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Abstract—Control design for coupled MIMO-Systems (Multi-
ple Input and Multiple Output) like a 5-DOF (degree of freedom)
AMB (active magnetic bearing) system needs a high knowledge in
control theory. This paper describes a model based approach for
decoupled control design. To decouple the system an input and an
output transformation is used and all control parts are developed
in the so called center of gravity (COG) coordinate system. One of
the main problems is the stabilization of the rotor for a high speed
range. This problem is solved by a parameter variant feedback
path, which transforms the linear parameter variant system in a
linear parameter invariant system. This feedback path requires
the angular velocity and the velocities of the degrees of freedom
for calculation. The angular velocity can be used from the motor
controller. For the other velocities a Kalman observer is used.
This Kalman observer is developed only in the center of gravity
coordinates, because in this coordinate system the observer needs
less computing power. The stability and robustness of the closed
loop system is verified by simulations and experimental results.

Keywords—AMB System, Gyroscopic effect, Model based con-
trol, Flexible rotor.

I. INTRODUCTION

Magnetic bearings are used in many industrial applications,
because of their big advantages compared to other bearing
types. Advantages are the almost frictionless and wearless
operation. They do not need lubricants and are maintenance
free. For a stable levitation the magnetic bearing force is
provided dependent on the position of the rotor which is
measured by a position sensor ([1],[2]). In the last years also
a few sensorless control strategies were developed, like the
INFORM method which is described in [3] and [4]. A 5-
DOF AMB system is described with a coupled parameter
variant differential equation system, where it is generally not
easy to find a feedback path with a good performance. The
most straightforward method is to feed every sensor back to
the actuator of the same degree of freedom. This strategy is
called decentralized control method [5]. The advantage of this
method is that the proportional part of the controller could be
physically interpreted as a spring and the differential part as
a damper. The drawback is that the input and output matrix
of the state space description causes non diagonal terms. As
a consequence the tilting and translation modes cannot be
treated independent from each other. Tilting means the rotation
movement with the angles (α and β) and translation represents
movements along the coordinates (xs and ys). To eliminate this
problem a special central controller is used which cancels all
non diagonal matrices. Because the stiffness matrix is constant,
the compensation term of this matrix gets constant too and
can be calculated offline. In contrast to this cancelation the

Fig. 1. 5-DOF AMB System

gyroscopic matrix is depended on the angular velocity [6], so
the matrix has to be calculated in every sample period. To
control the tilting and translation modes independently input
and output transformations of the controller are introduced.

The paper is organized as follows. In section II a illustration
of a 5-DOF AMB system is shown and the system equation are
explained. Section III shows the control structure and explains
the main development steps for designing a controller of an
AMB system with a high gyroscopic rotor. The focus of section
III is the development of the compensation of the gyroscopic
effect. Section IV proves the stability and the performance
of the system using simulation results. Experimental results
carried on a laboratory AMB system are reported in section
V. Finally Section VI summarizes the conclusions of the main
developments of this paper.

II. 5-DOF AMB SYSTEM

A 5-DOF AMB system consists of two radial bearings
and one axial bearing as shown in Fig.1. To achieve a stable
levitation every DOF requires a position sensor. In this paper
the radial and axial bearings are separated for control design.
This is possible under a few assumption which are described
in [7]. The mathematical model of a rigid rotor which is
supported by a 5-DOF AMB system used COG coordinates
is:

Mẍ+G(ω)ẋ+BKSB
Tx=BKii

y=Cx (1)

with



Fig. 2. Control structure of the AMB-System

M =

⎡
⎢⎣
Ix 0 0 0
0 m 0 0
0 0 Ix 0
0 0 0 m

⎤
⎥⎦ G =

⎡
⎢⎣

0 0 Ipω 0
0 0 0 0

−Ipω 0 0 0
0 0 0 0

⎤
⎥⎦

KS =

⎡
⎢⎣
ksa 0 0 0
0 ksb 0 0
0 0 ksa 0
0 0 0 ksb

⎤
⎥⎦ B =

⎡
⎢⎣
a b 0 0
1 1 0 0
0 0 a b
0 0 1 1

⎤
⎥⎦

C =

⎡
⎢⎣
c 1 0 0
d 1 0 0
0 0 c 1
0 0 d 1

⎤
⎥⎦ y =

⎡
⎢⎣
xseA

xseB

yseA
yseB

⎤
⎥⎦

Ki =

⎡
⎢⎣
kia 0 0 0
0 kib 0 0
0 0 kia 0
0 0 0 kib

⎤
⎥⎦ i =

⎡
⎢⎣
ixA
ixB
iyA
iyB

⎤
⎥⎦ x =

⎡
⎢⎣
β
xs

α
ys

⎤
⎥⎦

Where kia and kib are the linearized force current factors,
ksa and ksb are the linearized force displacement factors, a
and b are the distances from the magnetic bearings to the
center of gravity, c and d are the distances from the position
sensors to the center of gravity, m is the mass of the rotor,
Ix is the equatorial moment of inertia, G(ω) is the parameter
variant gyroscopic matrix, Ip is the polar moment of inertia,
ω is the angular velocity, and i is the current vector from
the current controller. Usually the equation of this system
is more complicated and nonlinear, but with ks and ki the
electromagnetic force is linearized. The index S means that
the coordinates are in the center of gravity and seA or seB
that the axes are at the position sensors.

