
Mapmap.js: A Data-Driven Web Mapping API for
Thematic Cartography

Florian Ledermann and Georg Gartner

 Technische Universität Wien, Vienna, Austria

Abstract. Creating interactive maps for the web is a complex task. In this
paper, we present mapmap.js, our approach to designing a high-level API
that supports the creation of interactive thematic maps. We discuss the at-
tributes high-level, transparent, data-driven and horizontal with respect to
mapping APIs and argue why these are desirable qualities, and give an
overview of some aspects of the design of the API. Examples implemented
using mapmap.js are presented and discussed in the concluding section.

Keywords: Web Cartography, Thematic Cartography, Mapping APIs

1. Introduction

In the fields of online and interactive cartography, programming is often a
major part of the task of creating a map. Such maps are rarely programmed
“from scratch” using only low-level functions provided by the execution
environment (e.g. operating system or web browser); an API (application
programming interface) can provide re-usable parts of code, exposed as a
set of high-level abstractions and methods, to the map maker. Using an
appropriate API, the configuration of technologically complex processes can
be reduced to single lines of code, and this leverage can be used to imple-
ment interactive maps with resources or knowledge that would not be suffi-
cient to create an identical solution with low-level code. The widespread use
of APIs related to mapmaking – like the Google Maps API, Leaflet or D3.js
– shows the appeal of such tools to mapmakers.

The abstractions and methods provided by an API impose a certain view
onto the task of creating a map – a mental model – and therefore shape to a
large extent the space of solutions that can be implemented – or that are
even considered implementing – using a given technology. Cartographers
have often found themselves on the user side of web mapping technologies,
with mental models defined by other parties (e.g. software and service ven-

dors, open source developers) and potentially only partially matching the
ones of cartographers. Recently, interest in investigating the programming
tools used in cartographic production and teaching and how they match the
requirements of cartographers has increased.

Figure 1. Interactive thematic maps created with mapmap.js. (a) A map from the

genderATlas project, integrating a zoomable choropleth map with D3.js based data

visualizations. (b) Detail of a thematic map showing commuting patterns. (c) The-

matic map inspired by Minard’s work, linking map and diagram through anchors.

The aspect of mental models is of special relevance for teaching. If cartog-
raphers do not confine themselves to a consulting role in such technological
contexts (and leave the implementation to programmers, computer scien-
tists etc.), the technological foundations for creating maps through code
need to be taught in cartography curricula. The concepts employed by the
APIs and tools we use for implementing these maps need to be reflected in
what we teach – and in order to not let the “tail wag the dog”, i.e. let the
abstractions of the available technology determine the abstractions we use

for reasoning about the problems of our field, it is therefore important to
align the technological concepts with the concepts we deem important for
advancing the field of cartography.

The mapmap API is our attempt to design an API with an appropriate men-
tal model for interactive thematic cartography. Mapmap was originally de-
veloped in the context of an interactive online atlas project, the Austrian
genderATlas1. The project required a range of different interactive maps
and visualizations to illustrate various topics, and a flexible solution was
desired to support experimentation and iterative development. Initial ex-
periments using D3.js to create the visualizations for the atlas were promis-
ing, but even simple interactive maps required a lot of code that had to be
written and, eventually, maintained. After a more structured investigation
of available technologies and literature on the topic of API design, we de-
cided to create mapmap.js2, our version of a contemporary cartographic API
for creating interactive maps in the browser.

In this paper, we present our approach to a structured design process of a
cartographic API. The importance of understanding how we interact with
maps through code, and the didactic implications of the increased relevance
of creating maps with code have been recognized by the cartographic re-
search community recently. We will look at some previous contributions
towards a better understanding of these aspects in section 2. An attempt to
condense these findings into general concepts and properties of APIs, and
mapping/cartographic APIs in particular, will be presented in section 2.1.
Section 3 will discuss how we applied these general principles to the design
of mapmap.js, an open source library that provides a cartographic API for
creating thematic maps. We will conclude by presenting some examples
created with mapmap.js and discussing future plans and challenges in sec-
tions 4 and 5, respectively.

