
Model-Driven Retail Information System
based on REA Business Ontology and Retail-H

Bernhard Wally, Alexandra Mazak, Bernhard Kratzwald, and Christian Huemer
Business Informatics Group, Institute of Software Technology and Interactive Systems

Vienna University of Technology, 1040 Vienna, Austria

{wally, mazak, kratzwald, huemer}@big.tuwien.ac.at
http://www.big.tuwien.ac.at/

Abstract—Enterprise resource planning (ERP) systems are
often cumbersome to customize to a client’s needs. Model-driven
approaches promise to simplify these attempts. In this work
we present an ERP prototype based on the Resource-Event-
Agent (REA) business ontology that follows a “model-at-runtime”
approach: one may customize the ERP system during runtime by
changing the underlying REA models. We are using Retail-H as
the reference framework for building a retail information system
(RIS). Our main contribution is the prototypical implementation
of a domain agnostic REA engine that can be loaded at runtime
with domain specific business models—these models can further
be manipulated at runtime. On that basis we have exemplarily
modeled main concepts of Retail-H in REA. Validation of the
implemented components is realized by applying real business
activities and requirements received from our partner, a business
software solution provider.

I. INTRODUCTION

The Resource-Event-Agent (REA) [1] business ontology
and its extensions has received lots of attention from the value
modeling community, apart from its original accounting roots.
Its application in merchandise and retail information systems
(MIS/RIS), or more generally in enterprise resource planning
systems (ERP), has been discussed and several implementa-
tions have been undertaken [2]–[4]. However, to the best of
our knowledge, there has not been an implementation that is
based on a domain-agnostic REA engine.

REAlist is the name of a prototype we have recently built in
close collaboration with a business software solution provider.
It is a prototypical web-based RIS application for trading
companies built on top of a generic REA core system. It
is implemented as a web-based (i.e. is accessed through a
browser), multi-tenant-aware (i.e. multiple tenants with dif-
ferent business models can be served from a single server
instance) software-as-a-service (i.e. customers do not install
and maintain their own servers). The business domain agnostic
REA core was designed to potentially drive a full ERP system,
however in the REAlist prototype only a first subset of that
greater endeavor was implemented: many of the core parts of
a retail information system.

With the REAlist prototype we have implemented a generic
REA engine. As a proof-of-concept we have fed it with data
for being prepared to handle business objects of trading enter-
prises. For the formulation of these trading business objects,
we have modeled concepts from Retail-H [5], [6] using REA
elements. In REAlist this business modeling takes place at
runtime, i.e. no re-compilations or database re-engineering is

necessary, as all models and their instances, the business data
objects, are stored in a generic database (cf. Sec. III for how
this is realized in terms of a software architecture and Sec. V
for how this emerges in terms of runtime objects).

While REA provides a modern and flexible concept for
capturing economic events that are reflecting double entry
bookkeeping (after all, it was initially established as an ac-
counting framework), the REA entities we have developed
enable a mapping from REA to “legacy” accounting artifacts
and are used to feed an external bookkeeping software. Also,
in REAlist we have implemented functions such as a key
performance indicator service and an interactive balance list
view.

II. RELATED WORK

A. REA Business Ontology

The REA [1] business ontology resembles a high-level
conceptual modeling language for the definition of business
models. While it was originally developed for the accounting
domain, its versatility and high level of abstraction led to
applications in the business and value modeling commu-
nity [7]–[10]—in 2007 it has become an ISO standard as an
accounting and economic ontology for transaction scenarios in
business operations [11]. In its core, REA declares a generic
trading pattern: economic events deal with economic resources
and are driven by economic agents. Events can increment the
quantity on hand of a resource (e.g. receiving money from a
customer) or a decrement the quantitiy on hand of a resource
(e.g. giving away goods to a customer). Two or more of such
opposed events are linked by a duality relation and form a
transfer. In REA the transfer is the fundamental concept of
economic activities. In order to complement events (“what is”
or “what has been” happening in my company) with means
for planning, the concept of commitments was introduced [8]:
structurally similar to events, commitments represent parts of
a contract—increment and decrement commitments are related
via a reciprocity. For a “running example” of REA, please refer
to Sec. IV.

