revisiting
the hypotheses and research questions. I also reflect on the lessons learned from the conducted
research, and discuss possible research directions for future work in the research topic addressed
by this thesis.

5.1 Summary of Contributions and Limitations

This thesis contributes novel VA methods for analyzing three classes of data:

• Element-set memberships (set-typed data).
• Probabilistic classification data.
• Categorical data / contingency tables.

It proposes a unified VA framework for these three classes of data by modeling them as instances
of a broader class of homogeneous data. This framework encompasses:

• Automated analysis methods to abstract the data.
• Novel visualization methods to show important relations in the data.
• An interactive environment to explore the data at multiple levels of abstraction.

The thesis identifies the characteristics of homogeneous data, and the new analysis and visu-
alization opportunities enabled by the homogeneity of the data. Homogeneous data encompass
multiple dimensions that have the same nature, as a special case of multidimensional data. The
thesis demonstrates how the unified VA framework supports various analysis tasks of the data
classes listed above. An evaluation is conducted by means of user studies and use cases.

Several applications of the proposed VA approach are demonstrated with various datasets
stemming from different domains. Examples include gene analysis, survey analysis, under-
standing classifier behavior and analyzing its performance, comparing classification algorithms,
and supporting multi-faceted search.
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The following list summarizes the major advantages of the proposed approach:

• Providing an overview of large homogeneous data encompassing thousands of data items.
• A high scalability with the number of data items, thanks to automated analysis methods

that aggregate the data, and to the aggregation-based visual metaphor.
• Gaining new insights in data of the classes listed above beyond the state of the art.
• Enabling new analysis possibilities in homogeneous data, thanks to the multiple-level

overview+detail exploration environment.

The following list summarizes the major disadvantages of the proposed approach:

• The complexity of the visual metaphor, which requires sufficient user training.
• The scalability with the number of dimensions is limited to about 20-40 dimensions.
• The visual metaphor exhibits low sensitivity to small differences in the data.
• The radial layout suffers from perceptual issues that impact the accuracy of reading and

comparing the depicted values.

The evaluation results presented in Chapter. 3 suggest that the proposed methods are best
suited for analyzing set-typed data, due to the simple notion of sets and set relations. In addition,
the methods are useful for analyzing probabilistic classification data, given that the users are
given sufficient training. Finally, the methods are less suited for analyzing categorical data
summarized in contingency tables, as the proposed visual metaphor does not dierctly map to
contingency tables.

5.2 Revisiting the Hypotheses and Research Questions

The thesis started with the following hypotheses and research questions (Sect. 1.2.4:

H1: VA methods provide new insights in and analysis possibilities of homogeneous data,
that are difficult to gain or perform using automated data analysis method.
This hypothesis is confirmed based on the case studies presented in Chapter 4 and the use cases
presented in Part II. These cases demonstrate how the proposed VA methods enabled users and
domain experts to understand and analyze their data and provided insight into interesting rela-
tions and patterns in the data, these experts were not aware about before. Sect. 3.4 demonstrates
how interactive visualization is vital to steer automated analysis of homogenous data, which
would be hard to perform without visual inspection.

H2: The structural similarities between different classes of homogeneous data enable re-
using interactive visual analysis solutions across these classes.
This hypothesis cannot be confirmed, and needs further study to confirm or reject. The unified
VA approach proposed in this thesis was applied to three different classes of homogeneous data,
as demonstrated in Part II. While this approach reveals new insights in each of these data classes,
it requires sufficient learning in order to apply and to interpret the results correctly. The users
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who participated in the user studies and the domain experts who led the case studies were con-
fronted with one data class only. It remains unclear if users can adapt to use the same visual
metaphor for analyzing a different class of data than the ones they learned first. Chapter. 3 tech-
nically demonstrates how the same abstraction can be applied to multiple classes, leading to a
unified interpretation of the visualization (e.g. items that have high or low association with a di-
mension). However, when this abstraction is applied to a concrete data class, these associations
have specific interpretations (e.g. set-exclusive vs. set-shared elements, or high vs. low class
probability) that might confuse the users if they are combined in the same application.

Q1: How to analyze the association relations between a large number of row entities E
and the m homogeneous column categories represented by the attributes A1 . . . Am?
Automated analysis is crucial to quantify these relations (Sect. 3.2.1), aggregate them into bins
(Sect. 3.2.2) and to focus on the most relevant relations (Sect. 3.2.3). Aggregation-based visual
representations (Sect. 3.3) together with an interactive exploration environment (Sect. 3.4) are
crucial to explore these relations at multiple levels of abstraction, in a scalable way.

Q2: How to analyze the correlation between homogeneous attributes A1 . . . Am?
Automated analysis is crucial to quantify and summarize these correlations (Sect. 3.2.4). A ra-
dial node-link layout (Sect. 3.3) is suited to provide a compact overview of these relations and
of groups of highly-correlated attributes. Interactive exploration (Sect. 3.4) is vital to analyze
the summarized correlations between certain attributes in more detail.

Q3: How to analyze the influence (in both directions) of additional attributes Fk of the
row entities on the row-column associations (Q1) and attribute correlations (Q2)?
Automated analysis is crucial to compare the attribute distributions between different groups of
data, to find significance differences between these distributions, and to measure the separability
of these groups by the attribute (Sect. 3.2.5). Visualization is crucial to gain an overview of
attribute distributions in different parts of the data (Sect. 3.3). Interactive exploration (Sect. 3.4)
is crucial to select certain groups of data in order to analyze their attributes in detail.

5.3 Lessons Learned

The general lesson learned in this thesis is that VA is crucial to analyze large data sets that cannot
be visualized in their entirety, and where automated analysis is very limited. More specifically,
with respect to homogeneous data:

• Automated analysis is vital to reduce large volumes of data and to compute the most
relevant information for interactive analysis, as stated by Keim in his VA mantra [79].

• Aggregation is an effective data reduction method coupled with an overview+detail ex-
ploration environment to retrieve individual elements that are aggregated in the overview.

• Homogeneous data lend themselves to new forms of aggregation and filtering, beyond the
ones applicable to multi-dimensional data in general. Exploiting the homogeneity of the
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data is key to computing effective aggregations and filtering that take into account the
specific nature of the data and the tasks associated with them.

• Developing a new visual metaphor might result in a complex visualization that requires
extensive training to understand and use effectively. Nevertheless, once understood, the
visualization can lead to new insight and discoveries in the data.

• Set-typed data, encompassing element-set memberships along with element attributes,
comprise a widely applicable and powerful data type. The raw data and the results of
automated analysis are easy to understand, thanks to the simple notion of sets.

5.4 Future Work

Here I list open issues that were not addressed in this thesis, as well as potentially fruitful re-
search directions for visualizing homogeneous data. Part II gives further pointers to research
challenges specific to the respective class of homogeneous data.

Reducing the visual complexity One of the main limitation of the proposed VA approach is
visual complexity. This can be addressed by investigating how to reduce the amount of informa-
tion being depicted. Interactive filtering techniques could also offer a solution to this issue by
allowing users to focus on certain relationships and attributes at a time.

Scalability with the number of dimensions The proposed visual metaphor can handle about
20 to 40 dimensions. One way to increase this limit is to investigate new forms of aggregations
for homogeneous data, especially for set-typed and categorical data. These forms could further
reduce the volume of the data. For example, hierarchical aggregation and exploration techniques
could help to group certain dimensions and to expand them on demand.

Attribute hierarchies In some cases, the homogeneous attributes belong to a intrinsic hierar-
chy. For example, a classification can be defined at a coarse level which includes a small number
of classes or at finer levels that specify the classes more narrowly. Dedicated methods should
be investigated to support interactive exploration of such hierarchies and to analyze the relations
and associations in the data at multiple levels of the hierarchy.

Interaction The main focus of this thesis was on developing computational methods and vi-
sual representations, where interaction was rather an afterthought in the proposed design. Ef-
fective and usable interactions add a lot of power to the visual representations and allow cus-
tomizing the visualization to fit specific data characteristics and user needs. As mentioned in the
previous points, new interactions can be investigated to reduce the visual complexity, to merge
or aggregate certain parts of the data, and to support flexible and usable hierarchical exploration.
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Evaluation Further evaluation of the proposed methods is needed to assess which features
and parts of the design are useful, and which ones need to be revised. It is also important to
perform comparative task-based evaluations of the proposed visualization against other visual-
ization techniques and against alternative visual designs.

Alternative visual designs Several alternative visual designs can be proposed to show the
information encoded in the wheel visualization. One alternative is to visually separate the entity
associations (depicted via histograms) and the attribute relationships (depicted via links) and
to use simpler representations for both pieces of information. Another alternative it to show
relationships implicitly or on demand instead of showing all of them explicitly in one overview.
This allows using a linear layout to avoid the complexity as well as the perceptual and scalability
limitations of the radial layout. Finally, a matrix-based layout is a competing alternative that
could reduce the visual complexity and provide a rich overview of the data.

Additional application examples Several application domains could profit from the methods
proposed in this thesis. In particular, the field of computational biology and bioinformatics
require analyzing large volumes of data that exhibit similar characteristics to the data classes
investigated in Part II. Analyzing such datasets with the proposed methods can lead to better
understanding of the data relations and might reveal hidden patterns and enable new discoveries
in these fields. Multi-faceted search is also a promising application area that might profit further
from analyzing set relations, as explained in Chapter. 4. Investigating such applications can
also introduce refinements and alternatives to the proposed methods and help in assessing which
features are more useful in actual applications than other features.

Other classes of homogeneous data There are other classes of data that can potentially profit
from the VA paradigm proposed in this thesis. For example, a homogeneous data table might
contain nominal values instead of binary values, probabilities, or frequencies. Additionally,
fuzzy element-set memberships result in real and continuous values instead of discrete binary
values. Identifying such classes and the tasks associated with them allows investigating the
applicability of the proposed methods to analyze such data to gain new insight that was not
possible before.

61





Part II

Papers

63





CHAPTER A
Radial Sets: Interactive Visual

Analysis of Large Overlapping Sets

Appears in IEEE Transactions on Visualization and Computer Graphics, 19(12):2496-2505,
2013.

Abstract: In many applications, data tables contain multi-valued attributes that often store
the memberships of the table entities to multiple sets such as which languages a person masters,
which skills an applicant documents, or which features a product comes with. With a growing
number of entities, the resulting element-set membership matrix becomes very rich of informa-
tion about how these sets overlap. Many analysis tasks targeted at set-typed data are concerned
with these overlaps as salient features of such data. This paper presents Radial Sets, a novel
visual technique to analyze set memberships for a large number of elements. Our technique
uses frequency-based representations to enable quickly finding and analyzing different kinds of
overlaps between the sets, and relating these overlaps to other attributes of the table entities.
Furthermore, it enables various interactions to select elements of interest, find out if they are
over-represented in specific sets or overlaps, and if they exhibit a different distribution for a
specific attribute compared to the rest of the elements. These interactions allow formulating
highly-expressive visual queries on the elements in terms of their set memberships and attribute
values. As we demonstrate via two usage scenarios, Radial Sets enable revealing and analyz-
ing a multitude of overlapping patterns between large sets, beyond the limits of state-of-the-art
techniques.

keywords: Multi-valued attributes, set-typed data, overlapping sets, visualization technique,
scalability.
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Figure A.1: The main interface of Radial Sets: (a) the sizes of the overlapping sets, (b) a
histogram of the elements by degree, (c) the Radial Sets view showing n > 50, 000 papers multi-
classified into 11 ACM classes [1]; hyperedges of degree 3 are depicted to indicate overlaps
between triples of sets; selected portions are highlighted in the bars and in the bubbles), (d) a list
of 1, 098 selected elements and their attributes, along with a natural text describing the selection
criteria, (e) the overlap analysis view showing details about overlaps classified by degree into
different lists, (f) a search box to select elements containing a specific text, (g) a linked view
showing the publication date distribution of all papers and of the ones in (d).

A.1 Introduction

Sets are one of the most fundamental concepts in mathematics. A set is a collection of unique
objects, which are called elements of the set. Because of their simple and generic notion, sets
are widely used in computer science to represent real-world concepts, query results, and the
results of various algorithms. Compared to lists, sets ensure the uniqueness of their elements
and impose no order on them. A set system comprises multiple sets defined over the same
elements. Multiple set memberships are common in practice to represent both technical and
real-world concepts. As an example, they can represent people memberships to different clubs,
the markers a gene contains, or multiple tags or labels assigned manually or automatically to a
set of entities. these memberships are usually stored in a database using either a multi-valued
attribute or a group of Boolean attributes.

Sets defined over the same elements in a dataset potentially overlap. With a growing number
of elements, these large overlapping sets contain a wealth of patterns that are worth to discover
and analyze. Euler diagrams are the most common and natural way for depicting overlapping
sets. However, they are inherently limited in terms of scalability.
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Figure A.2: Four techniques for visualizing element-set memberships: (a) untangled Euler dia-
grams [63] with duplications of elements that belong to multiple sets, (b) Anchored Maps [106]
with sets represented as anchors on a circle and elements as free nodes, (c) two reorderable
matrices [17] showing the element-set memberships and the set overlaps. (d) equal-height his-
tograms [168] showing elements as bars in different rows,

In this paper we introduce a novel visualization technique for analyzing large overlapping
sets. Our technique, called Radial Sets1, shares several properties with state-of-the-art tech-
niques proposed for the same purpose (Sect. B.2). It builds upon selected ideas from these
techniques to improve both on readability and scalability, and to support advanced analysis and
pattern-finding tasks for this kind of data. In particular, given set memberships of a large number
of elements in about m ≤ 30 sets,
Radial Sets enable the following analysis tasks that are common for this kind of data [48,63,141]:

• T1: Analyze the distribution of elements in each set according to their degrees (the
number of sets they belong to).

• T2: Find elements in a specific set that are exclusive to this set, or that belong to at least,
at most, or exactly k other sets.

• T3: Analyze overlaps (intersections) between groups of k sets.
• T4: Analyze overlaps between pairs of sets: find which pairs of sets exhibit higher overlap

than other pairs (related to T3).
• T5: Find elements that belong to a specific overlap.
• T6: Analyze how an attribute of the elements correlates with their memberships to the

sets and the overlaps.
• T7: Analyze how set memberships and attribute values for a selected subset of elements

differ from the rest of the elements.

The tasks T1 and T2 are concerned with element memberships in the sets. For example,
if the sets are defined over products to represent the features they come with, a typical question
about one feature is whether it tends to come exclusively, or along with one, two, or more other
features. The overlap tasks T3, T4, and T5 enable finding out which feature combinations

1A prototype implementation is available at www.radialsets.org
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are more common among the products, and which products belong to these combinations. The
attribute analysis tasks T6 and T7 answer questions like how the price of a product depends
on its features and whether certain feature combinations are particularly cheap or particularly
expensive.

As we show in Sect. A.3, the visual design of our technique is derived from the requirements
of these tasks. It employs frequency-based representations of the set elements to support the
memberships tasks T1 and T2 in a scalable way. Also, it dedicates a large portion of the
screen space to emphasize the overlaps as first-order objects in the visualization, as required
by the overlap tasks. Both the set elements and the overlaps are visualized using area-based
representations. This supports using retinal variables [17] like color to show information about
the elements, as required by the attribute-analysis tasks.

Sect. A.4 presents two usage scenarios of Radial Sets to demonstrate how they can be used to
perform the tasks T1, · · · , T7 with large sets defined over thousands, to hundreds of thousands
of elements. In Sect. A.5 we discuss the applicability and the limitations of Radials Sets, and
outline possibilities for future work.

A.2 Related Work

Visualizing overlapping sets is a non-trivial problem due to the potentially large number of
possible overlaps: there might be up to 2m distinct intersections between m sets [159]. Each
element lies in one of these intersections, based on its memberships to the different sets. Though
many of these intersections is equal to the empty set in practice, the number of non-empty
overlaps can still be large, even with a dozen sets. These overlaps are salient features of set data
with many analysis tasks typically concerned with different kind of overlaps between the sets.

Some techniques for visualizing overlapping sets bypass the complexity problem by limiting
the number of sets and overlaps that can be visualized at once. Other techniques avoid visual-
izing the overlaps explicitly and convey more abstract information about the set system instead.
In the following, we categorize existing techniques based on the visual representations they use
and discuss their scalability and which of the tasks listed in Sect. C.1 they support.

A.2.1 Euler Diagrams and Euler-like Diagrams

Euler diagrams [42] represent sets as closed regions in the plane, providing a very natural way to
depict overlaps. However, they suffer from a severe limit: all possible overlaps can be depicted
distinctively only with a small number of sets m ≤ 4. Verroust and Viaud [160] showed that
this limit can be increased to m ≤ 8 by relaxing the conditions on the contours and by allowing
holes in the regions.

Several techniques have been recently devised to automatically generate Euler-like diagrams.
The methods of Flower et al. [46, 47] generate Euler diagrams in case of drawability. Rodgers
et al. [124] and Simonetto et al. [142] presented techniques that generate an output even for
undrawable instances by allowing disconnected regions. Both techniques can result in com-
plex non-convex zones especially when the sets exhibit numerous overlaps. Henry Riche and
Dwyer [63] proposed two variations to draw simplified rectangular Euler-like diagrams that also
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represent individual elements. Their second variation, called DupED, does not depict the inter-
sections between the sets explicitly. It rather creates separate rectangular regions for the sets,
and duplicates the elements that belong to multiple sets. Multiple instances of the same ele-
ment are then linked with hyperedges (figure A.2a). Recent work has focused on generating
area-proportional Venn and Euler diagrams [28, 82, 166]. Such diagrams convey how large the
overlaps are compared to each other without depicting the elements. However, generating these
diagrams accurately is restricted to three sets.

Euler-like methods have also been employed to visualize set memberships over existing
visualizations that determine the positions of the elements. BubbleSets [31], LineSets [3] and
Kelp diagrams [36, 99] are examples of such methods with varying design goals and degree of
compactness. Itoh et al. [70] proposed depicting the set memberships as colored glyphs inside
the visual elements. Each set is hence denoted by disconnected regions linked only by having
the same color.