III. DESIGN OF THE CONTROLLER

In this section the whole control structure of the AMB
is explained. Fig. 2 shows a schematic illustration of the
implemented control structure. The unbalance controller is a
generalized Notch filter, which is explained in [10]. The other
blocks of the control structure are explained in the following
sub chapters.

A. Input and output Transformation

To effect the tilting and the translation mode independent
from each other a transformation from the sensor coordinates
to the so called center of gravity (COG) coordinate system of
the rigid body model is necessary. The following transforma-
tion are the derived under the assumptions that the matrices C
and BKi are invertible. Equation (1) shows that Tin can be
calculated with:

Tin = C−1 (2)

With this input transformation the whole control structure has
to be developed in the COG coordinate system. But it has to
be considered that the output value of the controller is also
given in the COG coordinate system. To transform the output
values back, Tout is used. From equation (1) can be seen that
a possibility for Tout is:

Tout = (BKi)
−1

(3)

Now the rigid body model with both transformations has the
following form:

Mẍ+G(ω)ẋ+BKSB
Tx = BKi (BKi)

−1
i (4)

Mẍ+G(ω)ẋ+BKSB
Tx = i (5)

Now the tilting and translation modes can be influenced nearly
independent from each other. A big advantage of this method
is that the gyroscopic effect only are present in the tilting
modes. But one coupling between both modes is still present,
because the Matrix BKSB

T is not diagonal. So an additional
feedback term Kscomp is needed. Now the control structure
can be described with:

i = Tout (v +KscompTiny) (6)

with

Kscomp = BKSB
T (7)

Where v is the new input. In the resulting system the tilting
movement becomes independent from the translation move-
ments for this new input v.

Mẍ+G(ω) = v (8)

But the natural frequencies of the tilting and translation
movements are not constant for increasing speeds, because of
the gyroscopic effect. For rotors with a high gyroscopic effect,
this could lead to instability for some angular velocities. Fig. 3
shows the stability of the system for the predefined speed
range. The natural frequencies of the translation movement
at about 65Hz is speed independent and has also a constant
damping ratio. Compared to this it is much more difficult to
find a stable solution for the tilting movement, because the
gyroscopic effect splits the modes beginning at 40Hz at 0rpm
up to a forward and a backward whirl. Without consideration
this effect the controller gets unstable for high frequencies.
This can be seen by the negative damping according to Fig. 3.
The virtual modes are no mechanical resonances, they are
caused by additional eigenvalues of the control structure.



Fig. 3. Stability analysis of the complete speed range

B. Considering the gyroscopic effect

Because the system has a parameter variant term additional
work has be done to use LTI control theory. To solve this
problem the parameter variant term should be decreased. If
the parameter variant part is eliminated or very low for a new
input, LTI control theory can be used. If the control law

i = Tout (v +KscompTiny) +Gẋ (9)

is used, The resulting system is a decoupled parameter invari-
ant MIMO system.

Mẍ = v (10)

with
v = −TconTiny (11)

where Tcon is the transfer matrix of the position controllers.

In [6] is suggested that a complete elimination of the
gyroscopic effect is not very robust against dead times, and
therefore a factor Catt is introduced.

Mẍ+G (ω) (1− Catt) ẋ = v (12)

From equation (12) can be seen that the values of the angular
velocities and the velocity information of the COG coordinates
are needed. It is possible to use the angular velocity of
the motor controller. To estimate the velocities in the COG
coordinate system, Kalman observers are used.