The goal of this paper is to provide some input to stimulate a broader dis-
cussion of how cartography relates to computer code used to implement
interactive geographical visualizations and maps, and how the evolving field
of interactive cartography may require new or extended conceptual models.
We hope that by presenting our approach to the design of a cartographic
API and by making the result of this design process available to other re-
searchers, we can contribute towards a better understanding of, and pro-
vide a tool that may be of use in, interactive cartography projects, teaching
or research.

1 http://genderatlas.at

2 mapmap.js is available online at https://github.com/floledermann/mapmap.js

2. Related Work

Interest in discussing qualities of web mapping APIs has increased in the
cartographic community in recent years. In a recent paper, Peterson com-
pares different “slippy map” APIs (Google Maps API, Leaflet, Mapstraction
and others), applying quantitative criteria (execution speed, length of code,
cost) to example programs (Peterson, 2015). Although “cartographic func-
tionality” is listed as an evaluation criterion, no systematic exploration of
the functionality of the different APIs and how they relate to cartographical
concepts is given. Peterson concludes with a pragmatic position, mention-
ing cost and long-term viability as possibly the most important evaluation
criteria for production contexts – both of which are not related to the func-
tionality provided by the API.

Empirically-oriented researchers would desire quantitative measures like
length of code, cost or execution speed to determine the best technology
among a number of candidate solutions. However, like cartography itself,
programming is a complex creative task that cannot be measured by simple
metrics to gauge the success or power of different approaches. To illustrate
the argument, imagine a hypothetical “API” that would create a map exactly
as needed in a single line of code (Figure 2) – it is easy to see that while it is
realistic to create such an API, the result is not something that would be
considered a good API, as it would be tailored to a single use case. It is,
however, also not generally valid to claim that flexibility is more important
than brevity, as using the underlying technologies directly, without the ab-
straction of an API, will ultimately be the most flexible option (i.e. the op-
tion that guarantees to allow all technically possible solutions); There seems
to be a more complex payoff between brevity and flexibility, and we need to
look to other sources for concepts allowing us to reason about API quality.3

var map = createExactlyTheMapThatIWant();

Figure 2. A hypothetical “perfect” mapping API. This shows that length of code is

hardly a criterion that facilitates discussions about the quality of mapping APIs.

In their extensive study, Roth et al. (2015) acknowledge the need to look
into API usability issues, especially in the context of teaching cartography
and web mapping and in the face of rapid ongoing innovation in the field.

3 A similar argument applies to other criteria such as “execution speed” – arguably a faster

implementation would be preferred over a slower one. But if the results differ in any aspect,

the cartographic quality of the result may be of greater importance than minor differences in

execution speed. This payoff cannot be expressed in quantitative terms.

Although JavaScript-based web mapping APIs constitute only a small frac-
tion of technologies selected for their initial competitive analysis and needs
assessment surveys, all the technologies selected for the final stage of analy-
sis, a qualitative diary study of students implementing web mapping pro-
jects, are from this category. In addition to APIs implementing the well-
known “slippy map” paradigm, the authors include D3.js (Bostock et al.,
2011), a data visualization library that has gained popularity in recent years.
These choices can be read as indicating a rising awareness that the “slippy
map” paradigm is not sufficient as a universal mental model for the wide
range of visualizations cartographers are expected to produce online today.
The choice of a qualitative instrument – the diary study – to compare the
feasibility of different technologies can be read as acknowledging that a
comparison of APIs cannot be done on quantitative factors alone.

Another contribution of Roth et al. is a list of techniques that web mapping
solutions can be checked against. The authors group these techniques into
the domains of representation and interaction, drawing from the literature
the basic taxonomies of such techniques (Roth, 2013; Slocum et al., 2009).
This list of techniques – intended to be extended as our understanding of
the field evolves – can be used as a basic framework for initial evaluation of
new technologies not included in their study.

The findings of Roth et al. aim to provide reproducible methods for choos-
ing suitable candidates among a number of technologies; they do not pro-
vide much guideline for creating new base technologies to support interac-
tive cartography. For an informed approach to designing a novel web map-
ping API we looked into the general software engineering literature for ad-
vice and guidelines.