Domain specific REA constellations are usually presented
via entity relation (ER) diagrams or OMG’s1 UML2 class
diagrams. In [12] a graphical domain specific language (DSL)
was developed, the REA-DSL. It enables the definition of

1Object Management Group, cf. http://www.omg.org/
2Unified Modeling Language, cf. http://www.omg.org/uml

2015 IEEE 17th Conference on Business Informatics

978-1-4673-7340-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CBI.2015.49

116

REA entities in a graphical editor manner and facilitates an
abstracted view of the business model in the sense of a value
chain (flow of resources through dualities). A similar approach
has been followed by [13], where different graphical notations
have been envisioned, briefly evaluated and one of them was
implemented in a graphical workbench. In our approach we
have designed our basic business model using REA-DSL,
but we have not integrated it into the prototypical REAlist
implementation, mainly for technological reasons (different
underlying technologies and target systems). Instead, we are
using a tree-based REA business modeler (similar to the one
presented in [4]), where REA entities can be hierarchically
defined and can be linked with each other, e.g. the agent
hierarchy and the resource hierarchy can be separately defined
and entities thereof can be used in participation or stockflow
relations in commitments or events.

B. Model-Driven ERP

ERP software applications are an instance of integrated
standard business software [14] that comprise information
from at least three of the following resources [15]: material,
employees, production, logistics and finances, and that support
business functions such as purchasing, production, planning,
invoicing, sales, etc. [15]. In REAlist all of the above men-
tioned resources can be handled, but only material, logistics
and finances have been assessed in the runtime model so
far. The functions supported in REAlist include purchasing,
invoicing, logistics, sales and billing (cf. Sec. V).

Unlike in traditional ERP systems, where business models
are used for the initial communication between the enterprise
that wants to make use of an ERP system and the software
provider or consulting company, model-driven ERP systems
rely on business models as the primary vehicle of communi-
cation throughout the lifecycle of the system [16].

A different approach on model-driven ERP was taken
in [17], where OMG’s MDA3 was employed, by making use of
UML’s profile mechanism. Customization of the ERP system
is realized by specifying ERP components in UML syntax and
then transforming such an UML model into parameters for an
already existing ERP system.

In [18] it is stated that the configuration of enterprise
systems is consuming significant resources, and that model-
driven approaches could help reducing resource unthriftiness.
For that, an extension to event driven process chains (EPCs)
is proposed: configuration nodes and configuration attributes.
EPCs in the reference model can be extended by configuration
information and the client specific configuration realization is
then based on the configurability of the reference model.

C. Retail-H

Retail-H [5], [6] is a detailed data and function framework
for the trading domain that can serve as a guideline for
the implementation of trading-centric RIS applications. The
structural concept with the main building blocks, shaped like
a house, is depicted in Fig. 1: the gray building blocks in the
middle resemble different operational processes, that follow a
top-down and left-to-right order. The basement of the house

3Model Driven Architecture, cf. http://www.omg.org/mda/

Fig. 1: Structure of Retail-H [6]—note the name-giving H-
shaped area shaded in gray. The top-entry on the roof reads
“Strategic Planning”.

represents tasks from business administration, while the roof
stands for evaluation and analysis systems. The complete house
resembles a retail information system, the gray H corresponds
to the functions and data a merchandise information system
typically implements. In fact, many fundamental concepts of
Retail-H are of use for e.g. manufacturing businesses (such
as procurement of raw material and distribution of products),
but Retail-H is purposefully completely missing production-
related concepts—consequently in the REAlist prototype we
are also not considering production. However, due to the open
architecture and versatile modeling layer, production support
could be added to the software on a plug-in basis.

III. REALIST ARCHITECTURE

REAlist is built by realizing the software architecture
depicted in Fig. 2. The type-object pattern [19] is applied in the
modeling approach, i.e. REA entities are implemented dual: as
(i) a type entity and (ii) an object entity (e.g. agent_type
and agent). An object entity instance is related to exactly
one type entity instance via a typification association.
Instances of type entities are used to model the business by
declaring the domain vocabulary and the relations between
the elements—instances of type entities are shaping the “type
layer”, whereas instances of object entities are subsumed in
the “object layer”.