C. Kalman observer

If the states of the system are not measurable or the use of
sensors are uneconomic, it is possible to use a state observer
instead. For MIMO systems it is difficult to find an acceptable
observer with the pole placement method. A powerful solution
for such a system is a Kalman observer, which minimizes the
variance of the estimation error like it was describes in [11].
Generally an extended Kalman filter is used for parameter
variant systems. But in this case three different LTI Kalman
observers are used for different speed ranges (Table I). The

TABLE I. SPEED RANGES OF THE KALMAN OBSERVERS

Kalman filter 1 Kalman filter 2 Kalman filter 3
Speed area 0-15.000rpm 15.000-30.000rpm 30.000-40.000rpm

Design speed 0rpm 20.000rpm 36.000rpm

LTI Kalman observer are used, because they can be calculated
much faster than the extended Kalman filter. For filter design
the system equation (1) has to be transformed in a discrete
state space description

xk+1=Φxk + Γvk

y=Cxk (13)

with the states xk, the output vector yk, the time discrete
dynamic matrix Φ and the discrete input matrix Γ. A linear
Kalman observer for the system (13) has the following form:

x̂k+1 = Φx̂k + Γvk +K (yk −Cx̂k) (14)

The matrix K is called the Kalman feedback matrix. The
theory of developing the matrix K of a Kalman observer for
such a system is shown in [8]. The matrix K is normally
time variant, but in this paper only the stationary solution
is used. After computing the feedback matrix, equation (14)
is transformed in a representation, where only one matrix
multiplication is necessary:

x̂kal+1 = Akalx̂kal (15)

with

x̂kal = [y, i, x̂]
T

(16)

Thus, a simplified implementation in the AMB digital con-
troller is achieved. To reduce the computing time of the
Kalman observer the zero entries of the Matrix can be
increased. In this form Akal is a 8-by-16 matrix and the
controller has to make 128 multiplication for every new state
vector. But for the compensation of the gyroscopic effect only
the states α̇ and β̇ are needed. If the output and input vector is
transformed in the COG coordinate system from the previous
subsections, the zero entries of the Kalman filter increase
because the tilting and translation modes are decoupled with
this input and output coordinates. Because of the independence
of both movements a split up of the Kalman observer in
a tilting and a translation part is possible. As stated before
only the tilting velocities are necessary in this work. This
tilting Kalman observer is able to be calculated with a 4-by-8
matrix. Fig. 4 shows the improvement of the Kalman observer
graphically. One might expect that the x and y plane are able to
split up too, but this is only possible for standstill. The reason
is, that the gyroscopic effect would couple both planes. Now
the states are able to be estimates with the matrix multiplication

x̂tkal+1 = Atkalx̂tkal (17)

with

x̂tkal =
[
β, α, iβ , iα, β̂, α̂,

ˆ̇
β, ˆ̇α

]T
(18)

This sub chapter shows that it is possible to increase the
computing power of a Kalman observer by a factor of 4 with
a simple coordinate transformation.



Fig. 4. Improvement steps of the Kalman observer

D. Position Controller

If the compensation of the gyroscopic effect from the
previous chapter is used, the system is nearly linear and
parameter invariant. For such a system it is possible to find
a stable solution in the s-domain. Fig. 5 shows the structure of
the position controller. The control structure consists of three
parts for every degree of freedom which are implemented as
second order IIR filters. Because the first bending mode of the
rotor is at about 860Hz, the control structure is split up in two
tasks:

• Stabilize the rigid body modes

• Stabilize the bending modes

For the stabilization of the rigid body modes a PIDT1 con-
troller is used. The PID part is tuned, that the rigid body
modes are in the range of 60Hz. To have a separating margin
between the two tasks, the T1 part turns off the differentiator
at 180Hz. The second order low pass filter in combination with
a Lead Lag filter fullfills the task to stabilize the first bending
modes and the bending modes for high frequencies. Fig. 6
shows the pole areas where the controller provides stability.
The rigid body modes are in the stable area, because of the
phase lead from the differentiator. After the differentiator is
switched off, the phase of the controller moves in the unstable
region, because of the sampling process. The second order
lowpass filter shifts the phase from this unstable region in the
stable at high frequencies region. Because this phase shift is
not fast enough to stabilize the first bending modes, a Lead Lag
filter is used to drop the phase locally in the range of the first
bending modes. Fig. 7 shows the simulated transfer function
of the position controller for the tilting movement. It can be
seen that the only range where the controller destabilizes the
system is between 210 and 500Hz. This method to stabilize
the system for high frequencies could only be used, if the first
bending mode has enough separation margin to the rigid body
modes. Otherwise additional work has be done to get a stable
levitating rotor.

Fig. 5. Control structure of the position controller

Fig. 6. Stability requirements on the controller [9]

IV. SIMULATION RESULTS

For the simulation, the rigid body model from section 2 is
used and performed on MATLAB/SIMULINK. The controller
and observer was implemented with a Matlab function block,
where the digitization is considered. To proof the stability of
the system and the compensation of the gyroscopic effect,
Fig. 8 shows a Campbell diagram of the system, which is
controlled with the presented control structure. The natural
frequencies are time invariant and there is only one reso-
nance for the translation and one for the tilting movement.
This proves the independence of the angular velocity of the
compensated system. Compared to Fig. 3 this simulation result
shows stability for the whole speed range.