Tulach (2012) puts the concept of "selective cluelessness" at the center of
his guidelines for API design. For Tulach, an API is a "tool to help us max-
imize cluelessness", meaning to hide away all implementation details and
technological necessities that the API user does not want to deal with or
does not have the desire to control in detail. The attribute selective must be
stressed however – at any time, the user should be able to break through
the cluelessness, and adapt or replace the built in methods if she chooses
so.

Tulach also expresses the idea that APIs are not tailored to the needs of a
computer, but to a human user:

APIs are verbose, documented, and, in fact, very different from what a

computer needs. […] Designing APIs is different. I hadn’t been taught to

do it and I have a feeling that other programmers haven’t been taught to

do it either. (Tulach, 2012)

While the concept of selective cluelessness can be an important and power-
ful guideline for the task of designing an API, it doesn't provide a lot of ana-
lytical depth to reflect about design decisions. In other software engineering
publications we find a more differentiated set of concepts to help us reason
about how to design a cartographic API.

Stylos and Myers (2007) analyze the conceptual space of API design deci-
sions and discuss qualities that a good API should have. On the highest lev-
el, they define the two basic qualities of an API as usability (“the qualities of
an API that affect its use when creating and debugging code”) and power
(referring to “limits of the code that can be created”). They further differen-
tiate these two basic qualities:

Usability includes such attributes as how easy an API is to learn; how

productive programmers are using it; how an API prevents errors; how

simple it is; how consistent; and how well it matches its users' mental

models.

Power includes an API's expressiveness (the sorts of programs it can

create); its extensibility (how users can extend the API to create conven-

ient user-specific components); its evolvability for the API designers

who will update the API and create new versions; its performance (in

terms of speed, memory and other resource consumption); and the ro-

bustness […] of the API implementation. (Stylos and Myers, 2007)

It must be noted that all of the individual qualities listed in the category of
usability are challenging to verify using scientific methods. In our analysis
we decided to focus on the aspect of the supported mental models for usa-
bility questions, and the aspects of expressiveness and extensibility for as-
pects of power. We need to leave detailed investigations of the other aspects
to future work.

2.1. Mapping the space of mapmaking APIs

In contrast to evaluating individual algorithms and visualization methods,
where objective metrics can be devised that different algorithms or imple-
mentations can be evaluated against, we already argued above why such an
approach is not available for the question of how code is structuring the
overall map creation task. We therefore cannot derive good code – or a
good API design – from empiric results alone. Therefore, for initial investi-
gation, we have to turn towards rational argumentation to develop some
hypotheses which can later be tested in experimental settings.

Stylos and Myers point out the importance of the mental model supported
by an API. For the core mental model of the popular Google Maps API –
show a map of an area, add markers and content to the map – it could be

argued that this view does not reflect the mental model of a cartographer,
but rather of a map user. For a cartographer, the granularity of the exposed
mental model – even if we take into account recently added support for
styling the base map through the API – will be frustratingly coarse, and the
map at its core has been created by a third party, not by the API user.

So if we label the Google Maps API and other “slippy map” APIs as a map
use API, what would a cartographic API look like? Without claiming to be
able to come up with a single unified mental model of cartography, we be-
lieve that a cartographic API should represent and give users detailed con-
trol over the complete map creation process – accessing raw data and ge-
ometry, processing that data and geometry, creating visual representations
of geometry and assigning visual variables, and defining methods for users
to interact with the map.

In contrast to slippy map APIs, which impose a certain model of what a
map is and how it is created, the D3 library allows for detailed control of all
steps in the process. One appeal of the D3 is its use of a data-driven pro-
gramming paradigm (Raymond, 2003). Data is not just auxiliary input to a
process, but fundamentally affects and drives the logic of the program. This
is a concept that aligns well with our understanding of digital cartography.

While some aspects of D3 can be considered to support cartographic mental
models (e.g. its built-in support for a wide range of map projections and its
data-driven programming paradigm), creating interactive maps with D3
requires detailed knowledge of web technologies in order to accomplish the
envisioned result. Tulach’s principle of selective cluelessness is not realized
in D3 with respect to cartography – all the details of how the map is repre-
sented in the browser’s document object model (DOM) need to be taken
care of by the author, and some of D3’s core concepts are not related to car-
tography but rather to the technological platform of the web browser. A
concept that expresses a technology’s support for selective cluelessness is its
level of abstraction. The Google Maps API would be a map-use API with a
high level of abstraction; D3 can be considered a low-level API with partial
support for cartographic tasks.