REA DB represents the database (DB) level: it consists of
two areas, (i) the business model and (ii) the business data.
In both cases, in contrast to other REA implementations, the
tables reproduce the structure of the meta-model (which is the
REA business ontology), i.e. tables are named agent_type,
event_type, etc. for the business model, and agent,
event, etc. for the business data. Due to its “model-at-
runtime” nature, REAlist does not allow nor require any
domain-specific tables, such as payment_event, etc. The
business model is specified by creating and referencing rows
within the type layer (i.e. among instances of type entities).

117

Fig. 2: Software stack of REAlist: Stack elements starting
with “REA” are handling raw REA entities, while elements
starting with “REAlist” handle structures and follow functions
of Retail-H and RIS applications.

Business data, such as concrete agents or events is reflected in
the database as rows within the object layer.

REA API is the persistence engine that abstracts the database
in terms of a software API4. In REAlist, entity tables are
abstracted as classes, which have been implemented in terms of
an object oriented programming language. The API provides
means for the handling of type entities and object entities.

REA Web Frontend is a web browser based graphical user
interface (GUI) for the manipulation of business models,
business data and REAlist tenants. The declaration and editing
of the business model is intended to be done by using “raw”
REA concepts, as such the generic (i.e. business domain
independent) Business Model Editor (that operates on
the type layer) is sufficient for such administrative tasks. The
Business Data Editor that operates on the object layer
has been included as a “window to REA”, it is not meant as a
tool for capturing business events on a daily base, but provides
insight into the stored business data. The Tenant Editor
enables handling of the multiple tenants that a single REAlist
server instance can drive. Through it the REAlist Tenant
Admin can model reference business models that are not
connected to any tenant but can be used as blueprints when
creating new tenants. Also, business models of existing tenants
can be manipulated, and the tenants’ users can be administered
by defining the set and configuration of frontend plugins and
the structure of the navigation menu (see REAlist Web
Frontend).

REAlist API is the implementation of a retail information
system based on Retail-H, and it consists of two parts: (i) the
structural components of the RIS are defined as instances in the
type layer, and (ii) the behavioral components are implemented
in code. It abstracts from the REA API by providing mappings
from RIS concepts to REA concepts (cf. Sec. V).

REAlist Web Frontend is a GUI that is accessible
through a web browser that provides functions of RIS and
hides REA concepts from users other than business model
editors. It is implemented via a light-weight plug-in framework
that enables (i) developers packaging the GUI into separate
modules and (ii) administrators defining the navigation menu
structure for web frontend users. Parts of the GUI have been
presented in [20] already.

REAlist Tenant Admin is the user role for the system
owner, i.e. the person/company running a REAlist server

4Application Programming Interface

Fig. 3: Instantiated REA concepts: (left) a duality with its as-
sociated events, depicted in a slightly modified REA-DSL [12]
notation, and (right) a value chain view of multiple dualities.

instance. It can manipulate tenants and their meta data as well
as their users and business model (see above).

REAlist Admin is the user role for tenant-specific business
model editors. They are internal or external experts that
have prolifient knowledge of a business’ structure. They have
full access to the REA Web Frontend, allowing them to
view and manipulate the business model (type layer) and
the business data (object layer) by directly working on REA
entities. They have also full access to the REAlist Web
Frontend, as anything that can be done there can also be
realized in the REA Web Frontend.

REAlist User is the user role for tenant-specific “applica-
tion users” that are using the REAlist RIS on a daily base. They
can edit business data by providing information following the
workflow that is defined by the REAlist Web Frontend
plugins such as issuing purchase orders or executing invoice
auditing.

