
High Order Hierarchic Finite Elements and Their
Application on Eddy Current Losses in Permanent

Magnets of Synchronous Machines

Erich Schmidt1, Manfred Kaltenbacher2, Anton Wolfschluckner1

1Institute of Energy Systems and Electric Drives
2Institute of Mechanics and Mechatronics

Vienna University of Technology, Vienna, Austria

Abstract – The paper presents electromagnetic fi-
nite element analyses for the eddy current losses in
permanent magnets of synchronous machines. The
main focus lies on high order element formulations
and the comparison of the respective results against
an analytical evaluation of these losses for both lin-
ear and rotational arrangements. Therefore, the
representation of skin depth and wave length with
the numerical analyses can be discussed in detail.

Index Terms – Eddy currents, Permanent mag-
nets, Permanent magnet machines, High order ele-
ments, Finite element methods.

I. Introduction

NOWADAYS, a rated apparent power of perma-
nent magnet excited electrical machines in the

range up to 50 MVA is considered as a realisable trend
of development. Due to sub- and superharmonics of
the air-gap field, the eddy current losses generated in
the permanent magnets of such machines may always
lead to an excessive heating [1]–[5]. In particular with
surface mounted permanent magnets, this can cause
the magnets to get partially or even fully demagne-
tised [6]–[9]. Thus, the precalculation of these eddy
current losses caused by the harmonics of the air-gap
field is a matter of interest with the design process of
such electrical machines. On one hand by using very
fast evaluation methods for the standard design pro-
cedures, on the other hand by using highly accurate
calculation methods for reference purposes [10]–[12].

As depicted in Fig. 1 and Fig. 2, linear as well
as rotational arrangements are considered. Both ar-
rangements are described with few parameters, such
as air-gap δ, ratio of pole pitch and air-gap τp/δ, ra-
tio of magnet height and air-gap hM/δ as well as the
pole coverage as ratio of magnet width and pole pitch
bM/τp. With the same parameters and an increasing
ordinal number of the harmonic waves in circumfer-
ential direction, it is expected that the difference be-
tween both arrangements will disappear.

In order to compare the various approximation or-
ders of the finite element analyses, an analytical cal-
culation will be used for the reference results. Both
calculation methods use an excitation with a surface
current sheet along the circumferential direction at the

inner stator boundary which can cover for any har-
monic order generated from either PWM modulated
stator currents, the slotting as well as the saturation.
This surface current flow in axial direction Kz(x, t)
perpendicular to the cross section of the conducting
region can be expressed by a travelling wave as

Kz(x, t) = K̂z Re
(

e jωt e−jνπx/τp
)
, (1)

where ω=2πf denotes the exciting circular frequency
with respect to the moving region, ν the harmonic
order and −1 ≤ x/τp ≤ 1 being the region of two
pole pitches along the circumferential direction, re-
spectively. Referring to the total eddy current losses,
there is no interaction between waves with different
harmonic orders as well as different frequencies. Con-
sequently, each travelling wave can be discussed sepa-
rately.
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Fig. 1: Simplified geometry of a pole pitch
with a linear arrangement.
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Fig. 2: Simplified geometry of a pole pitch
with a rotational arrangement.



II. Analytical Analysis

The analytical calculation is based on Laplacian and
Helmholtz equations of a magnetic vector potential
within the respective regions and uses a pole coverage
of bM/τp = 1, which occurs practically with Halbach
arrays.

A. Analytical Approach

The magnetic vector potential Az(ω) is obtained
from the Laplacian equation in the non-conducting re-
gions of air-gap and rotor and the Helmholtz equation
in the conducting region of the permanent magnets,

−∆Az(ω) = 0 ,
(
−∆ +

2j

d2

)
Az(ω) = 0 , (2)

as well as respective interface conditions between these
regions, where

d =

√
2

ω µM σM
(3)

denotes the skin depth of the eddy currents [13].

The total eddy current losses within the conducting
areas are evaluated by using the Poynting theorem.
Thereby, the apparent power per length S ′(ω) is ob-
tained from the boundary ∂ΓM along the permanent
magnets as

S′(ω) =
jω

2µM

∮

∂ΓM

Az(ω)
∂A∗z(ω)

∂n
ds . (4)

Consequently, the total eddy current losses are always
proportional to the square of the magnitude K̂z.

B. Analytical Results

Fig. 3 and Fig. 4 depict the power losses of one Nd-
FeB magnet in dependence of the exciting frequency
and the ordinal number of the harmonics for a con-
stant current sheet excitation of K̂z =104 A/m. Both
arrangements show the data of air-gap δ=2 mm, ratio
of pole pitch and air-gap τp/δ = 60, ratio of magnet
height and air-gap hM/δ=3. Fig. 5 shows the respec-
tive ratio of the power losses between both arrange-
ments modified in accordance to the different cross
sections of the conducting areas within both arrange-
ments.