In summary, methods based on Euler diagrams often impose severe limits on the number of
sets, elements, and overlaps they can depict, and hence can only partially cope with the tasks
T2, T3, T4 and T5.

A.2.2 Node-link Diagrams

A set system of m sets S1≤j≤m defined over n elements e1≤i≤n can be modeled as a bipartite
graph G = (V 1 ∪ V 2, E). The vertices of this graph are the elements V 1 = {ei : 1 ≤ i ≤ n}
and the sets V 2 = {Sj : 1 ≤ j ≤ m}. The edges E = {(ej , Si) : ej ∈ Si} are the membership
relations between the elements and the sets. A variety of approaches were devised both for
drawing [35, 107, 176] and for visualizing [106, 129] bipartite graph as node-link diagrams.
Anchored Maps [106] place the vertices of one class as anchors on a circle. The vertices of the
other class are placed as free nodes with links connecting each free node with the anchors it has
edges with (figure A.2b). The position of these free nodes are determined by spring embedders.

A set system can be depicted as an Anchored Map by representing the sets as anchors and
the elements as free nodes. This enables quickly finding which elements are exclusive to each
set, and which elements are shared between multiple sets, partially solving the tasks T2 and
T4. However, with an increasing number of elements shared between multiple sets, the view be-
comes quickly cluttered making it difficult to recognize which elements belong to which overlap.
This is an inherent limitation of node-link diagrams that restricts their applicability to a small
number of elements.

Hypergraphs offer a more general way to model a set system with each set represented
by a hyperedge that connects all element vertices in this set, or vice versa. The two general
approaches to draw hypergraphs [94] roughly resemble Euler diagrams (subset standard) and
node-link diagrams (edge standard).

A.2.3 Matrix-based Methods

A matrix can depict memberships of n elements represented as rows in m sets represented as
columns (figure A.2c-top). Bertin described how reordering the rows and columns can simplify
such matrices [17]. This ordering has a significant impact on the ability to find patterns in
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the matrix, especially clusters of elements that exhibit similar patterns of memberships of the
sets and vice versa [18, 167]. As the ordering problem is NP-complete [95], a large number
of heuristics have been proposed for reordering matrices [92]. In addition, several interactive
systems have been proposed to create and refine reorderable matrices for different purposes
[64, 140, 146].

With a growing number of relations, the membership matrix outperforms node-link diagrams
in several low-level reading tasks [51]. However, it falls short of solving tasks specific to set data.
A separate matrix is needed to explicitly reveal the overlap between pairs of sets (task T4) as
a heatmap (figure A.2c-bottom). Henry Riche et al. [65] augmented matrices with links that
show additional relations between the rows or the columns (figure A.2c). Similar ideas can
partially support T4 in the membership matrix without the need for a separate matrix. Another
problem with matrix representations is scalability: A large number of elements that belong to a
smaller number of sets result in a skewed membership matrix. This is challenging for multi-level
techniques that are usually designed for square matrices [41].

A.2.4 Frequency-based Methods

Node-link diagrams and memberships matrices offer item-based representations of overlapping
sets that create a distinct visual item, like a node or a row for every element in the sets. In con-
trast to that, frequency-based representations aggregate multiple elements that belong to specific
overlaps into a single visual item like a bar. This makes them potentially scalable in the number
of elements they can depict.

Wittenburg proposed an extension to bargrams [169] to depict set-valued attributes [168].
The sets are represented as rows in the bargrams, sorted from the largest to the smallest. The
horizontal dimension represents all the elements, sorted by their membership of the topmost set,
then of the second topmost set, and so on. Bars are drawn in each row to depict the elements that
belong to the corresponding set according to this sorting (figure A.2d). This reveals different
overlaps between the sets, however, from the perspective of the larger sets which define the
elements’ order. A different ordering of the rows is needed to infer the overlap between the two
bottommost set.

Set’o’grams [48] extend bar charts to visualize overlapping sets. Each set is represented by
a bar of proportional size. This bar is divided into sections that represent the different degrees
of elements in the respective set (figure A.3a). The degree of an element is equal the number of
sets it belongs to. The sections are distinguished both from each other both by shading, and by
assigning increasingly smaller widths to sections of higher degrees. Hence, it is possible to infer
for each sets how many elements belong exclusively to it and how many of its elements belong
to k other sets, solving exactly tasks T1 and T2. Interaction by means of brushing can solve
task T5 but falls short of providing an overview of overlaps required for tasks T3 and T4.

Our work extends the basic idea of Set’o’grams. It employs an alternative visual design that
emphasizes the single sections in the bars and allows depicting different kinds of overlaps as we
show next.
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Figure A.3: (a) Set’o’grams [48] showing 11 overlapping sets as bars of proportional size,
divided into groups of elements of equal degree, (b) Radial Sets showing the same data with
overlaps between pairs of sets depicted as arcs. Ideally, only one color scale should be used.

A.3 Radial Sets

To enable a scalable visual analysis of large overlapping sets, Radial Sets employ frequency-
based representations that aggregate the elements in the sets and in their overlaps. Also, multiple
views depict the information at multiple levels of detail. The main view (Sect. A.3.1) shows
both the distribution of elements in the sets and the overlaps between the sets. Additional views
show both summary and detailed information about the elements and the overlaps (Sect. C.2.3).
Together, these views enable an elaborate analysis of overlapping sets.

A.3.1 The Visual Metaphor

To visually encode overlapping sets, Radial Sets use three types of visual elements: (1) regions
to represent the sets, (2) histograms inside the regions to represent the elements in each set, and
(3) links between the regions to represent overlaps between the sets. Figure A.4 shows how four
overlapping sets are represented as Radial Sets.
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Visualizing the sets

Radial Sets represent the sets as uniformly-shaped non-overlapping regions. The regions are
arranged radially on a circle. This arrangement aims mainly to ease the depiction of the overlaps
between the sets as links inside this circle, and to emphasize them as the central part of the visu-
alization. Moreover, it facilitates the interpretation of the histograms representing the elements
in the individual regions as we explain in Sect. A.3.1.

Unlike Set’o’grams [48], the areas of the regions are not necessarily proportional to the
sizes of the sets. A dedicated view in the user interface conveys these sizes more effectively
via a bar chart (Sect. A.3.2). Depending on how the histograms are scaled, the regions can be
either made of equal area or assigned different areas to fit the histograms. In the latter case, the
regions are depicted as rounded parallelograms leaving equally-sized gaps between the regions.
This alleviates visual artifacts and asymmetries caused by non-uniform gaps. However, the
parallelograms might imply 3D cues to the regions, which impacts the accuracy of perceiving
the bars insides these regions.

The use of distinct visual elements to represent the sets and the overlaps enables using simple
shapes to depict the set regions. As discussed in Sect. A.2.1, a similar idea was employed by
Henry Riche et al. to simplify Euler diagrams [63]. They argued that the use of convex and
simple regions is a primary factor impacting readability, as shown by empirical results in Gestalt
psychology [76]. We also duplicate the representations of elements that belong to multiple sets,
like in the untangled Euler diagrams (figure A.2a). However, we aggregate these elements, and
the overlaps they result in as we describe next.

Visualizing the elements

Like Set’o’grams [48], Radial Sets aggregate the elements of each set into groups according to
their degrees. In a system of m sets S1≤j≤m and n elements E = {ei : 1 ≤ i ≤ n}, the degree
of an element e ∈ E is equal to the number of sets it belongs to:

degree(e) = |{Sj : 1 ≤ j ≤ m ∧ e ∈ Sj}| (A.1)

The elements of each set Sj are aggregated via a histogram Hj of their degrees. Each
histogram consists of b = d bins with d denoting the largest number of sets that share at least
one item:

d = max{degree(e) : e ∈ E} (A.2)

Hence, the number of items in bin k of histogram Hj is:

hjk = |{e ∈ Sj : degree(e) = k}| (A.3)

It is possible to use a smaller number of bins b than d. In this case the last bin b aggregates
elements having degrees equal to or higher than b:

hjb = |{e ∈ Sj : degree(e) >= b}| (A.4)
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Figure A.4: (a) An Euler diagram (adapted from Wyatt [170]), (b) the equivalent representation
in Radial Sets. The histograms in gray show a breakdown of the elements in each set by their
degrees (Eqs. A.1, B.1). The arcs show overlaps between pairs of sets. The icons are for
illustration only.

This aggregation limits the analysis to overlaps between 2, 3, . . . , till b-or-more sets. This is
desirable since usually only few elements have high degrees. Aggregating them simplifies the
visualization. The degree histogram retains access to these elements (Sect. C.2.3).

The histograms H1≤j≤m are placed radially in the regions of their respective sets. The ra-
dial dimension encodes the elements’ degrees k, with hj1 mapped to the outermost boundary of
region Sj and hjb mapped to the innermost boundary (figure A.4b). This intends to emphasize
that the items in outermost bar are exclusive to the respective set, while the items of the inner-
most bar are shared with multiple other sets. This is analogous to the magnet metaphor of Yi
et al. [173] with set labels acting as magnets on the radial dimension.

Bars representing the same degree k in different histograms {Hj} are located at the same
radial position in their regions. This makes it easier to identify and interact with these bars than
in Set’o’grams, where sections of the same degree are located at different heights. Furthermore,
gaps in the distribution can be more easily identified, since the bars do not need to be stacked
like the sections in Set’o’grams.

The bars are by default centered in their regions to avoid artificial asymmetry across the
histograms and to make comparing their shapes easier. Moreover, the symmetry facilitates per-
ceiving the histograms as figures or objects in their regions following Gestalt laws [165]. This
emphasizes that these objects represent elements contained in the respective sets. A similar lay-
out was used for augmenting histograms over the axes of parallel coordinate plots [61]. However,
the lack of a baseline, the radial arrangement, and the 3D visual cues (Sect. A.3.1) impact the
accuracy of comparing the length of individual bars and of estimating selected fractions of these
bars (figure 1c). Therefore, Radial Sets offer an overview visualization, with precise compar-
isons needed to be performed on demand as we discuss in Sect. A.5.

The histogram scales can be either uniform or assigned individually to fit the histograms in
regions of equal area. Uniform scaling is useful for comparing the bars of different histograms in
length. Nonuniform scaling is useful for comparing the shapes of the histograms especially when
the sets exhibit a large variance in size. In the latter case, the different scales can be indicated
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via rectangles along the hjk axes (figure A.6) scaled differently in each region to depict the same
number of elements, as suggested by Cleveland [29, p. 90].

Representing the elements in each set as a histogram of their degrees gives an idea of how
much overlap this set has with how many sets. This solves the tasks T1 and T2. However,
histograms do not tell with which sets these overlaps are. As we show in Sect. C.2.3, all 2m

possible overlaps can be analyzed on demand via interaction with the histograms. But to gain an
overview of individual overlaps, additional visual elements are needed as we show in the next
section.

Visualizing the overlaps

An overlap O{j1,...,jk} =
⋂l=k

l=1 Sjl is the intersection between k specific sets {Sj1 , . . . , Sjk} in
the set system. By k we denote the degree of the overlap. Each element e in this overlap is of
degree(e) ≥ k. Hence, this overlap contains overlaps of higher degree OJ⊃{j1,...,jk}, and can
intersect with other overlaps of degree k. The elements exclusive to an overlap O{j1,...,jk} are:

EO{j1,...,jk} = {e ∈ O{j1,...,jk} : degree(e) = k} (A.5)

Radial Sets map overlaps to frequency-based representations of proportional size. These
representations can either depict the absolute sizes of the overlaps or their normalized sizes.

nsize(O{j1,...,jk}) =
|O{j1,...,jk}|
|
⋃l=k

l=1 Sjl |
(A.6)

Normalization makes it easier to compare overlaps between sets of different sizes by empha-
sizing the proportions of the respective sets they represent, as illustrated in figure A.5. Eq. A.6
computes the normalized size of an overlap by considering only the sets involved in this over-
lap. Disproportionality measures offer another possibility to compare two overlaps, taking into
account all elements E in the set system. The disproportionality of an overlap is the deviation
between the actual and expected probabilities of an element e ∈ E to lie in this overlap:

disproportionality(O{j1,...,jk}) =
|O{j1,...,jk}|

n
−

k∏
l=1

|Sjl |
n

(A.7)

The expected probabilities are computed by assuming marginal independence of the sets. The
resulting residuals can take either positive or negative values, and can be conveyed by color-
ing the overlaps using a diverging color scale. Other residuals are also possible to eliminate a
possible bias in Eq. A.7, caused by the sets being of different sizes [4].

To simplify overlap analysis, we restrict the visualization by default to overlaps of a certain
degree k selected by the user. This is in accordance with task T3, where users ask questions
like ”which three sets exhibit disproportionally large overlap?”. Moreover, this simplifies the
visualization by reducing the number of visual elements needed to depict the overlaps and by
making these element to have the same semantics and similar shapes. The number of possible
overlaps of degree k is equal to

(
m
k

)
, the number of possible combinations of k objects from a

set of m objects. This number can be relatively large for values of k larger than 2. Therefore,
Radial Sets adopt different strategies for depicting overlaps, depending on their degrees and
actual count.
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Visualizing overlaps of degree = 2 as arcs Radial Sets visualize overlaps between pairs of
sets (task T4) as arcs between their regions. The thickness of an arc encodes the absolute or the
normalized size of the overlap (figure A.6). To alleviate clutter that results from arc crossings,
the regions are ordered so that thicker arcs are kept as short as possible. For this purpose, we use
a greedy algorithm that iteratively concatenates chains of regions, starting from the individual
regions. At each iteration, the algorithm selects the next thickest arc between two regions and
concatenates the two chains that contain these regions in one chain, optimizing on the arc length:

Algorithm 1 Compute regions’ order to shorten thick arcs
for all j in 1 . . .m do
chain[j]← {j} as list

end for
overlaps← {O{j1,j2} : 1 ≤ j1 < j2 ≤ m} as list
Sort overlaps in descending order of |O{j1,j2}| or nsize(O{j1,j2})
for all O{j1,j2} in overlaps do

if chain[j1] 6= chain[j2] then
c[1]← concatenate(chain[j1], chain[j2])
c[2]← concatenate(chain[j1], reverse(chain[j2]))
c[3]← concatenate(chain[j2], chain[j1])
c[4]← concatenate(chain[j2], reverse(chain[j1]))
{concatenate according to the shortest arc ĵ1j2}
index← argmini{ĵ1j2 computed in c[i] : 1 ≤ i ≤ 4}
chain[j1]← c[index]
chain[j2]← c[index]
if |c[index]| = m then {all regions are in one chain}

return c[index]
end if

end if
end for

The ordering problem resembles the seriation problem [26,92] in reorderable matrices (Sect.
A.2.3). The computed order not only alleviates clutter, but also reveals clusters of sets having
high overlap with each other. To analyze these overlaps more explicitly, links of higher degree
are needed instead of the arcs as we explain next.

Visualizing overlaps of degree ≥ 3 as hyperedges To visualize the overlap between k ≥ 3
sets (task T3), Radial Sets create a bubble of proportional size in the inner area. The bubble
is connected with the respective regions via elongated arrow heads (figure 1c). The bubble
along with these heads form a hyperedge over m vertices denoting the sets. To fit multiple
hyperedges in the inner area, a layout algorithm is needed to reduce bubble overlaps and edge
crossings. Finding the optimal solution is an NP-complete problem [40]. Therefore, we use a
greedy algorithm that employs a density map to place the bubbles. The algorithm iterates over
the overlaps of degree k in descending order of their absolute or normalized sizes. For each
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Figure A.5: Two overlaps of 2nd-degree, having different absolute sizes, but nearly equal
normalized sizes (Eq. A.6). The color denotes the overlap disproportionality (Eq. A.7) using
the same color scale as in figure A.3b.

Figure A.6: Radial Sets depicting IMDb movies produced in two or more countries (including
former countries). An arc between two countries represents the overlap between their movies. Its
thickness and color respectively encode the normalized size (Eq. A.6) and the disproportionality
(Eq. A.7) of this overlap. The different scales of the histograms are indicated as thin rectangles
representing the same number of elements.

overlap it creates a hyperedge centered at a point (x, y) in the map. The point is chosen so that
the overall density at the pixels the hyperedge occupies is minimized. The densities at these
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pixels are increased to alleviate the overlap with hyperedges created in next iterations.
The design of the hyperedges intends to emphasize overlap sizes by mapping them to the

bubble size. Bubbles are also appropriate for showing fractions of the overlaps to denote ele-
ments selected by the user (Sect. C.2.3). The edge connecting a bubble with a region is plotted
with decreasing thickness to reduce clutter. The varying thickness helps to some degree in visu-
ally separating overlapping hyperedges.

Density maps have also been used to create visual links that do not occlude the visualiza-
tion [144]. The algorithm described above yields interactive performance for computing the
placement of 100 hyperedges with a map resolution of 200 × 200 pixels. The bottleneck is
rather its visual scalability: hyperedges are more complex objects than arcs. This imposes a
severe limit on the number of hyperedges that can be visualized with sufficient readability. Fig-
ure 1c shows about 150 overlaps of 3rd degree, with the largest 10% overlaps accounting for 50%
of the areas. The number and the shape complexity of the hyperedges potentially increase for
overlaps of higher degree. This can rapidly increase the clutter even with a dozen sets. One way
to avoid the clutter is to analyze the overlaps in a separate detail view (Sect. A.3.2). Another way
is to show the links of a hyperedge only for a few number of large overlaps, or only on demand
as we explain next.

Visualizing overlaps as bubbles Showing only the bubbles of the hyperedges described
above results in a “bubble chartöf the overlaps. Pointing over a bubble reveals the links to
the sets involved in the corresponding overlap. In case the histograms are scaled uniformly, the
bubbles can be scaled using the same scaling factor. This facilitates perceiving an overlap in
proportion of the involved sets. Alternatively, the bubbles can be scaled to fit in the inner area,
to efficiently use this area in supporting the interaction with the bubbles and the comparison of
their sizes (figure A.7).