IV. REA BY EXAMPLE

Fig. 3 shows the core REA structure by an example: an
increment event ArticleReceipt and a decrement event
Payment are dual events of the Purchase duality which
is a transfer between inside and outside parties. In this case,
the resource Article is acquired in exchange of Money.
The increment and the decrement event require participating
agents from different companies in order to resemble a valid
transfer—here the outside agent Supplier is providing ar-
ticles (for the ordering party this is an increment event) and
receiving money (for the ordering party this is a decrement
event), whereas the receiving participant in the increment event
is a Clerk and the providing participant in the decrement
event is a Cashier. In contrast to transfer dualities there
exists a second duality type, the transformation duality. Here,
decrement events again decrement the quantity on hand of a
certain resource, while increment events increment it. With the
transformation duality it is possible to model manufacturing
processes and other internal processes that are required for the
operation of a business, such as warehousing. In the latter case
the consume and produce events do not really decrement and
increment the quantity on hand of resources, but a property of
a resource is manipulated, in this specific case the location of
the resource. The transformation duality can thus be interpreted

118

Fig. 4: Legend for subsequent class diagrams: classes with
white background resemble REA entities (e.g. Resource,
Agent), classes with gray background depict reified REA
relations (e.g. Duality, Stockflow). Grayed out elements
with a “plus” symbol in the upper left corner (the two symbols
on the right) depict elements that are part of the currently
described model, but are explained in detail in one of the other
diagrams. For space reasons, their details and related elements
are not repeated.

as “the resource is lost in location A but appears in location
B”.

When “zooming out” of a detailed duality view such as
the one on the left side of Fig. 3, the duality can be viewed
as a black box with certain resources flowing in and certain
resources flowing out. This is referred to as the value chain
view. On the right side of Fig. 3 a value chain is shown
that combines multiple dualities and thus reveils the resource
flow of the company: in the Purchase duality money M is
exchanged for articles A , in the Store duality (which is a
transformation duality) the articles are put into the warehouse,
in the Pick transformation duality the articles are retrieved
from the warehouse and finally in the Sale duality the articles
are exchanged with customers for money which can be used
for another purchase, etc.

V. REA MEETS RETAIL-H

In REAlist we have implemented parts of the Retail-H
model (i) structurally by a set of REA entities, and (ii) on a be-
havioral level by a set of REAlist Web Frontend plugins
that provide a certain workflow following specifications of our
business partner. The behavioral part is not included in this
paper, whereas the structural part is presented in the following
sections, following the building block structure of the “H” of
Retail-H. As Retail-H exercises a structural analogy of the left
and the right side of the “H”, we will only describe the left side
(procurement) and the bridging block (warehousing) in detail
here, but we will not explain the right side (distribution), since
most of it can be inferred by mirroring procurement concepts
to distribution.

In this section (after this paragraph) we are using an
Upper-Case-First Upright Font Style to note references to
elements of the REA meta-model such as Resource, Event,
and Agent, and a lower-case italic font style to note elements
of the type layer, such as article, payment, and employee.
[Sidenote: The decision for this rather unusual typesetting
comes from readability issues we have had with previously
used typesettings, including e.g. monospaced fonts, caused by
the density of marked entities.] Elements on the type layer in
turn denote descriptors for elements on the object layer, hence
subsequent class diagrams implement the graphical notation
depicted in Fig. 4, with the following semantics. The stereotype
of the class constitutes the meta-class that is to be instantiated
in business data generation, and the class name denominates

the name of the corresponding type entity instance: a class
named Article of stereotype Resource implies (i) that a
type entity of type ResourceType has been instantiated by
the name of “Article” and that (ii) the corresponding business
data will be of type Resource, with a typification association
to the Article instance. In order to improve readability,
labels in class diagrams adopt a “camel-case” capitalization
for compound words, whereas in the textual description words
are spelled out separately and transformed to lower case,
e.g. ReturningWarehouseKeeper in the diagram will
become returning warehouse keeper in the text.

A. Procurement

Definition 1 (from [5, translated]): Procurement combines
purchasing, i.e. administrative tasks that provide a framework
for contracting and inbound logistics, i.e. supply with wares
and goods in a profitable and market compatible manner.
Procurements consists of five sub-processes: contracting, order
management, goods receipt, invoice auditing, and accounts
payable.

In REAlist we are following this scheme and provide
REA structures for the mapping of these five subtasks. The
procurement as a whole can be established by merging all
subtasks into a single class diagram. In order to make REAlist
compliant to current financial regulations, REA structures need
to be augmented with information that allows mapping of REA
occurrences that affect accounting to corresponding profit and
loss accounts. We are using Properties of REA entities for
that purpose—these Properties are named *AccountNo in
the class diagrams and * account number in the text (the
* denoting a wildcard for domain specific information, e.g.
whether that account number is used for outbound or inbound
transactions).

