
R Packaging and New Development Features for
Building R Packages
author: Matthias Templ date: Olomouc 2015

Packaging: Overview Approaches
Basically two approaches:●

traditional approach including a lot of manual work1.
new approach using roxygen2, package devtools and RStudio2.

We concentrate on the second approach since it is just easy with it!

But first some basic concepts about R packages are given...

What is an R package?
Packages are standardized units for extending R●

Transparent and cross-platform extension base R●

The R distribution itself contains 30 packages.●

Packages must provide a min. of information to the core R system:●

name and version;❍

license, description, title,❍

author and maintainer.❍

A package must be installed, using for example the R command install.packages().●

Before using a package, load it with the library() or require() command.●

Why R packages? (1/2)
Accessible functions and data●

Convenient means for code storage and version control❍

Functions, data and other objects can be easily made available for use (loaded) by a single❍

library(myPackage) command
Facilitates access to native code (C/C++/FORTRAN)❍

Sharing code with others❍

Using a package makes sense even for personal use❍

Why R packages? (2/2)
Reliable and maintainable code●

Facilitates for code development (more disciplined software development),❍

particularly in collaborative projects❍

Better design of the functions❍

Less bugs and easier to fix them❍

More reliable code❍

Maintainable code❍

Basic terms related to R packages (1/2)
Package: A set of code, example data and documentation in a standard form extending R●

Library: Directory containing installed packages●

Repository: A formalized web site providing packages for installation●

Source: The source version of the package containing the R source code, data, documentation●

and other components in its original form
Binary: A compiled version of the package suitable for use only on a particular platform (e.g.●

Windows, Mac OS)

Basic terms related to R packages (2/2)
Base packages: Packages maintained by the R core development team, distributed and installed●

as a part of the R software
Recommended packages: Packages distributed with the main R software but not necessarily●

maintained by the R core development team
Contributed packages: All other packages—most of them can be downloaded and installed from●

the CRAN repository.

CRAN - 6346 add-on packages

CRAN - top 10
Top 100 Pakete von Jan.-Dez 2013: http://bit.ly/JxgNXD

CRAN: How often are my packages downloaded?

Using R packages (1/3)
Which packages are currently loaded? Search path: use the function search()●

What packages are currently installed?●

library() without arguments❍

installed.packages() returns a data frame, a row per package.❍

Information about a package, e.g. for package MASS●

packageDescription("MASS")❍

help(package="MASS")❍

Using R packages (2/3)
Load package / use the functions in a package:●

library(packagename) or❍

require(packagename)❍

List the available packages in a repository:●

available.packages()❍

Installing and updating packages:●

install.packages("packagename")❍

old.packages()❍

update.packages()❍

Package vignettes: function vignette() to list all available vignettes or to view a vignette.●

Using R packages (3/3)
How to find packages? - Ask Google, but do not expect a precise answer. - Ask a question at R-Help
or - better - ask at Stack Overflow. - Go to CRAN Task Views, see
http://http://cran.r-project.org/web/views/

Use the R package sos. For example try

library(sos)
findFn("robust+multivariate")

The results will be shown in the web browser.

Useful functions
Save an R object to a file in binary R format●

save(..., file="filename.rda")

Find the R working directory

getwd()

[1] "/Users/templ/workspace/V12-packaging"

With traditional approach: to generate a help (.Rd) file

prompt(object)

Structure of a package
A package is a directory with a given subdirectory structure. - A DESCRIPTION file containing the
metadata of the package; Debian Control File format. - A NAMESPACE file. - A man/ subdirectory
containing the documentation files. - An R/ subdirectory containing the R-code. - A data/
subdirectory containing data sets.

Structure of a package (optional)
Further optional subdirectories could be: - A src/ subdirectory containing C/C++/FORTRAN code - A
tests/ subdirectory containing validation tests - A exec/ subdirectory containing other executables,
like Perl or Java - A vignettes subdirectory containing package vignettes - A inst/ subdirectory
containing other stuff. - Files NEWS and ChangeLog - ignored by R but could be helpful for the user.