The compactness and the uniform shape of the bubbles allow showing overlaps of multiple
degrees 2 ≤ k ≤ b at once by dividing the inner area into concentric rings. Starting from the
outermost, each ring k contains bubbles that represent overlaps of degree k + 1. A bubble can
represent either all the elements in the overlap, or the elements exclusive to it (Eq. A.5). The
latter case avoids the redundancy of representing the same element in multiple overlaps. The
former case allows comparing absolute overlap sizes across multiple degrees to analyze, for
example, the satisfaction of increasing set membership requirements. Both color and interaction
allow analyzing the exclusiveness of these overlaps and the intersections they exhibit between
each other, as we explain next.

Visualizing information about the elements via color

Each arc, bubble, and histogram bar in Radial Sets represents a subset of the elements E whose
size is encoded by its area or thickness. Further information about the elements in this subset
can be communicated by coloring this area. When the user performs a select operation over the
elements (Sect. C.2.3), Radial Sets use color to depict selected fractions in each of the above-
mentioned subsets. If no selection exists, the user can specify which information to encode via
color.
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By choosing an attribute of the elements as source of the color information, the user can gain
an overview of the distribution of its values in the different subsets (figure A.7). As we show in
the usage scenarios (Sect. A.4), this provides insights into how this attribute correlates with the
elements’ membership of different sets and overlaps (task T6).

Color can also be used to depict relative information about the subsets. As can be seen in
figure A.6, color reveals the disproportionality of the overlaps. Likewise, while the length of a
histogram bar encodes the absolute size hjk of the corresponding subset (Eq. B.1), its color can
encode the disproportionality of this subset, defined as follows:

disproportionality(hjk) =
hjk
|Sj |
− k · |Ek|∑m

j2=1 |Sj2 |
(A.8)

In the above equation, Ek is the set of elements of degree k:

Ek = {e ∈ E : degree(e) = k} (A.9)

This disproportionality measure compares the actual histograms with the ones that would result
if all histograms exhibit the same distribution 2. This reveals, for example, which sets tend to
have more (or less) exclusive elements or 2nd-degree overlaps than the other sets. The exclu-
siveness of an overlap (Eq. A.5) can be analyzed by coloring its visual element by the average
degree of its elements. An exclusive overlap receives a color that correspond to the overlap de-
gree. Alternatively, the exclusiveness of an overlap can be analyzed via interaction, by selecting
the elements Ek as we show next.

A.3.2 The Interactive Exploration Environment

The main user interface of Radial Sets comprises coordinated and multiple views that show infor-
mation at different levels of detail. The Radial Sets view is the central part of the interface. The
additional views show both summary and detailed information about the sets, the elements, and
the overlaps. Together, these views enable formulating highly-expressive and visually-guided
queries on the elements iteratively, and analyzing the query results in detail as we show next.

Summary views

Two views show summary information about the set system:
The sets bar chart depicts the set sizes {|S1≤j≤m|} in descending order, along with the

selected fractions of these sets (figure 1a). Since the sets can overlap, the bars do not sum up to
the number of elements n, but to the number of their set memberships

∑m
j=1 |Sj |.

The degree histogram D (figure 1b) depicts a breakdown {|E0≤k≤d|} of the set elements
by their degrees (Eqs. A.1, A.9). The histogram bins sum up to the number of elements n =∑d

k=0 |Ek|, with E0 containing elements that belong to none of the sets of the set system. A sub
histogram Dselected depicts selected elements by their degrees.

2See the supplemental materials for more explanation of this measure.
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Figure A.7: Radial Sets depicting IMDb movies according to their genres. The bubbles encode
the overlaps of degrees 2, 3, and 4 between the genres and are scaled to fit in the inner area. The
area of a bubble encodes the normalized size of the overlap (Eq. A.6). The color represents the
median release date for the movies aggregated both in the bubbles and in the histograms. The
sets involved in an overlap can be inferred by hovering over the respective bubble (a, b).

Summary views are also essential to define which sets to depict in the Radial Sets view
(show/hide) and which elements to incorporate in the computations (include/exclude). Further-
more, they are vital for gaining an overview on the elements under selection as well as for defin-
ing or refining the selection. Finally, both views are very useful for understanding the metaphor
of Radial Sets as we explain next.

Radial Sets view

The Radial Sets view (figure 1c) can be thought of as a cross representation of both summary
views: For each set Sj represented by a bar in the sets bar chart, Radial Sets show the breakdown
of its elements by degree as a histogram Hj in the set’s region (Eq. B.1). When the selection
is equal to Sj , the sub histogram Dselected in the degree histogram is equal to Hj , assuming no
aggregation of degrees, i.e. b = d (Eq. A.2).

The visual design of Radial Sets aims to provide an overview of a set system, emphasizing
how the sets overlap and how the elements are distributed in them. More details about the
elements and the overlaps can be obtained on demand either via tooltips or in the detail views.
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Hovering the mouse pointer over a visual element in Radial Sets shows a tooltip with more
information about the elements in the respective subset (figure A.8). This comprises a short
description of the subset, the absolute and relative sizes of the subset and of the selected frac-
tion in it, and further statistics such as disproportionality or aggregated attribute values. More
details about the individual elements in the subsets can be obtained using brushing and linking
(Sect. A.3.2).

In addition, the Radial Sets view supports direct manipulation to merge the sets or change
their order using drag and drop. Merging two sets replaces them by their union and updates the
visualization accordingly. The order of the sets can also be configured from the menu bar in
the top of the view. The commands in this bar allow specifying color mappings (Sect. A.3.1),
histogram scaling, and overlaps’ degree and sizes (absolute / relative). The selection commands
allow manipulating the selected elements as we explain next.

Brushing the elements for details on demand

The Radial Sets view along with the summary views expose several subsets of the elements E
in the set system. Brushing these subsets enables defining a selection over E. This selection
can be specified iteratively using set operations to represent a variety of combinations of these
subsets. This allows a highly expressive selection of elements by their set memberships and
degrees. Furthermore, the selected fractions depicted in Radial Sets and in the summary views
are updated during the iterative selection. This gives an immediate feedback to the user on how
the selected elements belong to the different sets and overlaps, and offers guidance on how to
refine this selection3.

Brushing the elements in a set region can be performed either by clicking on the individual
bars or by defining a range over the degree axis using mouse dragging. Similar interactions are
possible in the summary views and with the overlaps. If no keyboard modifier is active during
the brushing operation, the selection is set to the newly brushed elements. Specific keyboard
modifier can be used to specify if the brushed elements should be added to (set union), inter-
sected with, or subtracted from the existing selection. In addition to defining the selection based
on set memberships, the elements can be selected based on their attribute values. Radial Sets
supports this both via textual search in the attribute values (figure 1f), or via coordinated views
that enable brushing elements having certain attribute values.

The selection view shows detailed information about the selected element (figure 1d). The
top of this view shows a formula that details how the selection was specified. The formula text is
composed using the common set-theory notation, with extensions to express further conditions
on the elements’ degrees and attribute values. The body of the selection views is a tabular
list of the elements in the selection, showing their attribute values. The list can be sorted by
one of these attributes. These attributes can also be analyzed in detail via additional views
(figure 1g). Clicking on an element in the tabular list highlights this element and shows its
set memberships both graphically and in text. The text is shown at the bottom of the selection
view as a comma-separated list of these set memberships. Additionally, these memberships are

3The supplementary video demonstrates the interactive selection of elements in Radial Sets in detail.

80



Figure A.8: Tooltips showing various information about the subsets represented by the regions,
the bars and the links in Radial Sets.

indicated graphically as a star graph over the Radial Sets view. This graph shows in which region
and in which bars in these regions the highlighted element is present.

Besides gaining details into specific elements, interactive selection is also useful for filtering
and manipulating the data. it can be used to hide or exclude certain elements from the analysis
based on their attributes, degrees, and set memberships. This is useful for dealing with real-
world datasets that often exhibit highly skewed distributions of set sizes (few sets comprise
the majority of the elements) or of element degrees (most elements are exclusive in their sets).
Filtering out such elements reveals finer details about the rest of the data.

The expressive power of the interactive selection possibilities and the immediate feedback
on selected fractions in Radial Sets, enable an elaborate analysis of the set memberships and the
attribute values of certain elements in the set system (task T7). These possibilities constitute a
visual query language for set-typed data. This language covers all possible 2m overlaps between
the sets, and goes beyond by allowing the selection of exclusive parts of these overlaps, parts
having specific degrees, or parts containing certain values for selected attributes. Furthermore,
the memberships of selected elements in different overlaps can be analyzed in detail as we
explain next.

Overlap analysis view

The arcs and bubbles in Radial Sets give a compact overview of existing overlaps and the sets
involved in them. They are also suited to revealing overlap patterns such as clusters of highly
overlapping sets and to quickly select a specific overlap. To analyze and compare the overlaps
in more detail, Radial Sets employ a coordinated view that shows these overlaps in tabular lists
(figure 1e). Each list Lk in this overlap analysis view contains the overlaps of a specific degree
k ≥ 2. An additional list L1 contains the sets like in the summary sets bar chart (Sect. A.3.2),
along with further statistics about the sets. For each overlap O{j1,...,jk}, the list Lk textually
shows the sets {Sj1 , . . . , Sjk} involved in this overlap, separated by commas and ordered by
their order in L1. Additionally, Lk can show the absolute and normalize sizes of the overlap, the
fractions of selected elements in it, a summary value of the color attribute in the whole overlap
and in the selected portion, and the disproportionality of the overlap and of its selected portion.
These statistics can be shown either textually or graphically using color and/or bar charts. The
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overlaps list Lk can be sorted according to these statistics. This enables a detailed analysis of the
overlaps in the lists and quickly finding large or overrepresented overlaps at different degrees,
without having space limitations or clutter issues.

The overlap analysis view is interactively updated when the selection changes. Also, the
Radial Sets view is updated when an overlap in one of the lists Lk≥2 is clicked: In case the view
already includes a visual element for this overlap, it becomes highlighted. Otherwise, a new
visual element is overlaid in the Radial Sets view to indicate involved sets and the size of the
overlap in proportion to them.

A.4 Usage Scenarios

To demonstrate Radial Sets, we report insights we gained in two real-world set-typed datasets
using some of the features described in Sect. A.3. The datasets are of different scales and skew-
ness, and deal resp. with multi-label classifications and with multi-valued attributes.

A.4.1 ACM Paper Classification

The ACM digital library comprises computer science papers tagged with multiple index terms
from the ACM classification system [1]. We define a set system over a collection of more than
50, 000 ACM papers extracted by Santos and Rodrigues in 2008 [127] . The sets of this system
are the top-level index terms (A. to K.), also called classes. Figure A.3b depicts the Radial
Sets of these index terms. Each histogram bar is colored by the median publication date of the
papers it represents. The arcs depict the overlaps between the index terms, with thickness and
color representing the normalized size (Eq. A.6) and disproportionality (Eq. A.7) respectively.
From the histograms it can be easily seen that the index terms vary in their exclusiveness: few
computer-science papers are exclusive to class G (Mathematics of Computing); while 92.2% of
the papers in this class have other index terms. On the contrary, 42% of “Hardware” papers did
not have other terms assigned.

It is also noticeable that the index terms vary in the recency of their papers, indicated by
the median publication date. The median date varies between 1994 (classes F and G) and 2001
(classes C and E). Also, papers that belong to one class tend to be more recent than papers
that belong to multiple classes, with medians at 2003 and 1997 respectively. This variance can
be easily inferred by coloring the bars in the summary charts (Sect. A.3.2) with the median
dates. However, by examining the Radial Sets view, finer details about this variance can be
observed, compared to the summary views. For example, contrary to the global trend, papers
exclusive to class G have a median date of 1984, which is significantly older than the class
median 1994. On the other hand, while class J has also a relatively old median date of 1995, the
small fraction of papers exclusive to it have a very recent median date of 2005. A similar contrast
between exclusive and shared papers is noticeable in class C. To verify the above observations,
we plot the distribution of publication date in each of these paper classes as histograms, along
with sub-histograms that represent the papers exclusive to them (figure A.9). This confirms the
recency trend of class C with exclusive papers in this class being an increasing trend, constituting
67% of the papers in 2007 (up from 10% in 2000). A similar observation holds for papers
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exclusive to class J: they started to appear in 2002, and made up 40% of “Computer Application”
papers in 2007. To get more details about these papers, we select them in the Radial Sets view
and examine the venues they were published in using the detail view (Sect. A.3.2). Most of
them were published in conference series that started in the past decade on topics like “mobile
computing”, “genetic and evolutionary computation”, “electronic governance”, “future play”,
and “advances in computer entertainment technology” to mention a few. The long tradition of
class G is observable, with papers exclusive to it being an old trend that disappears in the 1990s
and reappears in the past decade. To investigate this trend, we select the G-exclusive papers
whose publication dates are newer than 2000 and observe their venues. While some of these
venues are recent like “Symbolic-Numeric Computation”, the majority of them are established
yearly conferences that were started in the 1980s or earlier on topics like “symbolic and algebraic
computation”, “theory of computing”, “computational geometry”, “parallelism in algorithms
and architectures” and “supercomputing”. By searching for all papers of these conferences in
the dataset and examining their publication dates, we consistently found full or large gaps in the
1990s. This explains the gap we observed for the G-exclusive papers (figure A.9) and reveals a
sampling bias in the dataset.

The insights gained so far are focused on set-membership tasks ( T1 and T2) and attribute-
analysis tasks ( T6 and T7). To explicitly analyze set overlaps (tasks T3, T4 and T5), we
observe the arcs in figure A.3 and the hyperedges in figure 1c. From the arcs we immediately
notice a significant overlap between “Mathematics of Computing” and “Theory of Computing”.
This overlap constitutes 15.5% of the union of these classes; up from 5% expected overlap in
case of statistical independence. Many other disproportionally-high overlaps are noticeable such
as “Information Systems” ∩ “Computer Methodologies” and “Hardware” ∩ “Computer Systems
Organization”. On the other hand, there are classes that exhibit only a small overlap such as
“Hardware” ∩ “Information Systems”. By examining the 207 papers in this overlap in the detail
views, we observe that many of them were published in conferences on “Design Automation”
(40 papers), “Human Factors in Computing” (24), and “Management of Data” (19).

Hyperedges with large bubbles in figure 1c indicate significant overlap between three classes,
such asD∩H∩K and F ∩G∩H . In this figure, papers having “Human Factor” in their general
terms are selected, comprising about 19.6% of the dataset. The bubbles are colored to indicate
selected fractions in the overlaps. Certain overlaps have disproportionally-large selected frac-
tions. For example, 66% of papers on “Computing Milieux”, “Computing Methodologies”, and
“Information Systems” address issues of “Human Factors”. This ratio is higher in the overlap
than in its individual classes, as can be observed in the summary view (figure 1a). These papers
were published in conferences like ACM CHI (48 papers), SIGACCESS (40), SIGCSE (26)
SIGGRAPH (16), and IUI (9).

A.4.2 IMDb Movies

Information about movies comprises several multi-valued attributes such as genres, production
countries, and languages. To illustrate the insights gained by Radial Sets in such attributes, we
consider two set systems that can be defined over a 2010 snapshot of the IMDb database [2]
comprising over 525,000 movies.
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Figure A.9: The number of papers over time for three classes in the ACM digital library.
Exclusive papers in each class are highlighted in blue. The dashed lines indicate the median
publication date in each class.

The sets of the first system are the top 35 production countries of the movies. The sets exhibit
a large skewness in their sizes with the US being involved in 38% of the movies, followed by
the UK (7.7%). The smallest sets are East Germany and Russia, each involved in about 0.4% of
the movies. Another large skewness exist in the distribution of the element degrees: 96% of the
movies were produced in one country. These elements do not contribute to any overlaps, and
hence are less important for analyzing co-production patterns between the countries. Including
them obscures finer information about the overlaps. Similarly, very few movies (0.03%) were
produced in five or more countries, with only one movie having the largest element degree of
13. Therefore, we group elements of degree≤ 5 to increase the resolution of the histogram bars.
Depicting absolute values in the histograms will assign the majority of the available space to the
few top-5 countries and obscure the rest of the data. Therefore, we assign the regions equal areas
to enable relative comparison of the distributions in these histograms (figure A.6). This reveals a
variety of patterns in the data: pairs of countries that produced relatively more joint movies than
other pairs become visible ( T4). Such countries often have a common language or a common
border. The ordering algorithm reveals groups of countries that exhibit high mutual overlaps,
most noticeably the Scandinavian countries. By checking the 4th-degree overlaps in the overlap-
analysis view, we immediately notice that 41 movies were produced jointly by all of Denmark,
Finland, Norway, and Sweden, making this the largest overlap of 4th degree ( T3). Figure A.8
shows the absolute sizes of these overlaps graphically using hyperedges. The 2nd-largest overlap
is between USA, UK, France and Germany, the four largest sets comprising 56.5% of all movies.
This points to a very significant disproportionality of the Scandinavian overlap, given the small
sizes of the involved sets (summing up to 3.5% of all movies).

The sets of the second systems are the 28 IMDb movie genres. Figure A.7 depicts the Radial
Sets of the genres set system. The bubbles in the different rings represent normalized overlaps of
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Figure A.10: Selected genre overlaps that exhibit disproportionately high presence of Indian
movies (highlighted in red).

degree 2, 3, and 4. We also employ relative analysis both for the histograms and for the bubbles
due to the high skewness between the set sizes. We easily notice that the genres vary in their
exclusiveness ( T1 and T2): 94.1% of Animation movies had other genres, whereas 93.1% of
Adult movies were exclusive to this genre. The elements are colored by the median release date
of the movies they represent. This reveals a significant variance in the recency of the genres and
their combinations ( T6). For example, movies exclusive to Mystery were predominantly old
(median date 1944), whereas Mystery movies that have other genres are more recent (median
1988). The opposite holds for genre News. This is revealed by contrasting the first bar with the
other bars in the regions.

The combination Comedy ∩ Short contains mainly the older movies (median 1926) from
both genres (figure A.7a) that have individually more recent median dates (1967 and 1966). In
contrast, Animation ∩ Adventure contains mainly the newer movies (median 1997) from both
genres (figure A.7b) that have older median dates (1966 and 1986).