Definition 2 (from [6]): “Contracting makes the basic pro-
curement decisions and updates the relevant base data. Central
tasks are determining suppliers [. . .] , goods to be obtained
from these suppliers, negotiating the price and conditions
framework [. . .] and possibly determining value and quantity
contracts or delivery schedules.”

Synopsis: Contracting (cf. Fig. 5) information that is supported
in our prototype by agents that define certain master data
records, and by a set of policies that represent available
goods as well as the the price and conditions framework.
What is not supported in the REAlist prototype are advanced
(e.g. repeating) value and quantity contracts as well as delivery
schedules.

The supplier’s master data is implemented as a supplier
Agent with Object Properties (supplier number, supplier ac-
count number) as well as a Dependency to an address Location
(street, zip, city, country). The articles that can be purchased
from a given supplier are defined by a set of purchase list
price Policies, where each of these Policies defines a price,
as well as a start and an end date, defining the validity time
range of the list price. Further contracting information includes
purchase turnover bonus Policies where an ex-post percentage
discount is provided from the supplier if a certain lower range
of turnover has been reached within a year and the upper range
has not been exceeded. A purchase list discount Policy can

119

Fig. 5: Contracting information elements, modeled at runtime
on the type layer.

be granted simply for listing an item. purchase cash discount
Policies define the standard rule for cash discounts given in
percent based on the number of days that have passed since the
date of the incoming invoice. purchase scaled discount Policies
enable the definition of discounts where a given percentage
discount is granted for a specific article in case a certain lower
range has been reached and the upper range has not been
exceeded.

Definition 3 (from [6]): “Order management involves placing
orders by determining the quadruple: supplier, article, quantity
and time [. . .].”

Synopsis: Order management (cf. Fig. 6) is represented by an
order contract comprising an increment commitment (supplier
promises us to deliver articles) and a decrement commitment
(we will pay for the articles). The order list items are encoded
as stockflows that hold information for correct taxation and
possible discounts or additions (e.g. shipping fees) that apply
to this order. Additional agents can be specified in order to
internally plan the goods receipt process. The commitments
and their stockflows and participants together with the suppli-
ers master data yield all the information that is required to e.g.
generate a purchase order document.

Order management is realized by the order Contract that
involves two Commitments: article receipt and payment. The
outside Participate relation involves an Agent of type supplier
who is the supplier Participant of ordered articles and the
payment receiver. On the inside a clerk is responsible for
the ordered articles, while a cashier is responsible for the
payment. The article receipt Commitment allows reserving a
number of inside Agents that should participate in the actual
article receipt Event: as the invoice recipient a cashier can be
specified who will be the addressee (“to the attention of”)
of the invoice. The warehouse keeper behind the delivery
recipient Participate relation is the Agent that is responsible for
physical reception of the articles, whereas the delivery point

Fig. 6: REA entities relevant for order management, modeled
at runtime on the type layer.

participation denotes the Agent the delivery is addressed to.
Additionally, the Location Point relation warehouse points to
the physical address the articles should be shipped to. The
start and end date Properties of the article receipt Commitment
are used to define a delivery interval, while the corresponding
Properties of the payment Commitment denote the agreed
payment interval.

Besides the money Stockflow of the payment Event that
involves a money Resource identified by a cash account
number, the following Stockflows are involved in the article
receipt Commitment: article position represents a single order
line item and relates to a specific article. For the current
order, the pricing information is stored in each Stockflow,
including the total gross price, the total net price and the
single net price (per each) of the line item. Further, the tax

120

Fig. 7: REA entities relevant for goods receipt, modeled at
runtime on the type layer.

class Property specifies the tax class Resource this line item
is related to; the taxed amount can be calculated from the
tax percentage Property. advertising campaign number is an
optional Property that identifies a certain advertising campaign
this line item references. The position number provides an
identifier for potential discount addition position Stockflows
that represent discounts or additions for specific line items
(obtained through e.g. purchase scaled discount Policies). Each
discount addition position specifies pricing information in
an analogous manner as in the article position Stockflow.
The same Properties are declared in the discount addition
footer Stockflow that specifies discounts or additions that are
affecting not single line items but the complete order, such
as shipping costs and service fees. The discount addition *
Stockflows relate to a discount addition Resource which holds
a Property for providing the discount addition account number.
The optional package Stockflow provides, through the related
article package Resource, information about some physical
properties of the packages, such as weight and dimensions.
in conjunction with the current state of the warehouse and
the physical size of its shelves and bins a planning module
could potentially compute instructions where goods should by
physically stored once they have been received. With all that,
the required quadruple is complete: a supplier is specified, the
articles to be purchased and their quantities are defined, and
the time frame for delivery and payment has been agreed on.