Creating R packages - the traditional approach
Step 1: Create the package files.●

Load all R source code and data set(s) into a clean session and❍

Run package.skeleton("packagename")❍

Alternative: create the directory structure yourself (DESCRIPTION, NAMESPACE, ...)❍

Step 2: Edit the package files.●

Fill in the DESCRIPTION file❍

Complete documentation files in man/❍

Edit the NAMESPACE file (def: export everything)❍

Step 3: Build, check and install the package.●

Creating R packages - the traditional approach
./mypackage/Read-and-delete-me contains information how to continue:●

Edit the help file skeletons in man, possibly combining help files for multiple functions.❍

Edit the exports in NAMESPACE, and add necessary imports.❍

Put any C/C++/Fortran code in src❍

If you have compiled code, add a useDynLib() directive to NAMESPACE.❍

Run R CMD build to build the package tarball.❍

Run R CMD check to check the package tarball.❍

Read "Writing R Extensions" for more information.●

The DESCRIPTION file
The content of the default DESCRIPTION file looks like this:

Package: pcapack
Type: Package
Title: What the package does (short line)
Version: 1.0
Date: 2013-09-15
Author: Who wrote it
Maintainer: Who to complain to <yourfault@somewhere.net>
Description: More about what it does (maybe more than one line)
License: What license is it under?
Update the information
Choose license: GPL-2
Add dependencies with Depends: directive

Step 2: The DESCRIPTION file
Update the information●

Choose license: GPL-2 or MIT●

Add dependencies with Depends●

Step 2: The NAMESPACE file
The NAMESPACE file describes which functions in the package are visible to the others.●

The content of the default NAMESPACE file looks like that (everything is exported):●

exportPattern("^[[:alpha:]]+")

Step 2: an Example of a NAMESPACE File

useDynLib(rrcov)
importFrom(stats4, plot, summary)
importFrom(stats, screeplot, biplot, predict)
importFrom(methods, show)
importFrom(mvtnorm, rmvnorm)
import(robustbase, pcaPP)

export(CovClassic, Cov, ..., repmat)
##S3 generics
S3method(T2.test, default)
S3method(T2.test, formula)
S3method(Wilks.test, default)
S3method(Wilks.test, formula)
S4 generics
export(isClassic, ...)

Add data
Any time a new data object, say moredata, can be added to a package: - Load the data into R (from
CSV, Excel, a database, Web, etc.) - Save the data into a binary R object (into data folder): *
save(moredata, file="moredata.rda")

(- For traditional approach: Create a help file using prompt(moredata) and copy the .rda and .Rd
files into the data/ and man/ directories respectively.)

Step 2: Add a function
Any time a new function, say newfun, can be added to a package: - We assume that we have
already written the code of the function in and .R file, say newfun.R - Save it in the R folder and
include documentation

(note: traditional approach takes much more time)

Step 3: Install, check and build on Windows
Under Linux all tools are available, for Windows: - RTools: (REQUIRED) Install from
http://cran.r-project.org/bin/windows/Rtools/. RTools is a collection of unix-like tools that can be
run from the DOS command prompt; contains the compilers used for compiling Fortran and C code.
- $LaTeX$-compiler: (OPTIONAL) Install e.g. Miktex from miktex.org - necessary for building the PDF
manual during the checking of the package. - set the PATH variable -
http://robjhyndman.com/hyndsight/ building-r-packages-for-windows/

Step 3: Install, check and build
To Install, Check and Build a package the following commands are used: * R CMD command
packagename

where * R CMD INSTALL packagename will install the package from its folder * R CMD build
packagename will build a source package (tarball or .tar.gz) * R CMD check packagename will
check the package for consistency

A Note on R CMD check ...
Checks the package for consistency; mandatory for submission to CRAN - Check directory structure
and DESCRIPTION file - Documentation is converted and run through $LaTeX$ (if available) - The
examples are run - The tests (if available) are run - Undocumented objects or inconsistency
between documentation and code are reported

Example Check I

R CMD check pcapack
* using R Under development (unstable) (2013-08-19 r63623)
* using platform: i386-w64-mingw32 (32-bit)
* using session charset: ISO8859-1
* checking for file 'pcapack/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'pcapack' version '1.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for executable files ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'pcapack' can be installed ... OK
* checking installed package size ... OK

Example Check II

* checking package directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK

Example Check III

* checking S3 generic/method consistency ... OK

* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking examples ... OK
* checking PDF version of manual ... OK

A Note on R CMD build ...
R will create a compressed package file (omitting unnecessary files).