The two set systems (countries and genres) can be analyzed against each other to find dis-
proportionalities in the overlaps ( T7). For example, while Indian movies comprise 2% of the
dataset, selecting them in the Radial Sets of Genres reveals higher percentages in specific over-
laps (Fig A.10). In particular, these movies comprise 83% of Musical ∩ Action ∩ Romance
(figure A.10a), and 65% of Musical ∩ Action (figure A.10b). The other two pairs of these three
genres (figure A.10c-d) exhibit less percentages. These findings can be analyzed and compared
against each other in more details in the overlap analysis view.

A.5 Discussion

Radial Sets build upon and extend several ideas from state-of-the-art techniques to enable ad-
vanced visual analysis of large overlapping sets. Our technique extends the frequency-based
aggregation of Set’o’grams [48], which accounts for high scalability in the number of elements
of the set system. Also, it uses separate visual elements for the sets and for the overlaps, similar
to the untangled Euler diagrams [63]. The hyperedges between radially-arranged regions are
inspired from the free nodes in Anchored Maps [106]. The radial layout is adopted from Con-
tingency Wheel++ [4] which was designed to visualize skewed contingency tables having few
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columns but a large number of rows. These tables have a similar structure and dimensionality
as the elements-set membership matrix. Nevertheless, Radial Sets use different aggregation for
the elements in the histograms and in the overlaps, and introduce additional visual elements to
address the characteristics of set data and support the tasks specific to them.

The visual design of Radial Sets is a compromise between information richness and effective-
ness. For example, anm×m heatmap can be more effective at showing the 2nd-degree overlaps
than crossing arcs with a limited range of varying thicknesses. Also, standard bar charts are more
precise at showing the elements by degree in each set than non-aligned bars depicted in radially-
arranged parallelograms. Finally, color is sub-optimal for showing the values of an attribute in
the elements aggregated in a bar or in a bubble. Nevertheless, depicting all this information
together enables gaining a high-level overview of the distributions of the elements, the overlaps,
and the attributes, in relation to each other. Using separate visualizations such as an overlap
matrix, element histograms and attribute histograms makes it harder to visually link between
related elements. Our interaction techniques allow certain elements in Radial Sets to be investi-
gated at greater detail on demand using simpler and more precise visualizations. Hence, Radial
Sets serve as a starting point of the analysis and as a means to detect extreme differences and
to quickly formulate queries to select these elements. However, in an informal pilot feedback
session with 10 engineers from different disciplines, three subjects reported that Radial Sets of
movies are showing too much information at once. One of them recommended showing the arcs
for one selected set only. Nevertheless, the subjects were able to interpret the visual metaphor
correctly and use interaction to perform set operations on the elements and to answer questions
on the relations between the sets.

The visual complexity of Radial Sets imposes a limit on the number of sets it can depict. For
example, using the 2nd-level classes of the ACM classification in Sect. A.4.1 results in 89 sets,
each receiving 4 degrees of the angular resolution on average. A higher angular resolution is
needed to ensure a sufficient readability of the histograms, which limits the number of sets that
can be visualized at once to about m ≤ 30. On the other hand, Radial Sets can handle a large
number of elements, at the order of 1 million, thanks to the frequency-based aggregations and
to the relative analysis possibilities. For example, figure A.7 depicts information about 525,000
movies using non-uniform scaling for the histograms and normalized sizes for the bubbles.

Another limitation is the number of hyperedges that can be visualized at once being ≤ 100
(assuming a normal distribution of overlap sizes), which is only 2% of all possible 3rd-degree
overlaps between 30 sets. The remaining possibilities in these cases are to show the bubbles
only or to analyze the overlaps separately in the detail view.

Finally, using separate visual representations for the overlaps and for the sets hinders the
depiction of containment relations between the sets. Such relations are pre-attentive in Euler
diagrams [82], even in a composite form such as S1 ⊂ S2 ∪ S3 or O{1,2} ⊂ S3. Also, both the
arcs and the bubbles show the absolute or normalized size of an overlap, without indicating the
different fractions it constitutes in the involved sets. This information needs to be investigated
on demand by selecting this overlap and checking these fractions individually.
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Future Work One way to compensate for the visual limitations of Radial Sets and their low
sensitivity to small differences between attribute values or overlap sizes is to employ comple-
mentary computational methods. These methods can pre-compute significant disproportionali-
ties in the overlaps and in attribute distributions among all elements or in selected subsets. We
are investigating statistics-based and computationally-efficient measures for this purpose along
with possibilities to communicate their results visually, and steer the calculation interactively.
Additionally, we are considering different placements of histograms and hyperedges to address
the perceptual issues of the current layout as well as alternative visual representations based
on heatmaps to visualize the same information in a more scalable way in the number of sets.
Finally, to confirm our informal findings on the understandability of our visual design, we are
currently conducting a formal evaluation of Radial Sets that will assess how well they support
the tasks intended in comparison with other alternatives.

A.6 Conclusion

Radial Sets is a novel interactive technique for the visual analysis of large overlapping sets,
designed to provide insights into different kinds of overlaps between the sets. These overlaps
are salient features of set-typed data and are central to relevant analysis tasks. Radial Sets
builds upon selected ideas from existing techniques to support these tasks in a scalable way
using several aggregation methods and a multi-level overview+detail exploration environment.
In particular, our technique enables (1) gaining insights into different kinds of overlaps between
the sets and into the disproportionalities they represent, (2) analyzing the element memberships
of the sets and the overlaps in relation to other attributes of the elements, and (3) interactively
querying the elements by their set memberships and attribute values, and analyzing how selected
elements differ from the rest of the elements in their memberships of the sets and the overlaps. As
the usage scenarios demonstrate, Radial Sets enable conducting elaborate analysis workflows in
large set-typed data using expressive visual queries. These queries allow combining set-theoretic
operations to select and analyze specific elements of interest in the data. Compared with existing
visual representations, Radial Sets offer richer information in the overview but at lower precision
and sensitivity to small differences. Nevertheless, using interaction and complementary views,
Radial Sets reveal a variety of overlapping patterns in large overlapping sets, beyond the limits
of state-of-the-art techniques.
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CHAPTER B
Visual Analytics Methods for

probabilistic classification Data

Appears in IEEE Transactions on Visualization and Computer Graphics, 20(12), 2014.

Abstract: Multi-class classifiers often compute scores for the classification samples de-
scribing probabilities to belong to different classes. In order to improve the performance of such
classifiers, machine learning experts need to analyze classification results for a large number
of labeled samples to find possible reasons for incorrect classification. Confusion matrices are
widely used for this purpose. However, they provide no information about classification scores
and features computed for the samples. We propose a set of integrated visual methods for an-
alyzing the performance of probabilistic classifiers. Our methods provide insight into different
aspects of the classification results for a large number of samples. One visualization emphasizes
at which probabilities these samples were classified and how these probabilities correlate with
classification error in terms of false positives and false negatives. Another view emphasizes the
features of these samples and ranks them by their separation power between selected true and
false classifications. We demonstrate the insight gained using our technique in a benchmarking
classification dataset, and show how it enables improving classification performance by interac-
tively defining and evaluating post-classification rules.

Keywords:Probabilistic classification, confusion analysis, feature evaluation and selection,
visual inspection.

B.1 Introduction

The performance of classifiers in terms of correct classification is a major factor in determining
their applicability for a given problem. Significant advances in machine learning have led to
the development of a variety of classifiers and to an improved understanding of their proper-
ties. Designing a classification algorithm for a given problem is usually an iterative process that
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Figure B.1: Our visual analysis tools: (a) the confusion wheel shows sample-class probabili-
ties as histograms colored by classification results, (b) the feature analysis view depicts feature
distributions among selected samples, separated by their results, and ranked by a separation mea-
sure, (c, d) histograms and scatterplots reveal the separability of selected true and false classified
samples by one or two features.

involves several decisions and choices. These include choosing an appropriate classifier, param-
eter tuning of this classifier, feature selection, and possibly introducing specific extensions to
the classifier in order to handle special cases or to incorporate domain knowledge. This process
aims to optimize the performance of the classifier according to some measures such as error rate,
cost, or risk. For each of the above-mentioned stages in the design process, machine-learning ex-
perts need to understand the data involved in order to make choices that increase performance.
Providing tools that assist these experts in analyzing the data in relation to the classification
performance enables valuable guidance for the design process [88, 163].

Visualization has played an important role in understanding and comparing classification
algorithms and in improving their design (Sect. B.2). In case of multi-class classifiers, the
performance is usually reported by means of a confusion matrix that records for each class
how many times its samples were confused for each other class (Fig. B.2a). Compared with
overall performance measures, these matrices provide more details about the results and help
in introducing appropriate adjustments to the classifier. Besides predicting the class for a given
input sample, many multi-class classification algorithms compute likelihood scores for a sample
being of each of the classes. Analyzing how these scores correlate with the classification error
and data features is important to understand the behavior of such classifiers. Confusion matrices
discard this information as they incorporate final classifier decisions only. This paper presents
visual methods for analyzing classification results of a multi-class probabilistic classifier for a
large number of labeled samples. After motivating this problems and identifying related tasks
(Sect. B.3- B.4), we describe how our methods allow analyzing classification results in context
of class probabilities (scores) and data features. Our main contributions are:

• Involving class probabilities in the analysis of classification data by explicitly representing
them as colored histograms.

• Intertwined automated and visual methods to analyze data features in relation with clas-
sification results and probabilities, and to rank them by their separation of true and false
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Figure B.2: Techniques for visualizing classification results: (a) an interactive confusion ma-
trix [77], (b) ROC curves comparing five classifiers [43], (c) binary classification boundaries
projected on two factors [103], (d) Class Radial Visualization [134].

classification.
• An interactive exploration environment to analyze different aspects of probabilistic clas-

sification data.

Sect. B.5 presents usage scenarios to demonstrate the applicability of our methods in ana-
lyzing and improving classification results. In Sect. B.6 we discuss the advantages and short-
comings of our approach compared to previous work, and report expert feedback as well as
practitioners experience in analyzing their classification data.

B.2 Related Work

A variety of approaches and tools have been proposed to improve classification performance
using visualization. They can be categorized into techniques that engage the user actively in
building the classifier, and those that focus on retrospective analysis of the performance.

B.2.1 Building Classifiers Interactively

Ware et al. [163] argue that classifiers built by users can compete with automated techniques
as the users can incorporate their domain knowledge in the classifier design. Several techniques
have been proposed for interactively constructing specific classifiers such as ones based on linear
discriminant analysis (LDA) [27] or decision trees [11, 150, 158]. Also, similar ideas were
proposed for specific aspects of classifier design such as distance measures [10, 22] and feature
selection [21, 98, 174].

Certain techniques offer visual support for active learning, an approach which enables ma-
chine learning algorithms to query the user for the desired class of an unlabeled sample [135].
This learning paradigm has been shown useful in several domains such as video analysis [67]
and document retrieval [62] where the number of samples is very large, prohibiting a manual
labeling beforehand [133].

Talbot et al. [147] presented an interactive system to support ensemble learning, an ap-
proach to combine multiple classifiers to build one that is superior to its components. Their
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EnsembleMatrix technique visualizes the confusion matrices of the individual classifiers and al-
lows combining these classifiers interactively with immediate update to the combined confusion
matrix. Kapoor et al. [77] developed ManiMatrix, a system to refine a classifier by means of
simple interactions with the confusion matrix (Fig. A.2a). Reducing the tolerance for confusion
between two classes triggers a search for new classification boundaries and updates the matrix
interactively if a solution is found.

B.2.2 A Posteriori Analysis

Several visualization techniques were developed to help machine-learning experts analyze clas-
sification results a posteriori. These techniques are not tightly integrated with the classifiers,
but are designed for post-mortem analysis, which makes them potentially classifier-agnostic.
We describe next three categories of these techniques according to the primary information they
visualize.

Classifier performance: Receiver operating characteristic (ROC) curves [43] and their vari-
ations [39] are well-established methods for tuning, assessing, and comparing the performance
of binary classifiers. A ROC curve plots the true positive rate against the false positive rate of a
binary classifier for a varying discrimination threshold (Fig. A.2b). While ROC analysis can be
extended to multi-class classifiers, it is still computationally exhaustive due to the large number
of class combinations that need to be computed [88]. Also, visualizing high-dimensional ROC
spaces is challenging, with existing techniques being able to show only partial information about
the classes [59].

Data features: These techniques are dedicated to analyze the influence of data features on
the classification results. Anand et al. [10] use a bubble chart to depict how the samples of
a target class are distributed based on the values of one nominal and one numerical data fea-
tures. Kienreich and Seifert [83] use feature-class matrices to show how features correlate with
classes. A number of techniques visualize the decision boundaries of a binary classifier in a
multi-dimensional feature space [23,103]. Multiple scatter plots of the data features are used for
this purpose (Fig. A.2c). A recent follow-up technique augments the data points with informa-
tion about their distances to the decision boundary [102]. This was shown useful for steering the
classification model and identifying cost-changing data elements.

Class probabilities: Dedicated techniques have been proposed to visualize class probabilities
in the case of probabilistic classification. Rheingans and desJardins used a heatmap to visu-
alize the probability of a given class for each value combination of two features [121]. They
account for a larger number of features by creating a 2D projection of the feature space. Iwata
et al. [71] proposed a projection of class probabilities to visualize multiple classes in the same
time. Projection-based techniques can preserve interesting structures in the high-dimensional
space. Nevertheless, they might potentially result in complex visualizations that require good
understanding of their properties and semantics to interpret correctly. Seifert and Lex [134] pro-
posed a simplified technique for visualizing class probabilities. It places the classes on a circle
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and depicts the samples as points in this circle based on their class probabilities (Fig. A.2d).
These probabilities can be shown on demand for one sample as lines of varying thicknesses.
The points are colored according to their predicted classes. In our work we also employ a radial
layout for the classes, but use different visual abstractions and interactions as we explain next.

B.3 Motivation of our Work

When classifying samples using a probabilistic classifier, it is possible to infer for a wrongly-
classified sample whether the actual class is the 2nd, 3rd or last guess (i.e. the rank of the
actual class). Fig. B.3 shows a histogram of the ranks computed by a classifier for the actual

classes of 10,992 samples. About 17.3% improvement on the classification rate is possible if
the classifier would succeed on the 2nd guesses, e.g. by simple adjustments to the classifier
or by using additional classification rules. On the other hand, 11.3% of the samples fail with
low improvement chance with the current classifier. These samples are hard to separate from
non-class samples.

The histogram of actual class ranks does not provide actionable insight beyond indicating the
amount of improvement potential. More detailed visualizations are needed to guide the users on
how they can improve the performance. Fig. B.3a shows a confusion matrix of the classification
results described above. The size of a cell encodes the samples of its row class that are confused
for its column class.

The matrix is augmented with histograms of sample probabilities in each row and column.
The row histograms represent false negatives (FNs), while the column histograms represent false
positives (FPs) in the respective class. As we show in the next sections, this information is vital
to understand the behavior of probabilistic classifiers. However, the matrix representation does
not assign visual primacy to the histograms, which limits their usefulness. Moreover, it does
not include information about correctly classified samples (true positive TPs and true negatives
TNs) and how their probabilities are distributed, compared to misclassified samples. Finally, the
information related to one class is scattered in multiple cells and two histograms in the respective
row and column. We address these issues by employing alternative visual designs dedicated for
analyzing probabilistic classification data.
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Figure B.3: Visualizing classification results of 10,992 handwritten digits [12] (a) using a
confusion matrix augmented with histograms of sample probabilities in the respective rows and
columns, (b) using the confusion wheel: Sectors represent digits with chords showing classifi-
cation confusion between them. Histograms represent the probabilities of the samples in each
class according to the color legend.

B.4 Our Visual Analysis Tools

We propose a set of visualization tools that are integrated to analyze probabilistic classification
data. The data encompasses:

• A set S of n labeled samples that are classified into m classes C = {c1≤j≤m}.
• The actual label for each sample la(s) ∈ C : s ∈ S.
• The predicted label for each sample lp(s) ∈ C : s ∈ S.
• The probability pij for each sample si ∈ S to belong to class cj ∈ C, as computed by the

classifier.
• A set of l data features f1≤k≤l(si) for each sample si ∈ S, used by the classifier to

compute the class probabilities.

The above information is available when classifying unknown samples, except for the actual
labels la. Therefore, la-independent observations in the data can be reproduced during actual
classifications.

Our tools aim to support the following analysis tasks:

• T1: Analyze the overall probability distribution of the samples to belong to a class (re-
gardless to their actual classes).
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• T2: Compare the probability distribution of the samples according to their classification
results (TPs, FPs, FNs, TNs) in a class.

• T3: Find out FNs / FPs that have high / low probability. These samples are easier to
improve than other FNs and FPs.

• T4: Select samples confused between two classes, and analyze their probability distribu-
tions in these classes.

• T5: Select samples by their class probabilities, classification results, or data features for
further analysis.

• T6: Find out if FPs / FNs at a certain probability range can be separated from TPs / TNs
in that range by the data features.

All of these tasks involve the class probabilities, and some of them involve the data features as
well. Matrix representations fall short of supporting these tasks, as they assign visual primacy to
class confusions. Therefore, we propose two main visualizations that assign visual primacy to
the probabilities (Sect. B.4.1) or to the data features (Sect. B.4.2). We show in the next sections
how these views are suited for solving the above-listed tasks, and enable new insight in the
classification results beyond the information available in the matrix representation.

We illustrate our tools based on a UCI benchmarking dataset [12] that contains 10,992 la-
beled samples representing pen-based handwritten digits. The samples have 16 data features
that comprise the x and y coordinates of eight points sampled along the curve of each digit.

B.4.1 Confusion Wheel

To assign visual primacy to the sample-class probabilities, we create histograms to show how
they are distributed in each class (task T1). We employ the visual layout of Contingency
Wheel++ [4] which places these histograms in a ring chart whose sectors represent the classes
c1..cm (Fig. B.3b). In contrast to the matrix, this layout emphasizes the classes as primary vi-
sual objects with all information related to a class grouped in one place. This includes class
probabilities and confusions with other classes as we explain next.

