
platin A Toolkit for Compiler and
WCET-Analysis Integration

Stefan Hepp, Benedikt Huber, Daniel Prokesch

 Vienna University of Technology

Outline

 The T-CREST Project

 The platin Toolkit

 The PML File Format

 The Future

2

T-CREST: The Quest for a Time-Predictable
Platform

3

.c

Compiler WCET Analysis

RTOS

Memory
FPGA

Memory controller

M$

SD

LM

Patmos

ALU M$

SD

LM

Patmos

ALU M$

SD

LM

Patmos

ALU

NOC

T-CREST: The Quest for a Time-Predictable
Platform

4

.c

Compiler WCET Analysis

RTOS

Memory
FPGA

Memory controller

M$

SD

LM

Patmos

ALU M$

SD

LM

Patmos

ALU M$

SD

LM

Patmos

ALU

NOC

The Patmos Toolchain

5

 Compile C code

 Optimize code
(for Patmos)

 Support the WCET
analysis

 Use WCET-analysis
feedback

Compiler
WCET

Analysis

.c

Binary

Compiler Overview

6

 Based on LLVM Compiler
Framework

 C source files translated into
LLVM bitcode (clang)

 Bitcode files (user, libraries)
linked together to a single
bitcode file

 Translated to machine code
(relocatable ELF)

 Object code linker for final
relocations

 Code generator exports
information for WCET
analysis

platin – The Portable LLVM Annotation
and Timing Toolkit

7

 Glue tool between
compiler and analysis
tools

 Import/export various
file formats

 Transform information
between various code
representations

 Analyze programs,
simulation traces, ..

 Central file format for
meta-infos: PML

patmos-clang

platin

patmos-llc

WCET
Analysis

pasim

PML

results.xml

traces

ELF
+PML

PML

ELF

bitcode

.ais

SWEET
.alf

.f

platin Tools

8

 pml: Merge, check, .. PML files

 pml2ais: Export to aiT's AIS
format, create aiT project file

 toolconfig: Get options for
compiler, simulator, ...

 extractsymbols: Extract
symbol addresses from ELF

 sweet: Run sweet analyzer

 analyzetrace: Generate flow
facts from simulation trace

 wca: IPET-based WCET analysis

 wcet: Driver for WCET analysis

platin

PML .f.elf pasim

PML
.ais/.apx

FFX

patmos-clang

Preservation of Meta-information

9

Source files

Linked
Binary

 Source code → Bitcode

 High-level optimisations

 Bitcode → Machine code
 Relations between basic blocks¹

 Machine code → Linked binary
 Symbols are preserved

¹ Benedikt Huber, Daniel Prokesch, and Peter Puschner. Combined WCET analysis of bitcode and machine code
using control-flow relation graphs. In Proceedings of the 14th ACM SIGPLAN/SIGBED conference on Languages,
compilers and tools for embedded systems (LCTES '13). ACM, New York, NY, USA, 163-172.

Preservation of Meta-Information

10

Source files

Linked
Binary

 Source code → Bitcode

 High-level optimisations

 Bitcode → Machine code
 Relations between basic blocks¹

 Machine code → Linked binary
 Symbols are preserved

PML file

¹ Benedikt Huber, Daniel Prokesch, and Peter Puschner. Combined WCET analysis of bitcode and machine code
using control-flow relation graphs. In Proceedings of the 14th ACM SIGPLAN/SIGBED conference on Languages,
compilers and tools for embedded systems (LCTES '13). ACM, New York, NY, USA, 163-172.

 Configuration

 Structural
Information

 Relation graphs¹

 Flow facts

 Value facts

 Analysis results

Example: Jump-tables

 Base64 encoding function

11

Example: Jump-tables

 Base64 encoding function

12

Simulator Trace Analysis

 Aid during development and testing

 Extract flow information from simulation traces
 Accompanying timing analysis at an early development stage

 Give hints on missing static loop bounds

 Find most relevant flow facts from trace facts

 Incremental WCET analysis and refinement of flow facts

 Example:

13

Program Meta-Info Language

14

 YAML Based

 Central format
used by platin

 Importer +
Exporter for LLVM

 Contains all
information in a
single file format

 Description available as YAML schema at
patmos-llvm/tools/platin/lib/core/pml.yml