The second simulation deals with sensitivity functions,
which are a measure for the robustness of the system. Accord-
ing to ISO 14839-3 the peak value of the sensitivity function
should be below 3. Fig. 9 and Fig. 10 shows the sensitivity
of the tilting and the translation movement at operating speed,
where the peaks of both functions are below a factor of 3. The
peaks of this function are the least distances to the Nyquist
point. From this fact can be stated, that the AMB system is
robust against a variation of the dynamic parameters.

Fig. 7. Simulated transfer function of the tilting controller



Fig. 8. Simulated Campbell diagram with the presented control structure

Fig. 9. Simulated sensitivity function of the tilting movement

Fig. 10. Simulated sensitivity function of the translation movement

V. EXPERIMENTAL RESULTS

The aim of this section is to verify the velocity indepen-
dence and the robustness of the system, according the simula-
tions in the previous section. In the following subsections the
measured sensitivity functions of the tilting and the translation
movement and a comparison of the dynamic behaviour from
the system at standstill and at operating speed are presented.

A. Sensitivity functions at operating speed

In this subsection the measured sensitivity functions of the
tilting and translation movements are discussed and compared

Fig. 11. Measured sensitivity function of the tilting movement

Fig. 12. Measured sensitivity function of the translation movement

to the results of the simulations. Fig. 11 and Fig. 12 shows that
the measured sensitivity functions compared to the simulated
sensitivity functions from Fig. 9 and Fig. 10 have nearly the
same shape. The biggest difference is at the first and the
second peak of the tilting movements. This differing shape
is caused by a different behaviour of the rigid body modes
of the simulated and measured model. The second peak of
the tilting movement depends on the dynamic of the Kalman
observer and Catt. If the compensation would be ideal, this
second peak would not occur. In summary, the robustness of
the system is proved, because the maximum values of the
sensitvity functions are below three.

B. System behaviour at standstill and at high rotational speed

To verify, if the rigid body modes are time invariant in the
real system, the dynamic behaviour at standstill and operating
speed, were compared. For comparison the compliance transfer
functions of the tilting and translation movement were used.
Due to the symmetry of the dynamic behaviour in the x and y
direction, only one tilting and one translation transfer function
is necessary. Fig. 13 shows the comparison of the tilting
compliance functions. The gain of both transfer function differs
slightly. The reason is a not modelled effect, caused by the
AMB application. The phase shows that the rigid body modes
of the tilting movements are nearly the same for both operating
speeds and the natural frequencies are at about 60Hz. The
resonances at 200Hz at standstill and 300Hz with operating
speed can also be measured in the open loop transfer function.
This is an indication for a vibration caused by the control
plant, which is not modelled. The natural frequency of the first



Fig. 13. Measured compliance function of the tilting movement

Fig. 14. Measured compliance function of the translation movement

bending mode at standstill is at about 860Hz and splits up for
operating speed into one bending mode with a backward whirl
at about 780Hz and one with a forward whirl which cannot be
seen in this transfer function. In this paper only the gyroscopic
effect of the rigid body modes is compensated, because all the
other effects do not show stability problems. In contrast to
this the rigid body modes without this compensation will have
stability problems according to Fig. 3.

Fig. 14 shows the comparison of the translation compliance
functions. Both transfer functions are nearly equal. This fact
proves the functionality of the transformation in the COG
coordinate system. From the phase plot can be seen that the
natural frequency of the translation rigid body modes are at
about 60Hz. The phase plot do not show a phase step due to the
first bending mode. The reason is that the first bending mode
is not well observable for translation movements with this
rotor. In summary, can be stated that the designed decoupled
controller fullfills the requirements for a stable and robust
system.

VI. CONCLUSION

In this paper a decoupled control and a special parameter
variant structure for a high gyroscopic rotor were designed.
The resulting system of the combination of these two structures

is a nearly linear parameter invariant system, only for the rigid
body modes, for a high angular velocity range. It is verified
that the natural frequencies of the rigid body modes of the
AMB system are nearly the same for all angular velocities
up to full speed. For control design the system was split up
into a tilting and a translation part using a coordinate transfor-
mation. The functionality of this transformation was proved
by experiments. To estimate the states for the compensation
a Kalman filter was designed in the COG coordinate system.
This coordinate system has the advantage, that the Kalman
observer splits up into one observer for the tilting and one
for the translation movement. This fact reduces the computing
time of the observer significantly. To stabilize the first bending
modes a lead lag filter in combination with a second order
low pass filter was used. In summary can be stated, that for
a high gyroscopic rotor the presented control structure, is a
good choice for a stable system up to very high speeds. The
main advantage of the presented method is that the reason of
instability, caused by the gyroscopic effect, is eliminated. In
contrast to this the state of the art controls usually permits the
split up of the tilting rigid body modes. For such a system the
controller needs to be very robust and cannot be optimal for
both tilting modes, compared to the presented method.
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