Visualizing sample-class probabilities as histograms

For each class cj , the samples S are divided into four sets according to their classification re-
sults:TPj , FPj , TNj , and FNj . A histogram of the class probabilities is created for each of
these sets using a uniform number of bins b, equal to n by default. The samples Xjk aggregated
in bin k in this histogram are a subset of the corresponding set Xj , where Xj is one of the four
sets mentioned above:

Xjk = {si ∈ Xj : (k − 1)/b < pij ≤ k/b} (B.1)

A closed interval [0, 1/b] is used for the first bin. The confusion wheel visualizes these
histograms along the radial dimension in the respective sector, with the first bin placed next to
the inner ring and the last bin b next to the outer ring. The user can select which histograms to
include in the visualization (task T2). These histograms are stacked and centered in each sector
to show the probability distribution of the respective samples. Color reveals the breakdown of
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these samples according to their classification results (Fig. B.3b). All histograms have the same
scale and the sectors are scaled to fit them.

By default, the confusion wheel filters out the bottommost bars of TNs having pij ≤ 10%.
Showing these samples is of marginal interest, as they usually do not compete with the winner
class. Filtering out these samples increases the resolution of the other histograms that show more
important information about TPs and misclassified samples. Likewise, it is also possible to filter
out the topmost bars of TPs having pij ≥ 90% to further increase the resolution.

A reference circle indicates the 50% probability level in each sector. All negatives are located
below this line. It is also possible for positives to lie below this line: this happens, for example,
when the highest three class probabilities for a sample are nearly equal.

The colored histograms give more information about the classifier performance than confu-
sion matrices. For example, it is evident in Fig. B.3b that classes c4 and c6 have the clearest
discrimination, with the majority of positive samples (≥ 98%) in these classes being predicted
with high probabilities (≥ 90%). The opposite holds for c5, where only 48% of its positive sam-
ples predicted with (≥ 90%) probabilities. Only 25% of these samples were classified correctly.
The percentage information can be obtained interactively in a tooltip.A naïve Bayesian classifier
is used to classify the data.

Fig. B.4 shows three classes from the data depicted in Fig. B.3b. It includes only misclas-
sified samples (FPs and FNs) depicted at a higher resolution by filtering out TPs and TNs (task
T3). The samples are colored according to their actual classes. For this purpose, a unique color
is assigned to each class from an appropriate qualitative color scale. As a result, the FNs in each
class are colored by the class color. The FPs are colored by their actual classes, showing which
other classes were confused for this class, and at which probability. This reveals that samples
confused for c3 are mostly of classes c5 and c9. Also, there is mutual confusion between c5 and
c8 in the probability range ]0.2, 0.8]. A misclassified sample s is double coded in Fig. B.4 since
it counts as a FP in lp(s) and as a FN in la(s). This is indicated by the chords that represent
class confusions are we explain next.

Visualizing class confusions as chords

The confusion wheel depicts class confusions as chords between the sectors (task T4). A chord
between two classes is depicted with a varying thickness: the thickness at sector j1 is propor-
tional to Mj2j1 , the number of elements of class cj2 confused for cj1 . Likewise, the thickness at
sector j2 is proportional to Mj1j2 . Hence, following the chords outgoing from a sector reveals
for which other classes its false negatives are confused. Alternatively, the chord can be split into
adjacent ones that show the confusion in each direction individually. The sectors are ordered so
that thicker chords are made shorter, using an O(m2) greedy algorithm [5]. This reduces the
visual ink and the clutter caused by chord crossings, resulting in a clearer visualization. Also,
this reveals groups of classes that have more confusion among each other than with the other
classes. For example, it is evident in Fig. B.3b that the digits 1, 2 and 7 are often confused with
each other, as their shapes are similar to some degree.

Compared with the chords, a matrix representation is more accurate at showing class confu-
sions and their distribution in the matrix. Nevertheless, a chord is better at showing the mutual
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Figure B.4: Filtering and coloring the samples in the confusion wheel, representing the same
data as in Fig. B.3b. Only misclassified samples are shown (FPs and FNs), colored by their
actual classes.

confusion between a pair of classes and the asymmetry of this confusion, compared with two
visually-separate cells in a matrix.

Visualizing additional information about the samples

Instead of coloring the histograms by their classification results, a histogram bar can be alterna-
tively colored by an attribute of the samples aggregated in it. For example, color can be used
to compare the classification results against another classifier (Fig. B.8). This shows for which
samples the classification improved, worsened, or did not change in the depicted data (Sect. B.5).

B.4.2 Feature Analysis View

Investigating the reason behind certain misclassifications and how to improve them depends
heavily on analyzing how the data features are distributed among the affected samples. In par-
ticular, it is important to find out if certain features discriminate these samples from correctly
classified samples. Therefore, we created a dedicated view that assigns visual primacy to the
features by depicting how they are distributed in a selected subset of samples Ŝ ⊆ S. As we
did in the wheel view, we split the samples in Ŝ into the same four groups according to their
classification result in a specific class c̄ ∈ C selected by the user. To provide an overview first,
we create up to four boxplots below each other for each data feature, showing how its values
are distributed in each of the four groups ˆTP j , F̂P j , ˆTN j , ˆFN j . If a group is empty, e.g. no
FNs for c̄ in Ŝ, no boxplots are created for it. The view shows boxplots of multiple data features
ordered in a list (Fig. 1b and C.6g).

Typical feature analysis scenarios involve finding features that separate two main groups
among selected samples: ˆTP j from F̂P j , or ˆTN j from ˆFN j (task T6). This has two impli-
cations on our design: First, we used a minimal version of boxplots, showing the whole value
range, the medianQ2, and the inter-quartile range [Q1, Q3]. We do not show outliers as they are
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Figure B.5: The interactive exploration environment showing information about classification
results, class probabilities, and feature distributions. The summary charts show breakdowns of
the samples by (a) actual class, (b) predicted class, (c) classification correctness, (d) the probabil-
ity of the predict class, (e) the probability rank of the actual class. The wheel view (f) shows the
same data as in Fig. B.4a. Selected samples are highlighted in color. The feature analysis view
(g) shows summary information data features of the selected samples, broken down according
to their classification results, and the selection criteria in natural text. (h) A control panel to rank
the features according to their separation power along with a recall-precision curve for possible
separation. (i) A histogram of the top ranked feature.

irrelevant for the separation task. Second, and more importantly, we rank the features f1≤k≤l by
their separation power of two of selected groups X1, X2 from the above four groups. Several
separation measures can be used for this purpose. One method is to use a significance statistic:
for each feature fk, we compute Welch’s t-statistic [34] (which is used for Student’s two-sample
t-test with unequal sample sizes):

tk =
mean(fk(X1))−mean(fk(X2))√

var2(fk(X1))/|X1|+ var2(fk(X2))/|X2|
(B.2)

We rank the features by the corresponding p-values, computed according to Student’s t-
distribution. This places features with more significant mean differences between X1 and X2 in
the top of the list. Such features are more likely to separate the samples in both groups, assuming
the values in these groups are normally distributed as in Fig. 1c.

Boxplots show only summary information of feature distribution. To gain more details about
it, the user can click on a feature’s area, which shows a stacked histogram of its values, depicting
breakdown of the samples into the multiple groups described above. It helps in better estimating
the separability of the groups by the selected feature.
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In many cases, higher mean difference between two groups does not mean better separability.
An example is shown in Fig. C.6i, where two groups have relatively closer means, and yet better
separability by the respective feature than by other features. This often happens when one of
the groups represents combined phenomena like TNs that belong to different actual classes. To
account for such cases, we provide alternative separation measures to rank the features. Both χ2

and K-S statistics [96] are applicable generic measures to compare two empirical distributions
without further assumptions. When defining additional classification rules (Sect. B.5.4), it is
important to identify ranges in feature distributions that have high separation. For this purpose,
we use the following measure, based on the histograms h1k and h2k of a feature fk in X1 and
X2 respectively:

Fk =

bh∑
b=1

h1k(b) · h1k(b)

h1k(b) + h2k(b)
(B.3)

Similar to χ2, this measure is computed from binned distributions with an adjustable number bh
of histogram bins. Instead of summing up deviations, it sums up the number of X1 samples in
each bin weighted by their retrieval precision, as with the F-measure [115].

To provide an overview of how much separation of X1 from X2 is possible using only one
of the data features, we create a recall-precision graph in the top of the view (Fig. C.6h). This
graph indicates for each precision level to retrieve X1 , the largest recall rate possible.

In some cases, no single feature provides good separation of the groups. Therefore, we offer
a scatterplot view of selected samples Ŝ in the 2D space of two selected features, to check if these
features offer better separation (Fig. 1d). Automated and visual techniques can be employed
to recommend scatterplots with best separation [110, 132, 148]. In our implementation, the
user selects the scatterplot dimensions from two lists of features, ranked by their univariate
separability.

The visual tools described so far show different aspects of classification data. In the next
sections we show how these tools are integrated together and describe use cases of our approach.

B.4.3 The Interactive Exploration Environment

Analysis scenarios of classification results typically involve examining different pieces of the
information to formulate and test hypothesis about the results, and to introduce improvements.
Therefore, we developed an exploration environment that shows these pieces of information at
different levels of detail using multiple views that are arranged and coordinated accordingly in
the user interface.

Summary views

These views show summary information about the classification results and performance. They
assign visual primacy to the classification results, which are shown as secondary information
in color in the other views. Each view highlights samples currently under selection. Three bar
charts show breakdowns of the samples s ∈ S by their actual class la(s) (Fig. C.6a), predicted
class lp(s) (Fig. C.6b), and classification correctness whether lp(s) = la(s) or not (Fig. C.6c).
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In addition, two histograms show breakdowns of the samples by the probability of the pre-
dicted class pij : lp(si) = cj (Fig. C.6d) and by the rank r(si, la(si)) of the actual class la(si)
(Fig. C.6d), where:

r(si, lj) = |{1 ≤ j′ ≤ m : pij′ > pij}|+ 1 (B.4)

Confusion wheel view

This is the central view in the user interface, showing aggregated information in more details
than the summary views. Four checkboxes and two sliders at the top of this view enable quickly
defining which samples to include. The sliders allow filtering TPs with high probability and
FNs with low probabilities, to focus the analysis on more problematic samples to be depicted at
a higher resolution (tasks T3).

Hovering the mouse over a visual element shows a tooltip with summary information about
the samples that it represents (Fig. B.6a). This encompasses, for example, recall and precision
in a class, and the number of samples confused between two classes for a chord. More details
about selected samples can be obtained in the detail views.

Detail and feature analysis views

The detail views show more information about the samples selected in other views. The top
area in these views show a textual description of current selection. A tabular list shows the data
features as well as the predicted and actual classes for the selected samples (Fig. B.6b). The
feature analysis view shows this information graphically, as explained in Sect. B.4.2. Likewise,
the probability view shows the class probabilities of the samples as a tabular list or as multiple
histograms (Fig. B.6c). The two tabular lists are synchronized: clicking on an sample in one
view highlights it and ensures its visibility in both views. This enables a textual examination of
the class probabilities of a certain samples. These probabilities are also depicted graphically as
a star graph in the wheel view (Fig. B.6a). Also, when possible, a graphical representation of
this sample can be shown in a dedicated view (Fig. B.6d).

Interactive Queries on the Samples

By clicking on a bar in the summary views or in the wheel view, the respective subset E ⊆ S
of samples is selected (task T5). The views are immediately updated to highlight the fractions
of bars and chords that represent elements in E. These fractions in the wheel view retain their
colors. The rest of the elements become uncolored.

Multiple bars can be selected at once in a histogram in the wheel view. The selection in
Fig. C.6 is initially defined by brushing the range [0.1, 0.3] over the radial dimension in c7. This
selects samples si with pi,7 ∈ [0.1, 0.3]. The selection is refined by excluding predicted samples
in c7, focusing only on TNs and FNs. These samples are highlighted in other sectors to show
their classification results in the respective classes. The feature analysis view is updated to show
the feature distributions among these samples.
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The samples confused between two classes can be selected by clicking on the respective
chord (task T4). This allows examining how these samples are distributed in the probability
histograms of both sectors. The selection in Fig. B.6a is defined by clicking on the chord between
c2 and c7. The views are updated to show the class probabilities and feature values of the
samples in E. These samples can be examined individually by clicking on an item in these
views (Fig. B.6c). Finally, samples can be further selected based on their features or other
attributes by selecting a specific value range in the respective view 1.

The subsets that correspond to the above-mentioned selection possibilities can be combined
interactively using set operations as in [5]. Specific keyboard modifiers allow specifying if the
newly brushed elements should be added to, intersected with, or subtracted from the existing
selection. This allows defining highly-expressive visual queries to select samples based on their
classification results and probabilities in each class, and on their actual and predicted classes.
For example, by clicking on c3 in “predicted class” summary chart all positive samples in this
class are selected (both TPs and FPs). This selection can be refined to TPs only by clicking on
the respective bar in “actual class” while in set intersection mode. Also, certain FPs such as
confusions with c5 and c9 can be filtered out by clicking on their bars in this chart while in set
exclusion mode. We show in the next section how interactive selection of the samples supports
several analysis scenarios of probabilistic classification data.

Figure B.6: Obtaining details about elements interactively: (a) selecting samples confused
between c2 and c7. The list view show their (b) features and (c) class probabilities. One sample
is selected for inspection by showing its graphical representation (d). Its class probabilities are
highlighted both in the list view, and in the wheel view using arrows.

1The supplementary video illustrates some of the interaction possibilities
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B.5 Usage Scenarios

We demonstrate how our tools can be applied to analyze and improve classification results of the
UCI “pen-based” dataset introduced in Sect. B.4. For this purpose, we train several classifiers
using the raw features 2 of 100 randomly-selected samples using the RapidMiner data-mining
software [136] (formerly YALE [101]). We first show how interaction allows quick inspection
of misclassified data. Then we show how the confusion wheel provides insight into classi-
fier behavior, and enables comparing misclassified samples between two classifiers. Finally,
we show how our tools help in defining additional classification rules to correct misclassified
samples in a generalizable way. Besides demonstrating the standard features of our system,
problem-specific features are introduced to support the last two use cases. Further examples
with different data sets and classifiers are available at http://www.cvast.tuwien.ac.
at/ConfusionAnalysis/

B.5.1 Inspecting Misclassified Samples

The rich possibilities to select subsets of samples using the interactive exploration environment
allow quick inspection of certain samples, e.g., to analyze the reason behind certain confusions.
In Fig. B.6, elements confused between c2 and c7 are selected by clicking on the respective
chord. Inspecting these samples illustrates that people write the same digits in different ways,
which requires increasing the training sample to match against using k-NN classifiers.

In many cases, erroneous labels or noisy data features are the reason behind classification
errors. Using our detail views we were able to identify such cases in the UCI dataset. One
example is a c5 digit confused for c8 because it is written in east Arabic numerals which have
different shapes than Arabic numerals. Another example was a noisy sample which does not
resemble any digit. Identifying and isolating such samples is important to introduce effective
design improvements and to accurately evaluate and compare different classifiers.

B.5.2 Analyzing Classifier Behavior

Visualizing the probability histogram for each class and coloring these histograms by classifica-
tion results reveal several patterns that explain the behavior of the classifier. Fig. B.7 shows this
information for class c5 using three different classifiers. With Neural Networks (NN), the classi-
fication accuracy increases proportionally with the probability of the predicted class (Fig. B.7a).
This does not always apply to a Naïve Bayesian (NB) classifier, where some classes showing
the opposite trend (Fig. B.7b). Also, though it varies between classes, the overall classification
sharpness was higher for NB than NN, with 88.9% of all samples classified with ≥ 90% prob-
ability (Fig. B.3b), as opposed to 50.7% with NN. k-NN classifiers exhibit up to k peaks in the
histograms at equidistant locations, when an appropriate number of bins b is used (Sect. B.4.1).
This is because k-NN classifiers perform weighted majority voting among the labels of the k
nearest training samples to the samples being classified. If all k classifiers agree on the label
cj for si, pij is equal (or very close to) 1 and the sample belongs to the outermost peak in the

2For reproducibility and illustration purposes, we did not consider computing any additional features that could
improve the performance.
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Figure B.7: Classification results in c5 using (a) neural networks, (b) a naïve Bayesian classifier,
and (c) a k-NN classifier with k = 2. TNs in the bottommost bars are filtered out. Individual
histogram scales are used.

histogram. If none of the classifiers agree, the label cj of the closest training sample is predicted
but with low probability, and the sample hence belongs to the innermost peak in the histogram
of cj . In Fig. B.7c there are two peaks, as k equals 2. In Fig. 1a and Fig. C.6f, there are up to
five peaks per sector, as k equals 5.

B.5.3 Comparison with Another Classifier

Classifier designers typically analyze the effect of using a different classification algorithm or
changing certain parameters on the results. Besides a holistic measure of classification rate im-
provement, they often want to gain insight about the samples whose classification improved by
this change, and the ones that worsened. A typical example is analyzing how the classes vary
in their improvements, using two-sided bar charts that depict improved and worsened samples
for each class in different directions. Another example is analyzing which class confusions in-
creased or decreased by the changes, using a suited matrix representation. These representations
discard available information on class probability which offers new ways to improve the perfor-
mance. To address this limitation, we offer a mode to color the samples in confusion wheel by
their improvement status as illustrated in Fig. B.8. The data is classified using a k-NN algorithm
with k = 1 and k = 3. The histograms show the class probabilities computed with k = 3.
TNs are not shown, as they are irrelevant for comparison on class level. Dark blue indicates
misclassified samples in the depicted data that would improve when k = 1. Dark red indicates
correctly classified samples that would worsen when k = 1. It is noticeable that k = 1 performs
better than k = 3 as there is more dark blue than dark red (overall 6% improvement). We inves-
tigated the reason for that by checking samples that improved or worsened. Fig. B.8a illustrates
an example of a sample whose nearest neighbor is the correct class, but the 2nd and 3rd nearest
are not. In this example k = 1 succeeds while k = 3 fails. Fig. B.8b shows the opposite case:
2 out of 3 nearest neighbors have the correct labels, making k = 3 succeeds and k = 1 fails. In
both cases, the sample is close to the outer boundary in c2 as two of the three nearest neighbors
agree on its label.