Can selective cluelessness be achieved, requiring a high level of abstraction,
while at the same time allowing detailed control over all aspects of the
mapmaking process if demanded? This apparent contradiction can be re-
solved by introducing the concept of transparency. A transparent API al-
lows for detailed control over the inner workings of its methods, if required.
There are several techniques to support transparency in code – e.g. configu-
ration objects, method parameters, callback functions, inheritance – but all
allow us to work on a high level of abstraction by default and override the
built-in behavior on demand.

A transparent API supporting selective cluelessness would need to provide
sensible defaults - even if the user remains clueless, the API should produce
a good map with respect to the state of the art in cartography, as far as the
information provided allows it. If these default behaviors go beyond simple
attributes, but encompass complex behavior, sometimes the term “magic”
is used in software engineering contexts4, bearing the negative connotation
of users not knowing what is going on behind the scenes.

Another aspect to categorize an API is its scope in the context of a given
process. We say an API is horizontal if it covers a wide range of aspects of
the overall process (like, for example, the steps of an envisioned carto-
graphic process mentioned above), or vertical if it is concerned with the
details of only a single aspect (like data loading and transformation).

3. Designing the mapmap.js API

From the related literature in web mapping and software engineering, we
took away some important building blocks to inform the design of our car-
tographic API: The attractiveness of a data-driven approach from D3.js, a
list of cartographic features for representation and interaction from Roth et
al., the importance of selective cluelessness and, as a corollary, separation
of concerns and sensible defaults from Tulach, and a conceptually struc-
tured view on the API design process and possible design decisions from
Stylos and Myers’ work.

Using the terminology developed in section 2.1, we distilled a list of desira-
ble characteristics of an envisioned API:

 Its mental model should represent a cartographic process (it should
be a cartographic API)

 It should be high level to support “selective cluelessness” and the
easy creation of simple maps. Technological details of the platform
that are of peripheral relevance to the cartographic design (e.g.
asynchronous resource loading, event callbacks, DOM manipulation
etc.) should be taken care of by the API internally, even if some
“magic” is involved.

 At the same time the API should be transparent, allowing for con-
trol of every detail in the process if so desired by the author.

 The process to create the map should be data driven and the API
should be able to work with real-world data. It should not be neces-
sary to convert data into a special format or representation.

4 See http://en.wikipedia.org/wiki/Magic_(programming)

 It should be a horizontal API, encompassing the complete process of
rendering an interactive map from raw data, which comes with sen-
sible defaults and “batteries included”.

Overall, code using the API should meet the criteria expressed in a quote
attributed to Alan Kay: “Simple things should be simple, complex things
should be possible”.

3.1. General Principles

Mapmap.js assumes a mental model of the overall cartographic process as a
sequence of inputs and transformations. At the core of the process is the
transformation of geographic features, which can be loaded from a data file
or generated algorithmically, into visual representations. Features may be
augmented with auxiliary data, such as data loaded from a CSV file.
Metadata can be added to specify the properties of the data. Visual variables
are derived from the geometry, data and metadata, and the visual represen-
tations (SVG elements) of features are created. Finally, interaction methods
can be added to representation elements.

The smallest units of code in mapmap.js are functions. With its powerful
and concise syntax for function literals and closures, JavaScript affords a
functional programming style in which functions are not only used as pro-
cedures and methods, but also as parameter values for other functions. Car-
tographic tasks often follow a model of output deduced from a set of input
data and parameters, making a function a suitable abstraction to serve as
basic building block for map composition. As it is not always feasible to
construct inline functions for trivial tasks, e.g. property lookup, most pa-
rameters support polymorphism in a standardized way across the API: a
parameter can either be a string (to access a field of the given name), an
Array (to perform the operation for multiple properties) or a function (for
completely customizable lookups, calculations and conversions). In addi-
tion, mapmap.js offers a library of helper functions for convenient access to
frequently used functionality.