 "machine-functions":
 type: seq
 desc: "list of machine-code functions"
 sequence:
 - &function
 type: map
 class: Function
 mapping:
 "name":
 type: scalar
 required: yes
 unique: yes
 "blocks":
 type: seq
 desc: "basic blocks of the function"
 sequence:
 - &block
 type: map
 desc: "basic block"

https://github.com/t-crest/patmos-llvm/blob/master/tools/platin/lib/core/pml.yml

PML: Platform Configuration

15

 Machine configuration
 Latencies
 Caches
 Address ranges

 Analysis configuration
 Program entries
 Analysis entries
 Custom tool

configurations

machine-configuration:
 memories:
 - name: "main"
 size: 67108864
 transfer-size: 8
 read-latency: 4
 read-transfer-time: 1
 write-latency: 4
 write-transfer-time: 1
 caches:
 - name: "data-cache"
 block-size: 32
 associativity: 4
 size: 2048
 policy: "lru"
 type: "set-associative"
 memory-areas:
 - name: "data"
 type: "data"
 memory: "main"
 cache: "data-cache"
 address-range:
 min: 0
 max: 0xFFFFFFFF

PML: Structural Information

16

 Functions, basic blocks,
instructions
 Branch targets, callees
 Addresses

 Levels: bitcode, machine code
 Structure and all analysis

results are attached to a level

 Names: relate analysis results to
structure within a level

 Labels: relate program points
over diferent levels

 Relation graphs: relate CFGs to
translate flow facts

machine-functions:
- name: 3
 level: machinecode
 mapsto: main
 hash: 0
 blocks:
 - name: 0
 mapsto: entry
 predecessors: []
 successors:
 - 1
 - 2
 instructions:
 - index: 0
 opcode: SRESi
 size: 4
 stack-cache-argument: 8
 address: 131844
 - index: 1
 opcode: SUBi
 size: 4

bitcode-functions:
- name: main
 level: bitcode
 hash: 0
 blocks:
 - name: entry
 predecessors: []
 successors:
 - if.then
 - if.end
 instructions:
 - index: 0
 - index: 1
 opcode: r
 - index: 2
 memmode: store

PML: Flow Facts

17

 Linear Constraints
 LHS: frequencies of program points

• Function/block/instr./edge/context
 RHS: constant or symbolic constant

(1 + ((16 + %length) /u 16))

 Scope, context
 Scope: Function/loop
 Context: Callsite/loop/iteration

 Various sources
 LLVM Scalar evolution
 Simulator traces
 SWEET

 platin provides (internal) tools to simplify
and transform flow facts

flowfacts:
- scope:
 function: 3
 lhs:
 - factor: 1
 program-point:
 function: 3
 block: 1
 op: less-equal
 rhs: '0'
 level: machinecode
 origin: trace
- scope:
 function: 4
 loop: 8
 lhs:
 - factor: 1
 program-point:
 function: 4
 block: 8
 op: less-equal
 rhs: '5'
 level: machinecode
 origin: trace

PML: Other Analysis Results

18

 Value facts
 Accessed memory

addresses

 Timing results
 WCET (cycles)
 BB exec times,

BB frequencies
 Criticalities

 Stack cache analysis
 Spill and fill sizes

valuefacts:
- level: machinecode
 origin: llvm.mc
 values:
 - symbol: data
 program-point:
 function: 4
 block: 4
 instruction: 4
- level: machinecode
 origin: llvm.mc
 values:
 - symbol: data
 program-point:
 function: 4
 block: 6
 instruction: 8

timing:
- scope:
 function: 3
 cycles: 310
 level: machinecode
 origin: trace
- scope:
 function: 3
 cycles: 310
 level: machinecode
 origin: platin
 cache-cycles: 0
 profile:
 - reference:
 function: 3
 edgesource: 0
 edgetarget: 2
 cycles: 24
 wcet-frequency: 1
 wcet-contribution: 24

Outlook
 Source code flow annotations

 Markers in source code
 Flow facts as linear expressions over markers
 Compiler transforms markers like regular

instructions with side-efects
 Order and number of 'execution' of markers

stays intact on all paths

 Some changes to PML structure
 Make it easier to add new analysis result types

 Back-annotation of analysis results to arbitrary
compiler passes

 Integration of OTAWA into platin
19

Conclusion

 platin is our swiss army knife for
compiler and analysis integration
 Import/transform/export meta-infos
 Invoke compiler and analysis tools

 Available at:

20

http://github.com/t-crest/

Thanks! Questions?

http://patmos.compute.dtu.dk/

http://github.com/t-crest/
http://patmos.compute.dtu.dk/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