Obviously, the total eddy current losses are quite
similar between both arrangements with a deviation
in the range ±5% only. As mentioned in [13], there
are different regions in dependence on both frequency
f and wave length 2τp/ν of the excitation. With a
ratio of wave length to skin depth (2τp)/(ν d)�1, the
power losses versus frequency increase with a power
of 2. On the other hand with a ratio of wave length
to skin depth (2τp)/(ν d)�1, the power losses versus
frequency increase with a power of 0.5 only. However
with very low ordinal numbers, there is a transitional
region where the power losses are rather constant.
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Fig. 3: Power losses of various harmonics versus frequency,
linear arrangement, analytical results, pole cover-
age 1.
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Fig. 4: Power losses of various harmonics versus frequency,
rotational arrangement, analytical results, pole
coverage 1.
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Fig. 5: Ratio of power losses between rotational and linear
arrangement, analytical results, pole coverage 1.

III. Finite Element Analysis

The finite element analyses deal with a pole cov-
erage of bM/τp = 1 for the direct comparison of the
analytical results with those from the numerical anal-
yses. Further, the finite element analyses can examine
very easily pole coverages within the practical range
of bM/τp ≈ 2/3 . . .3/4.

The finite element analyses carried out with differ-
ent high order approximation functions utilise an iden-



tical discretisation with the minimum skin depth as
approximately the half of the mesh size in radial direc-
tion and the mininum wave length as approximately
7.5 times the mesh size in circumferential direction.

A. Higher Order Finite Elements

In the finite element context, any analytical function
u(ξ) gets approximated by a finite dimensional subset
of interpolation functions defined on a finite element
mesh. In local element coordinates, this reads as

u(ξ) ≈ uh(ξ) =

neq∑

i=1

uiNi(ξ) , (5)

where uh(ξ) is the approximated function, with Ni(ξ)
being the shape functions, ui the related coefficients
and neq the number of unknown coefficients, respec-
tively.
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Fig. 6: Lagrange (left) and Legendre (right) based shape
functions up to order p = 4.

In the case of standard Lagrangian elements, the
functions Ni are defined by the corner coordinates and
ui are the related values of the function uh(ξ) on these
nodes. The shape functions of first order on the unit
domain Ω [−1, 1] are defined as

N1(ξ) =
1− ξ

2
, N2(ξ) =

1 + ξ

2
. (6)

However, one disadvantage of the Lagrangian basis is
that for each polynomial degree p ≥ 2, a new set of
shape functions as shown in Fig. 6 (left) is required,
which prevents the efficient usage of different approx-
imation orders within one finite element mesh.

In contrast, a set of hierarchic shape functions is
defined in such a way that every basis of order p is
fully contained in the basis of order p + 1 as shown
in Fig. 6 (right). In this work, we make use of the
Legendre based interpolation functions as

Nk(ξ) = lk−1(ξ) , k = 3, 4, . . . , p+ 1 , (7)

where lk(ξ), k ≥ 2, denotes the integrated Legendre
polynomials [14], [15]

lk(ξ) =

√
2k − 1

2
Lk(ξ) , Lk(ξ) =

ξ∫

−1

Pk−1(x) dx . (8)

Therein, Pk are the regular Legendre polynomials [16]

Pk(x) =
1

2k k!

dk

dxk
(
x2 − 1

)k
, (9)

the scaling factor arises from their orthogonality

+1∫

−1

Pk(x)Pm(x) dx =
2

2k + 1
δkm . (10)

Using the recursive formula of the regular Legendre
polynomials (k ≥ 1)

(k + 1)Pk+1(x) =

= (2k + 1)xPk(x)− k Pk−1(x) (11)

yields the integrated Legendre polynomials

Lk(x) =
Pk(x)− Pk−2(x)

2k − 1
, k ≥ 2 , (12)

and their recursive formula (k ≥ 2)

(k + 1)Lk+1(x) =

= (2k − 1)xLk(x) − (k − 2)Lk−1(x) . (13)

Due to the orthogonality of the Legendre polynomi-
als Pk along the unit interval [−1, 1], only the first two
functions N1, N2 contribute to the value at the ends
of the unit interval [−1, 1]. All other functions Nk of
higher order k > 2 give only a non-zero value within
the interval. Therefore, they are also called internal
modes or bubble modes.

On the other hand, the integrated Legendre poly-
nomials Lk fulfill the orthogonality

+1∫

−1

Lk(x)Lm(x) dx = 0 , |k −m| > 2 . (14)

Consequently, the sparsity of the matrices decreases
only slightly with higher orders of these approximation
functions.

Having this knowledge in mind, we can easily con-
struct basis functions up to any order for both quadri-
lateral and hexahedral elements by applying a tensor
product. The other element shapes can be constructed
via the Duffy transformation.