3.2. Geometry, Data and Metadata

Data to render digital maps is usually available in one of various geodata
formats (e.g. GeoJSON or TopoJSON), or as auxiliary data (e.g. CSV files or
Excel sheets) that can be linked to geodata entities5. The fundamental

5 Note that in applications dealing with geometry as first-class data, such auxiliary data is

sometimes called “metadata”. In mapmap.js, the term metadata is used for data describing

auxiliary data.

method of the mapmap API to add geodata is .geometry(source, op-
tions). Auxiliary data can be associated with the geometry with subse-
quent calls to .data(source, options). Both methods accept a source
URL or an array of data as their first parameter, and an optional parameter
specifying the options for processing and joining the data.

A powerful paradigm for data processing is the MapReduce programming
model (Dean and Ghemawat, 2008). Mapmap.js supports applying
MapReduce-based transformations to the data or geometry as an option.
We found the MapReduce model to be a powerful paradigm allowing for
various transformation and aggregation tasks necessary for working with
real-world datasets.

To support rendering the data using appropriate symbology, or to create
legends or interactive explanations on the map, we need information about
the data fields associated with features, or metadata. Metadata is specified
using .meta(spec), passing an associative array to map field names to
metadata descriptors. To assign identical metadata to multiple fields, wild-
cards can be used to match field names.

Metadata is used by symbolizers (see section 3.3) to assign visual variables
– for example, the domain and colors metadata properties are used by the
choropleth symbolizer to assign color values to geometries. Other fields in
the metadata descriptor like label or numberFormat are used whenever
human-readable representations of the data need to be displayed.

3.3. Representing Map Objects: Visual Variables, Symbolization
and Selections

The task of visualizing data and geometry is modeled as a two-step process
in mapmap: assign visual attributes using geometry, data and metadata,
and create a visual representation using the geometry and visual attributes.
This two step process allows for the simple representation of simple tasks
(e.g. assign a fill color attribute from a data value to create a choropleth
map using the default symbolizer) as well as the implementation of more
complex tasks that involve modifying the geometry, like generalization or
the creation of abstract visualizations.

For operations that should affect only parts of the map, mapmap.js provides
two ways to express selections: either as a filter function returning a Boole-
an result for each feature, indicating whether the object should be selected
or not, or as a string, that is used as input to a global identify function, se-
lecting objects based on matching field values. The selection of objects to
operate on can be defined globally or in the options of each method call.

Additional methods are available for adjusting the maps position and size in
relation to the viewport (the area on screen containing the map) and adding
user interaction methods to elements of the map.

3.4. Connecting the Perimap: Legends & Anchors

Maps do not exist in isolation – they are embedded in the perimap, the in-
formation surrounding & accompanying the map, like legends and supple-
mentary diagrams (Wood et al., 2009). The creation of individual elements
of the perimap is outside the scope of the mapmap API; however, it would
be desirable for a cartographic API to provide means to express a map’s
relation to perimap elements where necessary.

Two standard elements of the perimap are legends and annotations. Leg-
ends can take many shape and forms, and detailed approaches exist to ren-
der legends or legend components from map data (Dykes et al., 2010; Jenny
et al., 2009). It would be therefore out of scope for a mapping API to fully
support creating all possible kinds of legends. However, as the legend re-
lates to the map and its underlying data, it would be desirable to be able to
express this relationship and extract the information necessary for render-
ing map legends through the API, and to keep map and legend in sync in
case the map changes.

In mapmap.js, legends are conceptualized as visualizations of the map’s
metadata. A legend or part of a legend for a given data field is defined as a
function, taking the field’s metadata as its main argument. The metadata
object provides methods to access statistical data (such as minimum and
maximum values, or a histogram of the value distribution). Two built-in
legend generation functions are provided for rendering simple legends in
HTML or SVG – for rendering application specific and more advanced leg-
ends, a user-created function can be supplied.

Annotation overlays and links to external diagrams are supported through
the concept of anchors. Anchors are functions mapping arbitrary data ob-
jects to pixel locations on the map. The default anchoring function provided
by mapmap takes a key value as input and returns the centroid of the visual
representation of the feature matching the key, if present. Again, this can be
changed to a user-supplied anchoring function, potentially performing
more complex geometry calculations or application dependent anchoring of
data objects. A built-in method that makes use of anchors is .hoverInfo(),
that sets up the dynamic display of object information in a “popup” box at
the anchor location upon mouse interaction.