Fig. B.8c shows an interesting case which resembles Fig. B.8a, with the only difference that
the 2nd and 3rd neighbors are significantly far from the sample. This makes the classifier less
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confident about their votes, and hence predicting the answer at lower probability. Except for one
sample, all 480 samples that fall in this probability range in this class would either improve or
stay the same when k = 1. This suggests adding a rule to re-classify these samples, as we show
next.

B.5.4 Defining Post-Classification Rules

In some cases, an existing classifier cannot be refined internally due to the lack of source code or
expertise. Post-classification rules are one way to improve the performance in such situations by
handling specific cases [157], incorporating domain knowledge [33], and rectifying systematic
errors. Such rules are usually defined over the data features and are usually easy to understand
and adapt especially if they are defined by domain experts. In case of probabilistic classification,
a rule can specify Boolean conditions q(si) on the class probabilities pij or ranks (Eq. B.4) of
the samples si, in addition to conditions on their features fk(si). Both types of information are
available at runtime as they do not involve the actual labels la(s).

We consider three rules for correcting classification errors:

• Correcting false negatives: This rule intends to correct FNs of class cj by replacing their
predicted classes with cj :

RFNj : q1(si) ∧ . . . ∧ qk(si) ∧ lp(si) 6= cj ⇒ lp(si)← cj (B.5)

Samples that satisfy conditions q1..qk are post-classified as cj .
• Correcting false positives: This rule intends to correct FPs of class cj by replacing their

predicted classes with the 2nd guesses:

RFPj : q1(si) ∧ . . . ∧ qk(si) ∧ lp(si) = cj ⇒ lp(si)← cj′ : r(si, cj′) = 2 (B.6)

Figure B.8: Comparing the results of k-NN classifiers with k = 1 (encoded in color) against
k = 3 (defining the histograms).
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It post-classifies a potential FP that satisfies its premise as the class cj′ ranked 2nd for this
sample (Eq. B.4).

• Using another classifier: This rule intends to re-classify certain samples by using another
classifier Clz:

RClz : q1(si) ∧ . . . ∧ qk(si)⇒ lp(si)← Clz(si) (B.7)

It post-classifies a sample si that satisfies its premise as the class Clz(si) predicted by
Clz .

Our visual tools support in defining rules of the above types and in testing their actual im-
provement. For this purpose, the data set should be split into two parts: (1) training data that are
loaded in the visualizations and used in defining the rules, and (2) validation data that are used
to assess the actual improvement on unseen data. This is important to avoid dataset bias which
occurs when defining rules that overfit the training data and fail to generalize to unseen data. Ex-
cept for Fig. B.3, the visualizations depicted in this paper use 80% of the UCI data introduced in
Sect. B.4. In the following we illustrate how potential improvements can be visually identified,
and how the respective rules can be defined and validated on the remaining 20% of the data.

To improve misclassified samples in a class cj , the respective rule should define conditions
on the samples that include as much of these samples as possible and in the same time exclude
correctly-classified samples. This is important as applying the rule on the latter samples would
worsen their classification. The wheel view gives an overview on how misclassified samples
cj are distributed according to their probabilities. This makes it easy to spot probability ranges
in cj having a significant number of these samples that are likely to improve by one of the
rules. Typically, these samples interfere with correctly classified samples. In particular, the
interference of TPs (green) with FPs (yellow) requires separation using further conditions on
the data features, before applying RFPj . This interference is usually larger in the outermost
bin(s) that are dominated by TPs, which suggests excluding these bins when defining this rule.
Similarly, the interference of FNs (red) with TNs (grey) requires separation in order to apply
RFNj . Also the innermost bin(s) need to be excluded when defining this rule, as their probability
range is highly dominated by TNs.

To separate the interference in a potentially improvable probability range Qcj in cj , the user
selects the samples in this range using brushing. The feature analysis view lists possible features
that offer good separation, as explained in Sect. B.4.2. After inspecting the feature histograms,
the user can select a feature fk to define an improvement rule by double clicking on its histogram.
This opens a dialog box which shows the histogram in higher resolution and allows selecting a
specific value range Qfk for fk (Fig. B.9). The user selects a range that contains the majority
of samples that need improvements (FPs or FNs) and excludes as much of the other samples as
possible. The dialog also allows specifying which rule to apply to samples that fall both in Qcj

andQfk . The selected rule is externalized in text and applied to such samples both in the training
dataset loaded in the visualization, and in the test dataset. The results in both cases are reported
as the absolute number of samples that improved and worsened, and the total improvement on
the classification rate. Changing the feature rangeQfk automatically updates the results, to assist
the user in choosing a robust range that performs well both in training and test datasets.
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As example, in Fig. C.1a, the analyst notices a large number of FNs in c7. She selects the
respective probability range in c7 (Fig. C.6f) and finds that feature y8 offers good separation of
these FNs from the TNs in the value range [20%, 60%] (Fig. C.6i). Therefore, she creates the
following rule:

(0.1 ≤ pi7 ≤ 0.3) ∧ (20 ≤ x8(i) ≤ 60)⇒ lp(si)← c7 (B.8)

This rule improves 591 and worsens 13 samples in the loaded data, yielding a significant total
improvement rate of 6.57%. Similar results apply to the testing data (141 improved, 3 wors-
ened, 6.28% total rate) making the analyst accept this rule. She continues further to investigate
the large number of FPs in c1 by selecting the probability range [30%, 80%] and restricting the
selection to samples with lp(s) = c1. She checks the features for separation but notice inter-
ference between FPs and TPs, even with the features with most separation power (Fig. B.9a).
She selects the small range with as few TPs as possible, and applies rule RFP1 which achieves
1.11% overall with 136 improved and 36 worsened samples in the training dataset. She rejects
this rule and searches for more robust rules to improve these samples.

The scatterplot view allows identifying if two features can in combination achieve a good
separation of interfering sample groups. As example, Fig. 1d illustrates how two features sepa-
rate about 76% of FNs in c8 that lie in probability range [10%, 30%] from the TNs, with only 13
TNs unseparated. Reclassifying these samples with RFNj yields 3.5% and 3.4% improvements
on the training and test datasets. Dedicated algorithms are needed to rank the pairs of features by
their separation power, and to recommend optimal region separations in a specific scatter plot.
For the purpose of this use case, a manual search for such features is sufficient to illustrate the
importance of visual inspection to assess their separation power.

Besides searching for separating features, it is possible to improve certain misclassifications
using the results of another classifiers. As example, it is evident in Fig. C.1a that the results for
c2 involve a large number of mixed misclassifications (FNs and FPs) especially in the proba-
bility range [30%, 70%]. We provide a separate view to check how other classifiers perform on
these samples by selecting them (Fig. B.9b). This reveals that neural-networks-based classifier
(NN) yields 7.31% improvement rate if applied to these samples, which suggests creating the
following post-classifying rule (Eq. B.7):

0.3 ≤ pi2 ≤ 0.7⇒ lp(si)← lpNN (si) (B.9)

Such combinations of results from multiple classifiers has been extensively researched in pattern-
recognition and machine-learning literature [89,149,172]. Many of these techniques apply com-
bination heuristic such as weighted majority voting in a holistic way to all samples. We illus-
trated that declaratively restricting such heuristics to certain samples yields better improvements,
as this avoid impacting correct classifications among the remaining samples. Using visual in-
spection, we were able to outperform automated techniques for combining multiple classifiers
such as majority voting (Fig. B.9b).

Post-classification rules should be defined carefully to avoid over-fitting the data. First, the
testing dataset should be representative and of sufficient size to warrant generalization. Second,
the conditions used in these rules should be based on probability and feature ranges that have
a sufficient number of samples to avoid creating rules specific to the training dataset. In fact,
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Figure B.9: Defining post-classification rules: (a) checking separability between FPs (yellow)
and TPs (green) according to a feature, (b) checking the performance of other classifiers on
selected samples.

the distributions depicted in the probability histograms tend to be invariant among random sub-
sets of sufficient sizes, if extreme values are discarded and avoided. Finally, defining several
rules increases the overlap between their premises, the conflict in their actions, and the risk of
over-fitting in general. It is important to select a small number of rules that exhibit robust im-
provement results, high precision, and few overlaps with each other. In general, classification
errors should ideally be solved by improving the classification algorithm when possible, with
help of the insights gained by the interactive visualizations.
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B.6 Discussion

In this section we discuss the advantages and limitations of our tools and compare them with
other techniques for visualizing probabilistic classifiers. We also report feedback and observa-
tions from classification experts and practitioners.

Scalability: The use of aggregated representations makes our tools highly scalable with the
number of samples. For example, the histograms in the confusion wheel were able to handle
datasets containing tens of thousands of samples. Furthermore, the filtering possibilities pre-
sented in Sect. C.2.3 enable focusing on fine details contained in small subsets of these samples.
Likewise, the boxplots and histograms in the feature analysis view scale well with the number
of samples. Stacking the boxplots allow depicting summary information about 15-20 features at
once. This is sufficient for our purposes, thanks to feature ranking which interactively places the
most relevant features for the current analysis context at the top.

To ensure enough visibility of the information in each class, up to 20 classes can depicted
at once as sectors in the wheel view. This limit is feasible for a wide range of classification
problems that do not require a larger number of classes. In case of larger number of classes, a
subset of them can be selected manually or automatically to be shown at once, such as the subset
with the highest confusions between its classes.

Handling imbalanced data: Sometimes, classification data exhibit skewed distributions of
the samples to the classes. This causes classes having large number of positives to occupy the
majority of display area, possibly obscuring fine details in smaller classes. To handle such cases
is to possible to make the sectors of equal sizes, and stretch the histogram to fit in these sectors
using individual scaling factors. Arcs representing the same amount of samples can be drawn
outside the sectors using different scales to indicate these scaling factors. Although this hinders
comparing the histograms in absolute values, the shapes of the distributions and the proportions
of misclassified samples are still comparable across the classes. Such relative comparisons are
usually more relevant in analyzing the results than comparing absolute values between classes
of significantly different sizes. Similarly, the class confusions can be normalized by the total
number of samples in the respective classes. These relative confusions can be indicated in color
or by adjusting the chord thicknesses to show relative instead of absolute confusions.

Some classifiers compute relatively low probabilities for the winning class, such as ones
based on fuzzy logic. This limits non-empty histogram bars to the inner bins only, which lowers
the visual resolution. It is possible in such cases to redefine the bins to cover the effective
probability range at higher resolution and make the histogram span the whole sector area.

Comparison with previous work: Our tools combine different pieces of information that
have been addressed individually in previous work, as presented in Sect. B.2. Compared with ex-
isting techniques that visualize class probabilities such as Class Radial Visualization (Fig. A.2),
the added-value in using the wheel metaphor lies in (1) aggregating the samples to analyze
their probability distributions and to avoid clutter and ambiguity issues caused by individual
points [134], (2) using color to show classification results of the samples next to each other and
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to reveal their separability, and (3) visualizing class confusions in a compact layout, thanks to the
radial arrangement. This provides a rich overview of classification results that was not possible
in previous techniques and enables new insight and tasks as we illustrate in the usage scenar-
ios. Confusion matrices are better suited than the chords to gain more precise information about
class confusions. Nevertheless, the chords reveal groups of classes having higher mutual con-
fusions, emphasize the asymmetries in these confusions, and enable relating them to respective
class probabilities.

The area-based nature of the histograms offers several possibilities for selecting and high-
lighting certain subsets of samples in confusion wheel. This is essential in a coordinated-
multiple-view environment in order to formulate queries on the samples and to gain detailed
insight into them in the feature analysis view. This environment enables a novel integration
between probability-based and feature-based representations of classification data.

The visual analysis methods we propose are based on familiar visual representations such as
boxplots and stacked histograms, as well as on the wheel metaphor [4]. This metaphor is origi-
nally designed to visualize associations between entities and categories, and similarities between
categories. By treating samples as entities and classes as categories, we were able to adapt this
metaphor for classification data: Instead of associations and similarities, we compute probabil-
ities and two-way confusions. Also, we introduced several changes to the visual encoding and
different interactions to address the characteristics of classification problems.

Expert feedback: We analyzed classification data comprising about 40, 000 labeled samples
provided by our industry partners. The data were classified in 10 classes using a fuzzy rule-
based system designed by domain experts. We refined our design iteratively based on feedback
from these experts, and on what information they wanted to analyze. After we explained the
visualizations we created for their data, they were able to identify issues with their classification
rules. For example, one class had a large number of FNs that were highly concentrated in
the middle of the respective sector. Analyzing the reason for that revealed that the respective
classification rule was assigned relatively low weight by the domain experts. Also, examining
the features for selected FPs in a class revealed a rule that uses an inappropriate feature that
was mistaken for the correct one: The values of this feature among these FPs should not appear
among actual samples of the class, according to domain experts. These experts were able to
refine their system accordingly. We did not have the possibility to quantify the improvement.

The informal feedback from our industry partners and from five other machine-learning ex-
perts confirms that our tools offers both a good overview of classification results and detailed
information on demand. However, our visual metaphors need to be learned with enough exam-
ples and explanations before they can be interpreted correctly: One domain expert, asked for
clarification on what the histograms in the wheel view mean, about 30 minutes after we started
presenting our findings. To avoid such misunderstanding, the metaphor should be introduced
part by part with sufficient examples, before discussing insights. In fact, our system is feature
laden, and needs extensive learning of how these features work together. One machine-learning
expert requested showing separate arcs to encode class confusions in both directions. Also, two
machine-learning experts did not encourage using post-classification rules in general, as they
could encourage over-fitting the data. They suggested using the insight gained in improving the
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classifier design instead.

B.7 Conclusion

The availability of class probabilities enables new possibilities to analyze the performance of
probabilistic classifiers, beyond comparisons between predicted and actual classes. Common
visual representations such as confusion matrices and ROC curves ignore class probabilities by
assigning visual primacy to classification error in terms of false positives, false negatives, or class
confusion. Assigning visual primacy to class probabilities or to the data features enables analyz-
ing their influence on classification performance and performing further analysis tasks related to
the data. We proposed a representation of probabilistic classification data by showing the prob-
ability distributions as stacked histograms in a radial layout and by coloring these histograms
by the classification results of the samples. We showed how this representation lends itself to
rich interactions to select samples based on their probabilities, and to perform further analysis of
these samples based on their data features. We proposed intertwined automated and visual meth-
ods to analyze these features in a dedicated view and to rank them according to their separation
power between true and false classifications among the selected samples. We presented several
analysis scenarios that are possible using our visual tools. These include visual inspection and
comparison of classification results, identifying performance problems, and interactive defini-
tion of post-classification rules to improve misclassified samples a posteriori. We demonstrated
by that how exploratory analysis can reveal relevant patterns and correlations in classification
data that are difficult to specify and identify automatically, and are usually compromised in
holistic analysis methods. These insights are essential to introduce effective improvement to the
classifier design that reduce the classification error in a generalizable way. Our future work aims
to provide visual means to compare and combine the results of several classifiers, to support
analyzing a large number of classes, and to explore hierarchical and multi-label classification
results by means of similar interactive visualization methods.
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CHAPTER C
Reinventing the Contingency Wheel:

Scalable visual analytics of large
categorical data

Appears in IEEE Transactions on Visualization and Computer Graphics, 18(12):2849-2858,
2012.

Abstract: Contingency tables summarize the relations between categorical variables and
arise in both scientific and business domains. Asymmetrically large two-way contingency tables
pose a problem for common visualization methods. The Contingency Wheel has been recently
proposed as an interactive visual method to explore and analyze such tables. However, the
scalability and readability of this method are limited when dealing with large and dense tables.
In this paper we present Contingency Wheel++, new visual analytics methods that overcome
these major shortcomings: (1) regarding automated methods, a measure of association based on
Pearson’s residuals alleviates the bias of the raw residuals originally used, (2) regarding visu-
alization methods, a frequency-based abstraction of the visual elements eliminates overlapping
and makes analyzing both positive and negative associations possible, and (3) regarding the
interactive exploration environment, a multi-level overview+detail interface enables exploring
individual data items that are aggregated in the visualization or in the table using coordinated
views. We illustrate the applicability of these new methods with a use case and show how they
enable discovering and analyzing nontrivial patterns and associations in large categorical data.

keywords: Large categorical data, contingency table analysis, information interfaces and
representation, visual analytics.
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Figure C.1: Contingency Wheel++ uses complementing visual representations and a multi-level
overview+detail user interface to enable rich exploratory analysis of large categorical data. The
example above shows information about 1 million user ratings on 3706 movies.

C.1 Introduction

Many problems in scientific domains such as medicine, biology and pharmacology, as well as in
business domains such as retail and logistics require analyzing associations between categorical
variables. For example, a movie retailer might be interested in associations between movies and
users based on sales data with the goal of optimizing marketing strategies. The discrete nature
of categorical data and their lack of an inherent similarity measure pose significant challenges
to the fields of information visualization [13] and data mining [171]. Contingency tables (also
known as crosstabs) are a common way to summarize categorical data as a first step of analysis.
A two-way contingency table is an n×m matrix that records the frequency of observations fij
for each combination of categories of two categorical variables. Many data analysis frameworks
such as KNIME [16], WEKA [54] and R [116] offer possibilities to create and analyze contin-
gency tables. One of the best-known statistical tests for the overall association (or independence)
between two categorical variables is Pearson’s χ2 test [119]. It assesses the significance of asso-
ciations between the categories of the two variables. However, it does not provide information
about how single pairs of categories are associated.

