
REAlist—A Tool Demo

Bernhard Wally1, Alexandra Mazak1, Bernhard Kratzwald1, Christian
Huemer1, Peter Regatschnig2, and Dieter Mayrhofer1

1 Vienna University of Technology, Institute of Software Technology and Interactive
Systems, Business Informatics Group, Favoritenstraße 9–11, 1040 Vienna, Austria,

{wally, mazak, kratzwald, huemer, mayrhofer}@big.tuwien.ac.at,
http://www.big.tuwien.ac.at/

2 eventus Marketingservice GmbH,
Gumpendorferstraße 21/Top 12, 1060 Vienna, Austria,

peter.regatschnig@eventus.at,
http://www.eventus.at/

Abstract. REAlist is a prototypical web-based ERP system built on
top of a generic REA core system. It is implemented as a multi-tenant
aware software-as-a-service. We intend to give a live demo of REAlist
and show how various REA concepts are used to model the required
ERP artefacts.

Keywords: Tool Demo, REA, ERP System Implementation, Model-
Driven Engineering, Software-as-a-Service

1 Introduction

With REAlist [6], a prototypical Enterprise-Resource-Planning (ERP) system
was built that is based on the Resource-Event-Agent (REA) ontology [7] as its
core meta-model. The developed solution thus consists of two software layers:
(i) an implementation of the REA ontology and (ii) an ERP abstraction layer
based thereon that allows driving a web based software-as-a-service. See Fig. 1
for a more complete visualization of the software stack.

The REA core implementation has been designed with genericity in mind,
allowing to create and manipulate arbitrary business models at runtime—for
that, a generic data model has been designed. This implementation concern
follows a current trend in software engineering that is model driven software
engineering [2,8,9,4]. In order to accelerate the definition of business models,
reference modeling is applied [3], i.e. existing models can be used as a basis for
further model refinement.

The ERP implementation follows the Handels-H (engl. “Trading H”) ap-
proach [1], which visualizes (i) purchase processes as a vertical bar to the left,
(ii) sales processes as a vertical bar to the right, and (iii) links both by a hor-
izontal bar which is the warehouse. A set of key performance indicators (KPI)
is implemented in order to provide condensed information gathered from quan-
tifiable data of business events. Also, inter-organizational benchmark indicators
can be calculated due to the multi-tenant nature of the developed solution.

http://www.big.tuwien.ac.at/staff/bwally/
http://www.big.tuwien.ac.at/staff/amazak/
http://www.big.tuwien.ac.at/staff/bkratzwald/
http://www.big.tuwien.ac.at/staff/chuemer/
http://www.big.tuwien.ac.at/staff/chuemer/
http://www.big.tuwien.ac.at/staff/dmayrhofer/
http://www.tuwien.ac.at/
http://www.isis.tuwien.ac.at/
http://www.isis.tuwien.ac.at/
http://www.big.tuwien.ac.at/
mailto:wally@big.tuwien.ac.at
http://www.big.tuwien.ac.at/
http://www.eventus.at/
mailto:peter.regatschnig@eventus.at
http://www.eventus.at/


2

Fig. 1. Layers of the software architecture implemented in the REAlist prototype: the
two bottom layers (REA DB and REA API) depict the generic REA core implemen-
tation, comprising a database implementation (DB) and an application programming
interface (API). Based thereon an ERP application is built consisting of the REAlist
API (which encapsulates ERP functionality on top of REA concepts) and REAlist
WEB, a web frontend (and the visible part of the tool we are presenting here).

2 Tool Demo

The REAlist tool features two distinct user interfaces: (i) a “REA browser” that
enables the manipulation of raw REA entities (on both the type and instance
layer), and (ii) an ERP frontend that abstracts REA details where necessary
and provides a condensed interface for purchasing, storing and selling articles.
The REA browser is not explained here any further with the exception of the
business model editor (see below).

2.1 REA Business Model Editor

Fig. 2 depicts the REAlist business model editor (part of the raw REA browser),
where specific entities of a business are defined following a MOF1 and type
object [5] approach: REA entities (M2) are instantiated on a M1 “type” layer,
after which operational instances of those types can be instantiated on a M0
layer. In the business model editor only the M1 layer is regarded—the markings
in Fig. 2 are explained as follows:

1 depicts the top level agent types defined for REAlist,
2 are the top level resource types,
3 reciprocity type ORDER (ordering products from a supplier for later selling)

comprises increment (ARTICLE_RECEIPT) and decrement (PAYMENT) event
types (realized on MOF layer M0 by commitment instances),

4 duality type PURCHASE displays which events are allowed for that duality,
namely increment event types ARTICLE_RECEIPT, PURCHASE_CASH_DISCOUNT,
and PURCHASE_CREDIT and decrement event types PAYMENT and (in case ar-
ticles are sent back to the supplier) PURCHASE_ARTICLE_RETURN,

1 See http://www.omg.org/mof/

http://www.omg.org/mof/
http://www.omg.org/mof/


3

5 shows which claims are relevant for the purchase business case, namely
INCOMING_INVOICE and PREPAYMENT (e.g. if we have to pay before receiv-
ing the goods).

Fig. 2. The REA business model editor is implemented as a tree, where each REA
entity (MOF layer M2) can be instantiated as a type entity on M1.