4. Results

Stylos and Myers sketch out a general framework of evaluating APIs estab-
lishing two main qualities of APIs, usability and power. Regarding the usa-
bility aspects, we have sketched out the mental model the API supports and
argued why it is a mental model suitable for cartographers. Regarding the
APIs power, its expressiveness and extensibility is demonstrated by selected
examples of interactive maps that have been created with mapmap.js6.

In the genderATlas project, we successfully used mapmap.js to implement a
range of different customized interactive statistical maps of Austria, using
only a few lines of code to specify the basic map setup and interaction for
each thematic map used in the atlas. Depending on the story, specific func-
tionality had to be implemented for visualization or interaction; this code is
related to the individual map, and mapmap.js provides a framework for
how special-purpose functionality is integrated in a modular fashion into
the overall map implementation, avoiding “spaghetti code”. Also, some of
the built-in functionalities have helped to write code on a higher level of
semantics – for example, to zoom in to one of Austria’s counties, the name
of the county can be specified instead of an id code, making the code more
readable to outsiders.

Besides the visualizations developed for the genderATlas project, we are
currently looking at “canonical” thematic maps and geovisualizations and
try to recreate them using mapmap.js to verify its power to express the state
of the art in interactive cartography. One classic – historic – example is
Minard’s map of Napoleon’s Russian campaign, a widely known thematic
map that has been extensively analyzed in the cartographic literature (For a
recent overview, see Kraak (2014)). Interactive and non-interactive versions
of Minard’s map have been implemented by various authors using different
programming languages and APIs, making it a de-facto benchmark for veri-
fying and comparing mapmaking APIs (Friendly, 2002). We created a sim-
ple version of Minard’s map (see Figure 1.c) in 20 lines of code, excluding
the temperature diagram which has been implemented using D3.js using 43
lines of code. A key part of our implementation is the connection between
the map and the diagram through an anchoring function mapping longi-
tude values of the temperature data to pixel coordinates on the map, which
adds another 10 lines of code.

As argued in section 2, counting line numbers cannot be a valid quality
metrics by itself – however, the mental model of the mapmap API allows

6 You can find live examples linked online at https://github.com/floledermann/mapmap.js

authors to express the necessary structure of a map in a concise way, while
at the same time allowing them to improve each individual aspect of the
map incrementally by exploiting the transparency of the API.

Figure 3. Two simple maps with their full source code using the mapmap API.

Both maps use the same geometry and data files; the bottom map is configured to

show only districts within the county of “Burgenland” (ISO codes starting with “1”).

5. Conclusions

In this paper, we have presented a structured approach to designing and
analyzing mapmaking APIs. Through the concepts of mental models, level
of abstraction, transparency and horizontal vs. vertical APIs we hope to
have offered some terminology that can help researchers structure the
space of mapmaking APIs, and we have presented our design of mapmap.js,
our attempt to create a high-level, transparent, horizontal cartographic API.

On a pragmatic level, we hope that by releasing mapmap.js as an open
source API we can provide a tool that may be helpful to other map makers,

and that can serve as a technological artifact stimulating further discussion
about the implementation of cartographical concepts in code.

Future work

The work on mapmap.js has spurred ideas for further investigations on dif-
ferent levels. On the level of cartographic theory, we believe there is poten-
tial for improving our understanding of how program code relates to theo-
retical concepts of cartography, and how implementations of such concepts
as mental models can potentially help to deepen our understanding of car-
tography. For example, the issue of how elements of the perimap are an-
chored to and by the map would need further investigation both in theory
and in the practices of mapmaking and programming.

On a more pragmatic level, we are currently working on a more formal
evaluation of the mapmap API, both in terms of comparing it to other tech-
nological approaches and in terms of objective measures for issues of API
power and API usability. Performing such evaluations is methodologically
challenging, since, as argued in section 2, we cannot rely on quantitative
measures to judge the quality of code. We are currently investigating meth-
ods to verify some of the aspects of API usability (ease of learning, pro-
grammer productiveness, error prevention, simplicity, consistency), and
hope to be able to gain insights by using mapmap.js in teaching interactive
cartography courses, comparing it with other APIs in a controlled process
informed by Roth et al.