B. Numerical Results

Fig. 7 and Fig. 8 depict the respective ratio of the
power losses between both arrangements modified in
accordance to the different cross sections of the con-
ducting areas within both arrangements. The numer-
ical results are quite similar to the analytical results.
Consequently, only the linear arrangement is discussed
in more detail afterwards.

100 101 102 103 104 105 106

0.90

0.95

1.00

1.05

1.10

Frequency (Hz)

P
ow

er
lo

ss
es

,
ra

ti
o

(1
)

— ν = 1 — ν = 11
— ν = 3 — ν = 13
— ν = 5 — ν = 17
— ν = 7 — ν = 19

Fig. 7: Ratio of power losses between rotational and linear ar-
rangement, numerical analyses, order p = 2, pole cover-
age 1.
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Fig. 8: Ratio of power losses between rotational and linear ar-
rangement, numerical analyses, order p = 2, pole cover-
age 2/3.

In order to study the effects of various pole cov-
erages with different approximation orders, the ratio
of the respective power losses is shown in Fig. 9 and
Fig. 10. Obviously, the pole coverage only affects the
power losses of the lower harmonics while the power
losses of the higher harmonics are rather constant and
directly proportional to the value of the pole coverage.

Finally, the relative error

ε = PFEA/Pana − 1 (15)

between the power losses of finite element and ana-
lytical analyses with different approximation orders is
shown in Fig. 11, Fig. 12, Fig. 13, Fig. 14. In addition,
Fig. 15 and Fig. 16 depict this relative error for 1st and
2nd orders with the half mesh size in both directions.
Table I and Table II list the respective data of these
numerical analyses.
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Fig. 9: Ratio of power losses between pole coverage 2/3 and 1,
linear arrangement, numerical analyses, order p = 2.
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Fig. 10: Ratio of power losses between pole coverage 2/3 and 1,
linear arrangement, numerical analyses, order p = 4.

TABLE I
Matrix data in dependence on the order,

default mesh size

Number of Number of Non-zero
Order

Elements Nodes
Unknowns

Entries

1 1728 1843 1728 14976

2 1728 1843 5184 78544

3 1728 1843 8640 189132

4 1728 1843 13824 402696

TABLE II
Matrix data in dependence on the order,

half mesh size

Number of Number of Non-zero
Order

Elements Nodes
Unknowns

Entries

1 5160 5272 5160 50712

2 5160 5272 15480 253800

As expected, 1st order elements cannot encounter
both for small skin depths as well as short wave
lengths. 2nd order elements are better with an excep-
tion of short wave lengths and very high frequencies.
3rd and 4th order elements give the same results with a
relative error less than 0.5% which means convergence
with respect to the higher orders.

In comparison of the default mesh with the half
size mesh, of course the results of 1st and 2nd order
elements are better with the dense mesh. However,
the results of 2nd order elements with the dense mesh
are still less accurate than the results of in particu-
lar 3rd order elements with the default mesh. On the
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Fig. 11: Relative error of power losses, linear arrangement, pole
coverage 1, numerical analyses, order p = 1.
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Fig. 12: Relative error of power losses, linear arrangement, pole
coverage 1, numerical analyses, order p = 2.
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Fig. 13: Relative error of power losses, linear arrangement, pole
coverage 1, numerical analyses, order p = 3.
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Fig. 14: Relative error of power losses, linear arrangement, pole
coverage 1, numerical analyses, order p = 4.
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Fig. 15: Relative error of power losses, linear arrangement, pole
coverage 1, numerical analyses with half mesh size, or-
der p = 1.
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Fig. 16: Relative error of power losses, linear arrangement, pole
coverage 1, numerical analyses with half mesh size, or-
der p = 2.

other hand, the latter have approximately only the
half number of unknowns.

Consequently, the usage of 3rd or even higher or-
der elements will be strongly suggested by evaluating
eddy current losses. In particular with 3D meshes,
the possibility of generating a relatively coarse mesh
within the conducting regions shows explicit advan-
tages against a dense mesh with 2nd order elements.

IV. Conclusion

The paper discusses both analytical and numerical
calculation methods of eddy current losses in perma-
nent magnets of electrical machines. Therein, the fi-
nite element analyses utilise different approximation
orders with hierarchic shape functions in order to val-
idate modelling of wave length as well as skin depth.
Obviously, higher order elements with p ≥ 3 can han-
dle these parameters very well.

Further, linear and rotational arrangements are
compared against their results by using identical ge-
ometry parameters and various pole coverages. With
all harmonic orders along the entire frequency range,
there is a deviation only in the range ±5% between
these two arrangements. It is shown that the pole
coverage influences only the power losses of the lower
harmonic waves while higher harmonic waves have



approximately constant power losses directly propor-
tional to the value of the pole coverage.
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