Several visualization methods were developed to analyze associated categories in contin-
gency tables. As we discuss in Sect. C.4, these methods are designed to handle rather small
tables having few categories. However, often much larger contingency tables need to be ana-
lyzed, which poses a problem to these methods. Figure C.2a shows large categorical data from
the MovieLens data set [53]. It contains about one million user ratings on movies. For each user,
it provides his or her occupation, sex, and age group, and for each movie, its release date and
genres. Examples for tables extracted from this data set are:

• A 3706× 21 table which counts for each movie, how many times it was rated from users
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Figure C.2: (a) Categorical variables of the MovieLens data set [53] showing about one million
user ratings on 3706 movies, (b) the contingency table of the variables “movie title” and “user
occupation”, (c) the Contingency Wheel of the table in (b): Sectors represent occupations and
dots represent movies positively associated with them. Thicker arcs show which occupations
share more movies highly associated with both of them.

of each occupation (figure C.2b).
• A 6040× 17 table which counts for each user, how many times he/she rated movies from

each genre (figure C.6d).

The Contingency Wheel [6] has been introduced as an interactive visual method for explor-
ing positive associations in asymmetrically large tables. The column categories are visualized as
sectors of a ring chart and the table cells are depicted as dots in these sectors (figure C.2c). The
dot for cell (i, j) is placed in sector i at a radial distance from the ring’s inner circle proportional
to the strength of association rij between row i and column j. A layout algorithm calculates the
angular positions of the dots in each sector to reduce occlusion. It copes with a large number
of rows by visualizing only the cells that represent significant associations rij , determined by
adjustable thresholds. An arc is drawn between two sectors if one or more rows have dots in
both sectors. This arc is thicker if more such rows exist and if their dots represent higher asso-
ciations with both sectors. User interaction enables analyzing different types of associations in
large tables.

Scalability is one of the major challenges visual analytics aims to address [152]. The wheel
metaphor explained above has several shortcomings which degrade its readability and scalabil-
ity, especially with large and dense tables (Sect. 3.7.3). In this paper we propose Contingency
Wheel++: new visual analytics methods that tackle the issues of the original wheel. Our methods
(described in Sect. C.2) address its computational component, visual representation and interac-
tive interface, and intertwine these three components to enable scalable analysis of categorical
data. The new methods encompass:
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• Automated methods: a new association measure results in a better distribution of the dots
to sectors of different sizes. This is important when analyzing large tables that often
exhibit high skewness in the distribution of their frequencies.
• Visualization methods: a frequency-based abstraction of the dots eliminates overlapping

which allows showing all the cells, instead of just small subsets thereof. This enables
analyzing and querying both positive and negative associations.
• Interactive exploration environment: an overview+detail interface allows exploring indi-

vidual items aggregated in the visualization or in the table, and analyzing their attributes.

In Sect. C.3 we present a use case to illustrate how our new methods can be used to explore
the MovieLens data set. We show how nontrivial patterns and associations in the data can be
discovered. In Sect. C.4 we compare our approach with other methods for visualizing categorical
data and elaborate on its scalability.

Figure C.3: (a) raw residuals and (b) adjusted residuals plotted as a function of fij for different
values of f+j with both nonuniform- (left) and uniform scaling (right), (c) the same data plotted
in figure C.2c using uniformly-scaled adjusted residuals instead of raw residuals (with Tr = 30%
and Ts = 1).

Contingency Wheel++ 1 improves both on the readability and on the scalability issues men-
tioned above by employing visual analytics methods as presented in the next section.

C.2 Contingency Wheel++

In the following, fij denotes the frequency in cell (i, j), fi+ =
∑m

j=1 fij and f+j =
∑n

i=1 fij
are the marginal row- and column frequencies, and f++ is the sum of all table frequencies

1A prototype implementation of Contingency Wheel++ is available at http://www.cvast.tuwien.ac.at/wheel

114



(figure C.2b). We first address the data mapping employed by Contingency Wheel++ (Sect.
C.2.1). Then we propose a frequency-based visual representation which abstracts the dots (Sect.
C.2.2). In Sect. C.2.3 we show how an interactive visual interface integrates additional table
views to bridge the gap between the data representation and the visual representations and to
support a flexible visual exploration process.

C.2.1 Mapping Frequencies to Associations

The main goal of Contingency Wheel++ is to reveal how the row categories of a contingency
table are associated with its column categories. For this purpose, it uses a statistical measure rij
that computes the association between row i and column j based on fij and takes value in the
range [−1, 1]. This measure is usually based on statistical residuals between the actual frequency
fij and expected frequencies êij . The frequency in cell (i, j) predicted under the null hypothesis
H0, i.e., assuming no association, is [143]:

êij =
fi+ · f+j

f++
(C.1)

If fij = êij holds for cell (i, j), its share fij/fi+ of the marginal row frequency is equal to
the column’s share f+j/f++ of all table frequencies. This means that row i is neither positively
nor negatively associated with column j, and corresponds to a zero association value rij = 0.
Cells with fij > êij indicate a positive association between row i and column j. Statistical
residuals rij can be used to quantify this association. They can be designed to incorporate
a priori information about the data and their distribution. In the following we describe the
originally-used residuals and our improvements on them.

Raw residuals

The association measure used originally by the Contingency Wheel is based on raw residuals
(fij − êij) [6]. To generate association values rij ≤ 1, the raw residual for cell (i, j) is divided
by the maximum value it can take (fi+ − êij):

rsc_rawij
=
fij − êij
fi+ − êij

(C.2)

This measure maps frequencies linearly to association values (figure C.3a-left). The maxi-
mum association rij = 1 is reached when all cells of row i have zero frequencies except for cell
(i, j). For such a row, only one dot is created on the outer boundary of sector j. A cell with
rij = 0 creates a dot on the inner boundary of sector j (assuming no thresholds). Cells with
negative associations are ignored. The above-mentioned normalization is not uniform with re-
spect to the columns: For row i, different scaling factors are used in different columns, because
the expected frequency êij is larger for columns with larger f+j . This makes better use of the
sector area for revealing the distribution of dots along the radial dimension. Also, rows i that
are fully associated with column j (fij = fi+) can be easily found as dots at the outer boundary.
However, the different scaling factors result in a bias especially when f+j varies largely between
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sectors. This impacts the comparison of associations between different sectors and reduces the
expressivity of the arcs. A uniform scaling factor for all columns can be used instead:

runiform_rawij
=
fij − êij
fi+

(C.3)

Figure 3a-right shows how this scaling maps frequencies to associations. For cells with
fij = fi+, Eq. C.3 evaluates to 1 − f+j/f++ which is independent of i. Such cells are hence
mapped to the same radial distance within a sector (figure C.2c). The sectors are scaled by their
marginal frequencies. Sectors with larger f+j values attract more dots than sectors with smaller
f+j values, due to an inherent statistical bias that raw residuals suffer from (even with uniform
scaling).

Adjusted residuals

Standardized Pearson residuals [143] avoid the bias of raw residuals by adjusting the variance
of the rij values to N(0, 1):

rpearsonij =
fij − êij√

êij · (1− fi+/f++) · (1− f+j/f++)
(C.4)

We use a logarithmic scale for the visual mapping of these residuals to better reveal their dis-
tribution along the radial dimension (where cte is a constant computed from the table to ensure
−1 ≤ rij ≤ 1):

radjustedij =
sgn(rpearsonij )

cte
· ln
(

1 +
∣∣∣rpearsonij ∣∣∣) (C.5)

Figure C.3b-right, shows how this measure maps frequencies to associations. Figure C.3c
shows the same data as in figure C.2c using rij = radjustedij with Tr = 30% and with equal
sectors. The dots are distributed more uniformly among the sectors. This results in arcs that
suggest other similarities between occupations. The logarithmic scale amplifies smaller raw
residuals, giving them more visual prominence. This potentially generates more dots, and hence
a higher value for Tr is needed to filter out insignificant associations. Cells with fij = fi+
are mapped to different radial distances in sector j, depending on fi+. This makes the arcs
more robust to changes in Ts since rows with smaller fi+ values contribute less to the arcs. On
the other hand, these cells are somewhat difficult to locate. The following nonuniform scaling
stretches rij to the range [−1, 1]:

rsc_adjustedij =
radjustedij

max
(
sij · radjustedij |fij=fi+

, sij · radjustedij |fij=0

) (C.6)

where sij = sgn(radjustedij ) and radjustedij |fij=x
is the value radjustedij would take if fij = x.

Figure C.3b-left depicts how this scaling maps frequencies. As can be seen, rows with fij = fi+
are always mapped to the largest radial distance. Also, if the visualization can include negative
associations, rows with fij = 0 are always mapped to the lowest radial distance. Nonuniform
scaling, however, re-introduces a small bias in the associations, toward columns with larger f+j .
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C.2.2 Visualizing the Contingency Table

The visualization aims to reveal how the row categories of a contingency table are associated
with its column categories, based on the association measure used. Our new visual represen-
tation makes use of the advantages of uniformly adjusted residuals (Sect. C.2.1). It provides a
clearer and more intuitive visualization of the table, as compared to the original wheel design [6].
Moreover, depending on the user’s choice, it enables showing all associations or positive asso-
ciations only as we describe in the following subsections.

Visualizing columns

Like in the original wheel metaphor, columns are drawn as sectors of a ring chart. The main
difference is that they are drawn with equal size. This has several advantages: First, this is in ac-
cordance with the fact that adjusted residuals result in a more uniform distribution of the cells to
the sectors. Second, by using a frequency-based representation (Sect. C.2.2), the distribution of
the associations can be compared between different sectors. Third, the arcs become evenly dis-
tributed in the central area, unlike the arcs in figure C.2c which overlap more near small sectors.
Finally, column categories are treated equally from a visual point of view, in the same way as the
dimensions of a star plot [56]. This simplifies the visualization and eliminates confusion about
the meaning of different sector sizes. The information of different column marginal frequencies
f+j is conveyed in a linked bar chart (Sect. C.2.3). Incorporating it in the wheel representation
would not contribute to the goal of Contingency Wheel++, i.e., to explore associations.

Visualizing row-column associations

The radial dimension of the ring chart linearly encodes the association values rij computed
by one of the association measures. The outer boundary corresponds to rij = 1. The inner
boundary corresponds to rij = −1 if showing all associations, and to rij = 0 if showing positive
associations only. Instead of the dot representation originally used, we suggest a frequency-
based representation to visualize the row-column associations. A histogram Hj is created in
each sector j to show the distribution of the associations rij along the radial dimension. An
adjustable number b of equal bins is used for all histograms, initially determined by Scott’s
normal reference rule [131]. Each bin k in sector j aggregates the rows i having associations in
the interval Ik = [lk, lk+1[. The interval boundaries lk are equally spaced between [−1, 1]:

lk =
2(k − 1)− b

b
(C.7)

A closed interval Ib = [lb, 1] is used for the last bin to account for rij = 1. Hence, the
number of items hkj in the kth bin of sector j is:

hkj = |{1 ≤ i ≤ n : fi+ ≥ Ts ∧ rij ∈ Ik}| (C.8)

Each bin k of histogram Hj is visualized as a track in sector j. This track occupies the radial
position which corresponds to its interval Ik. The length of this track is proportional to hkj .
A uniform or sector-specific scaling factor ensures that all tracks fit in their sectors. Tracks
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Figure C.4: Dot vs. histogram representation of row-column associations. The dimensions of a
histogram bin are annotated (Eq. C.8).

are centered in their sectors, following the Gestalt principle of symmetry [165]. This avoids
artificial asymmetry along the angular dimension in the sectors and makes it easier to compare
their histograms. Figure C.4 shows both dot and histogram representations for some sectors of
figure C.3c. The histograms show how 3706 movies are associated with 2 occupations. Both
positive and negative associations are included.

Rows whose associations with sector j lie in a specific interval can be inspected individually
along with the attributes of their entities, as explained in Sect. C.2.3. The distribution of a nu-
merical or categorical attribute of these entities can be shown by coloring the histograms instead
of coloring individual dots. This provides a clearer understanding of the attribute distribution at
different radial distances. Figure C.5a shows the release-date distribution of movies positively
associated with specific occupation categories. Figure C.5b shows the genres of the movies.
Movies highly associated with the “Retired” category tend to be old. The opposite holds for
the “K-12 student” category which also tends to be highly associated with “Children” movies.
Movies highly associated with “Technician/Engineer” are more likely to have “Sci-Fi / Fantasy”
genres. These tendencies seem stronger as compared to the distribution of both attributes among
all movies (figure C.5c).

The frequency-based representation has several advantages over the dot representation: First,
the angular dimension now has a clear meaning (frequency of associations at different radial
distances in the sectors). Second, the artifacts and overlaps caused by showing separate dots
are eliminated. Third, histograms are familiar visualizations that are easy to interpret. They
better emphasize that the visualization is showing a distribution of the row associations in each
sector, and not individual entities. This avoids the confusion due to multiple dots representing
the same row. Finally, the redundancy of double-coding the association using both dot size and
dot location is also eliminated.

Bended histograms embedded in a ring chart suffer from visual illusions in perceiving dif-
ferent arc lengths at different radial distances. This effect can be accounted for computationally
and is minimized when arcs are short that are perceptually flattened [123] (figure C.6).
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Visualizing column similarities

We compute similarities between the columns of the contingency table based on their row asso-
ciations. A similarity value rcj1j2 is computed for every pair of columns (j1, j2), to assess how
similar the two distributions rij1 and rij2 are. Only active rows in both sectors are included in
the computation. Active rows in sector j have sufficient support fi+ and associations rij higher
than Tr, and are defined as follows:

Aj = {1 ≤ i ≤ n : rij ≥ Tr ∧ fi+ ≥ Ts} (C.9)

Active rows in each sector are depicted in dark gray in the respective histogram (figure C.6b).
The column similarities are computed as follows:

rcj1j2 =
1

|Aj1 |+ |Aj2 |
·

∑
i∈Aj1

∩Aj2

rij1 · rij2 (C.10)

Between each pair of sectors (j1, j2), an arc is drawn whose thickness and opacity are deter-
mined by rcj1j2 . A thick arc means that the active rows in both sectors tend to have similar
associations with the two columns j1 and j2. Changing the Tr value results in smaller or larger
active parts, and hence influences the thicknesses. By checking the arcs with different Tr values,
the user can examine in which ranges and to which extent the column similarities hold.

Figure C.5: Distributions of (a) a numerical attribute (release date) or, (b) a categorical attribute
(genre) of the movies in the histograms. (c) The global distributions of release date and genre
among all movies.

119



Figure C.6: Five levels of abstraction to explore the user-genre table and the underlying infor-
mation: (a) a bar chart of the column categories (genres), (b) the wheel view showing sectors
for the items selected in (a), (c) detail view for items selected in (b) (currently empty), (d) the
contingency table with cells in active parts in (a) colored in dark gray, (e) the categorical data
summarized in the cell highlighted in red in (d).

Arcs showing column similarities based on row associations is a unique feature of the Con-
tingency Wheel and one of the main reasons of adopting a circular layout for the visualization.
This layout provides a compact representation to show and compare column similarities. Fur-
thermore, arcs are useful in creating a user-controlled hierarchical grouping of the column cat-
egories based on their similarities: A right-click on an arc merges the two affected sectors into
one sector. The resulting wheel is built from the contingency table that results by merging the
corresponding columns into one column, by summing up the frequencies cell-by-cell. The new
sector is inserted at its appropriate position according to the sector ordering scheme currently
in use (alphabetical, by size, or user-defined sector ordering). Successively merging pairs of
sectors connected by thick arcs enables abstracting the visualization by reducing the number of
visual items. Moreover, it enables analyzing similarities between groups of similar columns and
not only between pairs of columns, as the use case shows (Sect. C.3).

Visual aids

We provide several visual aids to facilitate understanding. Three association levels evenly spaced
between the inner and the outer sector boundaries are shown to allow an easier interpretation of

120



the radial distances. An additional circle in pink shows the current value of the association
threshold Tr, which can be adjusted using the slider embedded in the ring chart. Inactive parts
of the histograms (Eq. C.9) are visually de-emphasized. A color gradient is shown in the back-
ground of the Tr slider to reflect the association levels. It uses either a diverging or a sequential
color scale [57], depending on whether negative associations are included or not. Arcs outside
the ring chart indicate sector groups (figure C.1). Finally, a legend shows the scale used in the
histograms by depicting an arc of average length.

C.2.3 Interactive Exploration Environment

The original Contingency Wheel may result in a cluttered visualization especially for large data
because it creates dots for individual row entities. These dots need to be selected individually to
obtain details about the corresponding entities [6]. To improve on these shortcomings, our new
methods follow Shneiderman’s visual information-seeking mantra [137]: The visualization first
shows an overview of the data using histograms. The user can filter the data interactively and
select entities she is interested in exploring. Then, details about these entities can be obtained
in linked views. Contingency Wheel++ offers an overview visualization of an asymmetrically-
sized contingency table. Likewise, the contingency table offers a summarization of a larger data
set by cross-tabulating two categorical dimensions. We designed the user interface to enable
exploring the data at these multiple levels of abstraction as explained in the following.

Multiple Views

Whenever we explain Contingency Wheel++ to new users, our first step is to show the underly-
ing contingency table. This allows explaining the basic concepts like row- and column marginal
frequencies, actual- and expected frequencies (Eq. C.1), and row-column associations (Eq. C.2-
C.5). We are thus showing both the wheel visualization and the underlying table side-by-side
in one interface. This combination bridges the gap between the visual representations and the
data representation (i.e., association values) computed by the automatic methods. The main user
interface (UI) of our prototype is divided into five coordinated views:

A bar chart shows the column categories and their marginal frequencies f+j (figure C.6a).
Columns selected in this view define the sectors of the wheel view. The user can thus focus
on selected columns. Also, if the number of columns exceeds the limits for the wheel, smaller
subsets of columns can still be visualized.

The wheel view is the central part of the interface (figure C.6b). It provides an overview
of the data and existing associations within. Several interactions are possible to find interesting
patterns in the data and select specific row entities for further analysis. The association threshold
Tr can be adjusted interactively via the slider embedded in the ring chart. Also, this view enables
setting several parameters by means of its toolbar and context menu.