On the engineering level, there are many ideas for improving the mapmap
API and its implementation, including features like “pluggable” rendering
engines, to separate the technology used for representing the map output
(currently SVG) from the API and to be able to support different output
technologies (e.g. canvas-based rendering or 3D maps through WebGL).
Other plans include improved viewport management and map layout, the
integration of tile-based raster backgrounds or an improved model for
modular interaction.

Acknowledgements

Parts of this research were funded within the framework of FEMtech research pro-

jects of Austrian Ministry for Transport, Innovation and Technology (BMVIT).

References

Bostock, M., Ogievetsky, V., Heer, J., 2011. D3: Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics 17, 2301–2309.
doi:10.1109/TVCG.2011.185

Dean, J., Ghemawat, S., 2008. MapReduce: Simplified Data Processing on Large
Clusters. Commun. ACM 51, 107–113. doi:10.1145/1327452.1327492

Dubochet, G., 2009. Computer Code as a Medium for Human Communication: Are
Programming Languages Improving? Proceedings of the 21st Working
Conference on the Psychology of Programmers Interest Group 174–187.

Dykes, J., Wood, J., Slingsby, A., 2010. Rethinking Map Legends with Visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics 16, 890–
899. doi:10.1109/TVCG.2010.191

Friendly, M., 2002. Visions and Re-Visions of Charles Joseph Minard. Journal of
Educational and Behavioral Statistics 27, 31–51.

Jenny, B., Hutzler, E., Hurni, L., 2009. Self-Adjusting Legends for Proportional
Symbol Maps. Cartographica: The International Journal for Geographic In-
formation and Geovisualization 44, 301–304. doi:10.3138/carto.44.4.301

Kraak, M.-J., 2014. Mapping Time: Illustrated by Minard’s Map of Napoleon’s Rus-
sian Campaign of 1812, 1 edition. ed. Esri Press, Redlands, California.

Peterson, M.P., 2015. Evaluating Mapping APIs, in: Brus, J., Vondrakova, A.,
Vozenilek, V. (Eds.), Modern Trends in Cartography, Lecture Notes in
Geoinformation and Cartography. Springer International Publishing, pp.
183–197.

Raymond, E.S., 2003. Data-Driven Programming, in: The Art of UNIX Program-
ming. Addison-Wesley, Boston, pp. 216–224.

Reeves, J.W., 1992. What is software design. C++ Journal 2, 14–12.
Roth, R.E., 2013. An empirically-derived taxonomy of interaction primitives for

interactive cartography and geovisualization. IEEE Trans Vis Comput
Graph 19, 2356–2365. doi:10.1109/TVCG.2013.130

Roth, R.E., Donohue, R.G., Sack, C.M., Wallace, T.R., Buckingham, T.M.A., 2015. A
Process for Keeping Pace with Evolving Web Mapping Technologies. Car-
tographic Perspectives 0. doi:10.14714/CP78.1273

Sample, J.T., Ioup, E., 2010. Introduction, in: Tile-Based Geospatial Information
Systems. Springer US, pp. 1–3.

Slocum, T.A., McMaster, R.B., Kessler, F.C., Howard, H.H., 2009. Thematic cartog-
raphy and geovisualization. Prentice hall.

Stylos, J., Myers, B., 2007. Mapping the Space of API Design Decisions, in: IEEE
Symposium on Visual Languages and Human-Centric Computing, 2007.
VL/HCC 2007. Presented at the IEEE Symposium on Visual Languages
and Human-Centric Computing, 2007. VL/HCC 2007, pp. 50–60.
doi:10.1109/VLHCC.2007.44

Tulach, J., 2012. Practical API Design: Confessions of a Java Framework Architect,
2012th ed. Apress, New York; New York.

Wood, D., Fels, J., Pickles, J., 2009. The Natures of Maps: Cartographic Construc-
tions of the Natural World, First Edition edition. ed. University Of Chicago
Press, Chicago.

Wood, J., Dykes, J., 2008. Spatially Ordered Treemaps. IEEE Transactions on Vis-
ualization and Computer Graphics 14, 1348–1355.
doi:10.1109/TVCG.2008.165

