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Abstract

The research deals with the long-term behavior of bonded timber-glass-composite shear walls under
constant shear stress on the basis of theoretical and experimental investigations. Specimens in two
different configurations were produced and examined under two different continuous load levels for
twelve months and cycling load in question of the shear strength of the adhesive. The small
specimens were assembled according to previous examinations in order to compare the results. The
medium sized specimens were designed as a shear wall and they were investigated under the same
experiments as the small specimens. Only the investigations under cycling load were omitted.

The creep deformation of both kinds of specimens was documented and compared. The higher load
level with 0.05 N/mm? showed higher creep deformations as the lower load level with 0.04 N/mm?.
But under both load levels the creep deformation continued after six months of continuous stress. In
previous researches the acceptable load level with no creep deformation after 90 days was defined
with 0.04 N/mm?2. This conclusion could not be confirmed at the current observation.

A difference between the two types of specimens occurred as well. The influence of climatic
conditions on the behaviour of the specimens was observed too. These results were used to derive a
modification factor for calculating load-bearing timber-glass composite structures.

The shear strength tests were held after variable times of preloading to examine the loss of shear
strength in order to derive the modulus of shear deformation and deformation factors. The number
of ten small specimens for one test series with a load level of 0.04 N/mm? for preloading showed a
continuous loss of strength. For the higher load level only five small specimens were tested each
time, these showed a high variation of shear strength. The examinations with the medium sized
specimens were held with four specimens per load level per test series.

Subsequently the achieved results are compared with previous studies and safety factors are derived
for the calculation of timber-glass-composite structures under long-term stress according to the
same theoretical considerations as used in previous researches. The known coefficients could
partially be confirmed but they should be considered critically.

Figure 1: Small specimen Figure 2: Medium sized specimen
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Long-term behaviour of hybrid
constructions

ETAG 002-1

* Guidline for structural sealant glazing systems
* Total safety factor for long-term behaviour = 1/60

=> |dentify reserves to make LBTGC
more attractive

HFA 2008

e Experiments to study long-term behaviour of LBTGC elements
* Total safety factor for long-term behaviour = 1/15

=» To risky? Still reserves?
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Modification and deformation
factors for LBTGC - elements
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Small specimens — test setup

data logger for
climate
measurement

Measurement
of residual
shear
strength at
different time
stages
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Small specimens — test setup

Previous work from HFA 2008

Silikon A
long-tem shear load

Climatic e VS e R ST e St e Vs A |
conditions:

e Temperature E
=20°C s
g
5
o Relativeair &
humidity
=65%




TU Vienna 2014 — 90 days
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TU Vienna 2014 — 365 days

creep deformation - small specimens
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TU Vienna 2014 — 365 days

creep deformation - small specimens
0.600

0.500

o
1
e

=
e
=]

creep deformation [mm]
E :
2

0.100

12.00%

10.00%s

6.00%a

4.00%

2.00%a

0.000

days

D00.04 Nfmm?
0o.05 Nfmm?
Eself-weigth

increasing!

———wu_ ____ Deformation still
B.00%.

167




TU Vienna 2014 — 365 days
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TU Vienna 2014 — 365 days
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Determination of K
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Modification and deformation
factors for LBTGC - elements
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Residual shear stresses — mean

values
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Residual shear stresses — mean

values
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Residual shear stresses —
5% fractile value
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Safety factors

HFA 2008 T 2014
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Determination of k.,.qand vy

kmod — i

Base:
YMm 25

1. yy according to VUT 2011: 2. k,,...; according to VUT 2011:

s Yy =6 (VUT2011) ¢« kpmog = 0.2 (VUT 2011)
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Outlook

Tdef _ Kmod
Tk Ym

* Increase T4,
— 0.05 N/mm? as acceptable load-level?

* Decrease T,
— why not 7y, o, instead of 7;?

* Decrease yy
— optimize bondline quality

Make LBTGC elements
more economic and more attractive
for industry and for users!
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