A list view shows details about the row entities selected in the wheel view (figure C.6c and
figure C.7d). Beside the attributes of these entities (available from the data set), their marginal
row frequencies fi+ and associations rij with a specific column j are listed. The entities can be
sorted according to one of the columns, and histograms or bar charts can be created for a specific
column in the list.
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A tabular view shows the contingency table and the marginal frequencies (figure C.6d).
By hovering the mouse pointer over a cell (i, j), a tooltip shows the expected frequency êij
and the association value rij according to the measure used. If cell coloring is enabled via a
checkbox, the cell is shown in dark gray if it corresponds to an active part in the visualization
(i.e., i ∈ Aj). Also, the support threshold Ts can be adjusted via a slider to filter out entire rows
i with fi+ < Ts.

A second list view shows details about selected items from the tabular view (figure C.6e). By
double-clicking on a cell, a row, or a column in the tabular view, cross-tabulated data items are
shown in this list view along with their attributes. The items can be sorted and the distributions
of the values in a specific column can be explored using a histogram or a bar chart.

These views make it easier to explain to new users how the data are visualized in Con-
tingency Wheel++. Even more importantly, they constitute a multi-level overview+detail ex-
ploration interface. This allows experienced users to perform elaborate analysis workflows by
having quick access to all information available in the data. Hence, associations can be detected
and investigated further in relation to other attributes. The incorporation of analytical methods
in the visual interface enables a visual analytics process following Keim’s mantra [79]: Ana-
lyze first – show the important – zoom, filter and analyze further – details on demand. After
computing the row-column associations (Sect. C.2.1) and the columns similarities (Sect. C.2.2),
the visualization shows the important results, i.e., strong associations or high similarities. Using
different interactions, the user can change the thresholds Tr and Ts, merge columns, or set a
different association measure. This causes the analytical methods to recompute the associations
and similarities which are then visualized interactively. Details on selected items in the wheel or
in the tabular view can be obtained on demand.

Linking and Brushing

Contingency Wheel++ offers multiple ways to brush the visualized row categories. One way
is by clicking on a bar in the histograms, which selects the rows it aggregates (Sect. C.2.2).
Another way is using the sector marquee tool to define a radial interval I in a sector j using the
mouse (figure C.1). This selects the rows i with rij ∈ I . Clicking on sector j selects the rows
Aj that are currently active (Sect. C.2.2). Also, clicking on an arc selects rows active in both
sectors it connects (the items that define this arc). Rows i with rij ≤ Tr for all columns j can
be selected using a menu command. When Tr is positive but small, this command selects rows
that do not exhibit a high association with any column. Finally, rows can be selected using an
external query, like the instant search box at the top of the view. This box selects row categories
containing a specific text.

The top-right list view (figure C.7d) shows the selected rows defined either by filtering,
brushing, selection, or the search box query. When an item in this list is clicked, the tabular view
scrolls to and highlights the corresponding row iwhich shows the frequencies fij (figure C.12e).
Also, a star graph [56] of the associations rij can be shown in the wheel view, labeled with
these frequencies. Selected row categories are highlighted in the histograms of all sectors. The
original histograms become desaturated and new sub-histograms are drawn centered on top of
them showing the selected portion using color (figure C.7c). Likewise, the original arcs are
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Figure C.7: Visual exploration of movies associated to user occupations: (a-c) major overlaps
between user groups, (d) details of selected items in (c), (e-g) histograms of movie release date
for different subsets of movies, (h, i) wheel view colored by movie release dates to reveal its
relation with different user groups, (j, k) wheel view colored by movie genre to reveal dominant
genres in the movie preferences of different user groups.

desaturated and the parts corresponding to the selected items are highlighted. Three modes are
offered for performing brushing operations in the wheel, depending on keyboard modifiers:

• Set union: the new selection is added to an existing selection.
• Set intersection: the new selection is intersected with the existing selection. This en-

ables creating nested queries on the data. For example, in the wheel showing the movies-
occupation table, the user can select movies highly associated with the categories “pro-
grammer” and “scientist” but negatively associated with the category “executive”. This
is done by drawing ranges at the corresponding radial distances in each sector while the
CTRL key is pressed. TimeSearcher uses a similar brushing technique for time-series data
by means of timebox widgets [66].

• If no modifier is defined or if brushing is performed using an external query, the active
selection is replaced by the new one.

C.3 Use Case

To demonstrate the applicability of our approach, we present a use case along the fictitious
character Jane, who is an analyst at a large movie rental service. The use case is based on 10
analysis sessions conducted over the course of a week and added up to a total of 8 hours time.
For the analysis, the MovieLens data set [53] has been used as introduced in Sect. 1. Jane’s
goal is to get insights into the massive amount of data they have collected about their customers
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who rented, watched, and rated movies using their service. Based on the insights gained from
this analysis she plans to make decisions and take actions related to the ongoing marketing
strategies and recommender algorithms they have in place. Jane uses mainly two different tables
for her analysis: first, occupations (movies × user occupations) and second, genres (users ×
movie genres). By exploring the interactive wheels and the associated views and diagrams, Jane
gains a number of insights, some of which were expected but also some surprising ones. Before
Jane starts the analysis, she asks herself about the semantics of the data – what do associations
between the entities user and movie actually mean? A user and a movie are associated if a user
has entered a rating for a movie in the system which in turn implies that he or she has watched
the movie. However, an association does not express how much they liked a movie.

C.3.1 Categories & Characteristics

As a first step, Jane aims for getting an overview of the categories to get a feeling for the data
and overall (dis)similarities, to explore characteristics of single categories as well as to possibly
simplify the data by merging categories.

User occupations Jane starts her analysis by creating a wheel based on a contingency table
that displays the different occupations (i.e., jobs) of the users as sectors and the related movies
as histogram bars within these sectors (figure C.7). After opening the initial wheel, she adjusts
the association slider to >40% in order to focus on higher associations and similarities between
sectors. By studying the thickness of the connections inside the wheel she notices that there
is a lot of overlap (same movies rated) between “K-12 student” and “college/grad student ”
(figure C.7a) as well as between “programmer” and “technician/engineer” (figure C.7b) which
seems plausible to her. However, a more surprising aspect is that there is also a higher degree of
overlap between “academic/educator” and “retired” (figure C.7c). To investigate this connection
in more detail, Jane selects the arc (figure C.7c) and takes a look at the selected entities in the list
view in the upper right of the UI (figure C.7d). She sorts the movies by release date by clicking
on the respective table header and discovers that they seem to be mostly older movies. Only
three out of 52 movies are from the 90’s, the rest are older movies. Based on the mentioned
similarities, she merges “K-12 student” with “college/grad student”, “programmer” with “tech-
nician/engineer”, and “academic/educator” with “retired” by right-clicking on the corresponding
arcs in order to simplify the further analysis.

Then, Jane continues her exploration of release dates of movies highly associated to the
group [academic/educator, retired]. For this, she brings up a histogram using the context menu
of the release-date column-header (figure C.7e). This provides details about the distribution of
movies over time. For comparison, she also brings up release-date histograms for [college/grad
student, K-12 student] (figure C.7f), as well as for all movies that were rated (figure C.7g).
This confirms that the distribution concerning [academic/educator, retired] is quite different.
Moreover, Jane finds out that there seems to be a peak of watched and rated movies in the
mid 80s followed by a valley at the beginning of the 90s and another peak at the end of the
90s. To get a further overview of release dates of categories, she colors the wheel by release
date which clearly shows that [academic/educator, retired] more often watch older movies than
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others (larger portion of dark parts than average, figure C.7h). [K-12 student, college/grad stu-
dent] watch more often newer movies than others (larger portion of bright parts than average,
figure C.7i). Jane concludes her exploration by coloring the occupation wheel by genre. This
reveals that [programmer, technician/engineer] contain a much larger portion of highly associ-
ated “SciFi/Fantasy” movies (orange, figure C.7j) and [college/grad student, K-12 student] have
a much larger portion of highly associated “Children” and “Comedy” movies (blue and yellow,
figure C.7k) than on average.

Movie genres Jane switches to the genre wheel and finds high overlaps of “Musical” and
“Children”, “Action” and “Adventure”, and “War” and “Western” which seem to be reasonable
to her. More surprisingly, she finds no particularly high overlap between [War, Western] and
“Crime” which she would have suspected. Besides, she observes that “Horror” seems inversely
related to many other genres. Based on her observations she merges genres into [Children,
Musical, and Fantasy], [Noir, Mystery, Thriller], [Adventure, Action, SciFi], and [War, Western]
(figure C.3.1a-b). Jane colors the wheel by age using a diverging color scheme (figure C.3.1a).
Looking at this, she finds it surprising that the age distribution of users watching [Musical,
Children, Fantasy] is not very different from others. Overall, age-group distributions seem to be
quite similar in all genres.

Figure C.8: Associations between users and movie genres: colored by age.

Further, Jane wants to inspect possible gender differences and turns on coloring by gender in
the genre wheel (figure C.3.1b). As a general observation, she recognizes that there are a lot more
men than women rating movies. As anticipated, Jane finds the genre “Romance” as an exception
where the most highly associated users are female. Surprisingly “Horror” does not show less
women than other genres such as “Documentary”, [Adventure, Action, SciFi], [Noir, Mystery,
Thriller], or “Crime”. After that, Jane takes a closer look on different genres using histograms
of gender, age, and occupations (figure C.3.1c). For “Children” movies she notices that there is
an almost equal distribution between male and female viewers, and that most viewers are in the
age group of 18–24 years. Particularly, the last fact is somewhat surprising to Jane, since she
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Figure C.9: Associations between users and movie genres: colored by gender.

Figure C.10: Associations between users and movie genres: Details about selected genres.

thought that the majority of users watching “Children” films would be younger. Having a look
at “War” movies she spots that there are by far more men present which are often executives
and in the age group of 35–44 years. “Western” movies show a quite similar picture, except that
even older age groups watch and rate these movies.

C.3.2 Single Movies

After her top-down exploration of occupations and genre categories, Jane has a couple of movies
in mind she wants to inspect further for potentially interesting findings in a bottom-up manner.

Mainstream erotic films She takes a look at the two movies Basic Instinct (1992) and Nine
1/2 Weeks (1986) and compares the star plots in the wheel views. Interestingly, both movies
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are highly associated to “technician/engineer” but negatively associated to “programmer” (fig-
ure C.11a-d) which are otherwise quite similar as she had found out earlier.

The Godfather trilogy Next, Jane remembers that The Godfather movies (1972, 1974, 1990)
were quite big hits at her movie rental service in the last years. She uses the search box (fig-
ure C.12a) to find them. The movies matching the query are shown in the detail list in the upper
right of the UI. She selects the first movie of the trilogy in the list (figure C.12b) which brings
up a star plot in the center of the wheel view showing individual associations for the different
occupations. She can see that the movie has the highest associations with the occupations “ex-
ecutive” and “lawyer” (figure C.12c,d). When she selects the second movie, the picture is quite
similar, however, the third movie is somewhat different. Jane sees that it is highly associated
to “executive” again but that it is negatively associated to “lawyer” and highly associated to
“sales/marketing”. Further, Jane would like to inspect how the three movies were rated among
executives. For this, she double clicks on the “executive” column in the table (figure C.12e)
which brings up the ratings in the list view on the lower left of the UI (figure C.12f). Via a
context menu, she displays the rating histograms (figure C.12g-i) and spots that they are quite
positive and similar for the first two but much lower for the third movie.

C.3.3 Hypotheses and Specific Questions

During the visual exploration, Jane generated some hypotheses and specific questions she is
trying to answer subsequently.

Association vs. rating behavior One hypothesis Jane had in mind is to check whether it is true
that very high associations of movies correspond to more positive ratings. Using the occupation
wheel, she is probing rating histograms of highly associated movies (>75%) with “college/grad
student”, such as Transformers (1986, good ratings) and Teenage Mutant Turtles II (1991, bad
ratings). As a result, she finds evidence that her hypothesis does not hold.

Figure C.11: Associations of mainstream erotic films to “programmer” (a, c) and “techni-
cian/engineer” (b, d) – left: Basic Instinct (1992), right: Nine 1/2 Weeks (1986).
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Figure C.12: Visual exploration of the Godfather trilogy: (a) search box, (b) search result, (c,
d) star plot of associations of selected item to user occupations, (e) row of selected movie in
contingency table, (f) raw data of user ratings, (g-i) rating histograms for the three movies of the
trilogy.

Rating Another question Jane wants to inspect is whether there are differences in the general
rating behavior of different user occupations, i.e., are particular groups more or less critical
than others in general? By using the occupation wheel and comparing the grading histograms
of selected sectors, Jane observes that the rating behavior is strikingly similar among groups.
She can only spot subtle differences such as that unemployed persons tend to give lower ratings
whereas retired persons do not tend to give many low ratings.

C.3.4 Decisions and Actions Planned

Visually exploring the vast data collection of her movie rental service helped Jane to better un-
derstand her customers and unearth commonalities as well as differences between groups of
users and movies. Based on the gained insights, decisions are taken and actions are planned
that are intended to make her business more successful: The merging of some user categories
and movie genres can simplify the internal recommender engine. New SciFi & Fantasy releases
will be presented particularly to programmers and technicians/engineers. As there were more
movies watched and rated from the mid 1980s, there will be a campaign highlighting some of
these. Suggestions concerning Children movies will no longer be focused on younger customers
but concentrate on the age group of 18–24 years. War and Western movies will be recom-
mended more intensively to male executives older than 35 years. Finally, Horror movies will be
suggested to users who already watched those without restricting suggestions to men.
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C.3.5 Improvements of Contingency Wheel++

Jane benefited from the improvements in the new design and gained insights that would not
have been possible using the original Contingency Wheel. Due to the fact that dots have been
replaced by histograms, she was able to represent all movies without filtering steps which would
have been necessary to avoid overlaps. The distribution of an attribute of the movies (e.g.,
release date) can now be inspected using colored histograms which allowed for complex in-
sights involving multiple data attributes. Because of the multi-level overview+detail exploration
environment, Jane had easy on-demand access to all available data, such as movie details, con-
tingency table, and raw data. This allowed for drilling down to clarify and check findings from
an aggregate level. Further, she was able to create bar charts and histograms of selected elements
from different attributes, such as movie release dates or ratings, and compare the results with the
global distributions. On top of that, the ability to merge sectors enabled the detection of patterns
between groups of sectors that could not be detected when looking at single columns.

C.4 State of the Art

Methods dedicated for visualizing contingency tables are usually designed to handle a small
number of categories. Based on what the visual representations depict, they can be classified
into three types:

Frequency representations These methods map the table frequencies fij to visual elements
of proportional size. Mosaic Displays [58] and their variations use tiles to represent the frequen-
cies (similar to Treemaps [138]). Parallel Sets [13] and their variations, such as Circos [87],
represent frequencies as stripes or ribbons between visual elements that depict the categories.
These approaches offer an intuitive visual representation that can be divided further to accom-
modate additional dimensions. However, they can handle only a relatively small number of
categories (≤ 30 for Parallel Sets). With larger tables, the clutter increases in Parallel Sets, and
the increased skewness and number of zeros in the table values make it difficult to identify and
compare the tiles in Mosaic Displays [156].

Deviation representations Association Plots [100] use bar charts to show the deviations be-
tween the actual frequencies fij and the expected frequencies êij (Eq. C.1). Sieve Diagrams [49]
plot fij as sieves in Mosaic Displays of êij to show how both deviate from each other. Sieves
with smaller holes represent higher associations. A recent approach was proposed for explor-
ing proportions in multivariate categorical data [112]. It adopts the layout of Parallel Sets, but
depicts the proportionality of relationships between the categories instead of fij .

Intermediate representations Correspondence Analysis [14] (CA) projects the categories to
points in a 2D space, spanned by the two most contributing factors of the χ2 statistic, in a way
similar to Principal Component Analysis [75]. A higher association between categories of the
same class positions their points closer together, in a way similar to multidimensional scaling
[86]. The approach can also accommodate additional categorical dimensions [52]. However,
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with a growing number of categories, the plot becomes more difficult to read. It lacks an intuitive
structure as its axes bear no interpretable semantics. Johansson et al. [74] and Rosario et al. [126]
proposed methods for quantifying categorical data based on CA. The quantified data can then
be visualized using scatter plots or parallel coordinates. However, the latent numerical variables
used for the quantification are not always easy to interpret.

The dot-based Contingency Wheel uses deviation representations for the cells as dots along
the radial dimension. Like many approaches for dealing with large data [37, 117, 145] it uses
data reduction to handle tables having a large number of rows. Also, it employs alpha blending
to reveal overlapping, as done by other approaches for dealing with similar issues [44, 73, 85].
In contrast, Contingency Wheel++ employs a frequency-based approach to abstract large data,
as used by many other techniques [60, 84, 125]. Also, it makes use of interactive visual ana-
lytics techniques to enable the exploration of individual data items. As the use case illustrates,
asymmetrically-sized tables with a small number of columns (≤ 30) and thousands of rows can
be handled efficiently by Contingency Wheel++ without filtering the data.

C.5 Conclusion

Contingency Wheel++ employs novel visual analytics methods that address the major shortcom-
ings of the original dot-based wheel for visualizing and discovering patterns in large categori-
cal data. It improves on the computational component by introducing an association measure
based on Pearson’s residuals to alleviate the bias in the association measure originally used.
It eliminates the scalability and readability limitations caused by overlapping dots, by using a
frequency-based abstraction that shows distributions rather than individual entities. Finally, it
offers a multi-level overview+detail interface to explore individual entities that are aggregated
in the visualization or in the table along with their attributes. The use case demonstrates how
these methods can be used to find nontrivial patterns in large categorical data, and how further
attributes can be analyzed in separate views or by coloring the histograms in the wheel visual-
ization.

Future work aims to conduct comparative user studies to assess the effectiveness and effi-
ciency of Contingency Wheel++, and to apply it to different real-world domains. Also, we are
exploring further measures of associations and column similarities. Finally, we are investigating
the applicability of our approach to other problems having similar data structures, such as point-
set memberships or the class probabilities computed by a fuzzy classifier for a large number of
samples.
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