2.2 ERP Frontend

For demo purposes we present the main screens of the purchase business case
and explain the underlying REA concepts that are abstracted therein. Fig. 3
shows the overview page of a product order from a supplier. The markings in
Fig. 3 are explained below:

1 the address of the supplier (information gathered from a dependency relation
from the supplier agent to an address location point),

2 the supplier number is an instance property of agents of type “supplier”,
3 the internal agent responsible for the current order—the list is generated

from the available agent instances of type “clerk”,
4 a line item of the current order showing the amount of items ordered (com-

bined view of the resource and the stockflow with which the resource is bound
to the current commitment),

5 a scaled discount for line item 2—the scaled discount is defined in a policy
that relates a supplier agent to a certain resource while providing mini-
mum/maximum limits and the value of the discount in percent,



4

Fig. 3. ERP frontend for an order. The address of the supplier is retrieved from a
corresponding dependency, shipping costs and service fees are defined in their respective
policies, taxes are calculated based on the provided tax policies.



5

6 clicking on “Add row item” leads to the interface presented in Fig. 4.

Fig. 4 depicts the adding of a new line item to the list of products to order
in the current order process:

Fig. 4. ERP frontend for adding items to an order. The availability and base price of
a product from a certain supplier is defined by corresponding policies, and so are the
scaled discounts for the selected product.

1 an auto-complete textfield supports the finding of products that are availalbe
from the given supplier (a LIST_PRICE policy defines whether a certain prod-
uct can be ordered from a supplier or not),

2 based on the beforementioned policy, the net list price per unit is extracted,
3 a scaled discount of 0.93% is defined in a PURCHASE_SCALED_DISCOUNT policy

when ordering between 100 and 1000 units,
4 an additional scaled discount policy of 1.57% is defined for orders exceed-

ing 1000 units—the progress bar visualizes the fulfillment grade of the next
scaled discount,

5 based on the address of the supplier (here: Germany) the corresponding tax
value is retrieved from the respective tax policy.

Fig. 5 depicts the storing activity that takes place after the ordered products
have arrived. This screen is only shown if the business activity STORE_VA is
defined in the business model of the respective tenant. The markings in Fig, 5
have the following meaning:

1 the first line item has been stored in Bin-1 of Shelf-1 in Warehouse-1,
2 the second line item (received amount: 13 units) has been stored in two

different bins of two different shelves in the same warehouse,
3 the third line item is about to be stored in Bin-3 of Shelf-2 in Warehouse-1—

with a click on Store that intent is persisted, i.e. the corresponding depen-
dency is created or an existing dependency is updated with the additional
amount of items to be stored.



6

Fig. 5. ERP frontend for storing items of an order into a warehouse. The available
warehouses, shelves and bins are defined by dependency entities.

3 Conclusion

With REAlist we have protoypically implemented (i) a generic REA core com-
prising a business model independend database and corresponding data access
layer, as well as (ii) an ERP application which is built on top of that REA core.
We have shown that it is feasible to implement business applications on top
of REA and with our internal test data we have set up three different business
branches with different requirements for mainly products and employees that can
all be served from a single REAlist instance thanks to its multi-tenant support.

4 Acknowledgements

This work was supported as part of the BRIDGE program of the Austrian Re-
search Promotion Agency (FFG) under grant number 841287—a joint research
effort of Vienna University of Technology and eventus Marketingservice GmbH.

References

1. Becker, J., Schütte, R.: Handelsinformationssysteme. MI Wirtschaftsbuch, 2 edn.
(2004)

2. Bézivin, J.: On the unification power of models. Software & Systems Modeling 4(2),
171–188 (May 2005), http://dx.doi.org/10.1007/s10270-005-0079-0

3. vom Brocke, J.: Design principles for reference modeling: reusing information mod-
els by means of aggregation, specialisation, instantiation, and analogy. Reference
Modeling for Business Systems Analysis pp. 47–75 (2007)

4. Hofreiter, B., Huemer, C., Kappel, G., Mayrhofer, D., vom Brocke, J.: Inter-
organizational reference models—may inter-organizational systems profit from ref-
erence modeling? In: Ardagna, C.A., Damiani, E., Maciaszek, L.A., Missikoff, M.,
Parkin, M. (eds.) Business System Management and Engineering, Lecture Notes

http://dx.doi.org/10.1007/s10270-005-0079-0


7

in Computer Science, vol. 7350, pp. 32–47. Springer Berlin Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-32439-0_3

5. Johnson, R., Woolf, B.: Type object. In: Martin, R.C., Riehle, D., Buschmann,
F. (eds.) Pattern Languages of Program Design 3, chap. Type Object, pp. 47–65.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1997), http:
//dl.acm.org/citation.cfm?id=273448.273453

6. Mayrhofer, D., Mazak, A., Wally, B., Huemer, C., Regatschnig, P.: REAlist: To-
wards a business model adapting multi-tenant ERP system in the cloud. In: 8th
International Workshop on Value Modeling and Business Ontology (VMBO 2014)
(March 2014)

7. McCarthy, W.E.: The REA accounting model: A generalized framework for account-
ing systems in a shared data environment. The Accounting Review 57(3), 554–578
(July 1982)

8. Selic, B.: MDA manifestations. The European Journal for the Informatics Profes-
sional IX(2), 12–16 (April 2008)

9. Stahl, T., Völter, M., Efftinge, S., Haase, A.: Modellgetriebene Softwareentwicklung:
Techniken, Engineering, Management. dpunkt. verlag (2012)

http://dx.doi.org/10.1007/978-3-642-32439-0_3
http://dl.acm.org/citation.cfm?id=273448.273453
http://dl.acm.org/citation.cfm?id=273448.273453

	REAlist—A Tool Demo