R CMD build pcapack
* checking for file pcapack/DESCRIPTION ... OK
* preparing pcapack:
* checking DESCRIPTION meta-information ... OK
* checking for LF line-endings in source and make files
* checking for empty or unneeded directories
* building pcapack_1.0.tar.gz

Including native compiled code
Including C/FORTRAN/C++ code in a package. - There are many resources on the web, but the
definitive guide is Writing R extensions - Store the C/C++/FORTRAN code into the src/ directory -
Update the NAMESPACE file - Use the argument PACKAGE in the call to .C or .FORTRAN (see ?.C) - If
using C++, consider using the package Rcpp. See the tutorial of Hadley Wickham at
http://adv-r.had.co.nz/Rcpp.html. - or use a newer version of Rcpp called Rcpp11

Submitting to CRAN
Read the CRAN Repository Policy from http://cran.r-project.org/web/packages/policies.html.1.
Install the newest developer version of R from CRAN2.
Run R CMD check --as-cran pcapack. Packages must pass without warnings to be admitted to3.
the CRAN.
Check with htt://http://win-builder.r-project.org/4.
Run R CMD build pcapack to make the tar.gz file.5.
Upload and follow instructions at http://bit.ly/1cw8qSS6.

Almost Ready for a DEMO...
Building packages with an IDE, e.g. RStudio or Eclipse●

Building packages with roxygen2 and Hadley Wickham’s package devtools●

Writing package vignettes●

Collaborative package development, e.g. github●

Automatic tests●

There is still a lot to learn about the NAMESPACE file●

For the future: read 5 times the manual Writing R Extensions●

package devtools I
makes life easy, especially packaging●

to publish packages (CRAN)●

installation of non-CRAN packages (local, github, bitbucket, ...)●

library(devtools)
install_github("robCompositions","matthias-da")

used when changing code●

load_all('pathToPackage'): restart, re-install and re-load❍

package devtools II
test('pathToPackage') runs tests placed in the inst/test/ directory.●

document('pathToPackage') converts inline roxygen document blocks to R's standard Rd files in●

the man/ directory
check(), check_docs(), run_examples(), build_win()●

Modern Approach: STEPS
create a project1.
specify that this project is about an R package2.

- tick roxygen2 documentation - create R folder - put the R functions to this folder - include
roxygen2 documentation within the R functions - run devtools::load_all() - update DESCRIPTION
File manually - build the package

roxygen2 documentation. This:

#' Add together two numbers
#'

#' @param x A number
#' @param y A number
#' @return The sum of \code{x} and \code{y}
#' @examples
#' add(1, 1)
#' add(10, 1)
add <- function(x, y) {
 x + y
}

roxygen2 documentation. Gives:

\name{add}
\alias{add}
\title{Add together two numbers}
\usage{
add(x, y)
}
\arguments{
 \item{x}{A number}

 \item{y}{A number}
}
\value{
The sum of \code{x} and \code{y}
}
\description{
Add together two numbers
}
\examples{
add(1, 1)
add(10, 1)
}

Let's build a package: DEMO
For the newer approach to build a package, keep in mind those steps:

create a project in RStudio1.
under Project options specify that this project is about an R package and tick roxygen22.
documentation

- create R folder and put the R functions theirein - include roxygen2 documentation within the R
files - run load_all() (from devtools package) - update the DESCRIPTION File manually

(more steps if C++ code is integrated, vignettes, S4 class code, etc,...)

Summary
Packages are standardized units for extending R.●

A package contains documented functions, data and other objects.●

install.packages() to install an add-on package.●

Loaded a package into the system by the library() command before using it●

A package is built in few steps:●

R project / R package❍

R folder with R files containing roxygen2 documentation;❍

run load_all()❍

Check, build and install using R CMD ...❍