Definition 4 (from [6]): “Goods receipt is the [. . .] logistical
equivalent to the purchasing order. [. . .] [it] also covers phys-
ical goods storage, recording the goods receipt and analyzing
the delivery notes with the assessment of the goods receipt, an
update of the inventory and [. . .] the handling of returns [. . .].”

Synopsis: With the goods receipt process (cf. Fig. 7) the
increment part of the order contract is fulfilled. Through an in-
crement event it is recorded which articles have been received
(and kept) and through a decrement event which articles (if
any) have been returned to the supplier. The articles are then
stored using a transformation duality (changing the location
property of the articles) and the inventory is updated. The
increment event holds all the information needed to generate
an article receipt slip, while the decrement event provides the
information needed to generate a return note document.

Goods receipt involves the Event that fulfills the article
receipt Commitment. It is a structural copy of this Com-

Fig. 8: REA entities relevant for invoice auditing, modeled at
runtime on the type layer.

mitment, thus its details can be viewed in Fig. 6. In the
article receipt Event the delivery date and involved Agents are
stored. What’s new is the purchase article return Event that
captures the handling of returns: the Participations comprise
the receiving supplier and the returning warehouse keeper.
The purchase article return Event reuses Stockflow definitions
from article receipt, as the information that needs to be
recorded is the same. A return note number is generated and
stored with the Event that allows printing return notes with a
traceable identifier. With the article receipt Event a purchase
Duality is created and initially set to an unbalanced state—no
corresponding payment Event has occurred yet.

Physical goods storage is depicted in Fig. 10 (cf. Sec. V-B),
where a store transformation Duality is utilized to record
information about the storage process: in the grab Event a
warehouse keeper in the role of a grabber grabs one article,
quantified via the grabbed article Stockflow fraom a grab
location that is a warehouse. In the store Event that article
is stored in a store location which is a bin (cf. Sec. V-B).
With that, an update of the inventory is executed by creating
or updating instances of article storage area Dependencies:
the article located Stockflow specifies the quantity of articles
that are stored in a certain storage area.

Definition 5 (from [6]): “The value-based equivalent to the
goods receipt task are the invoice arrival and auditing [. . .].
[. . .] invoiced quantities must be compared with the order [. . .]
, the delivery note [. . .] and the goods receipt slip [. . .]. [. . .]
invoiced values must be compared with the agreed price and
conditions scheme.”

Synopsis: The invoice (cf. Fig. 8) is modeled in REAlist by
a claim. The presence of an increment event without a corre-
sponding number of decrement events affords the creation of a
claim, which is an explicit statement that there is an imbalance.
While it can be argued that an explicit claim instance is not
necessary, as the increment and decrement events together with
their corresponding commitments should reveil that imbalance,
the claim entity makes this imbalance explicit. The claim entity
can then be equipped with information such as the invoice
date, invoice number, etc. With regards to the invoice auditing
process, the creation of the claim states that the given event
imbalance is internally accepted and that a payment process
should be triggered. If articles have been returned previously,
a purchase credit might have been agreed on that will reduce

121

Fig. 9: REA entities relevant for accounts payable, modeled at
runtime on the type layer.

the amount to pay in the current order (coming to effect in the
accounts payable process).

With the reception of an incoming invoice the auditing
process is triggered. The purchase Duality, where the goods
receipt slip is implicitly defined, is taken as an initial ground
truth for the auditing and compared to the delivery slip and
the invoice of the supplier. Irregularities need to be discussed
and resolved with the supplier and potential changes need
to be made to the underlying instances, such as the quantity
of articles, or the amount of a discount. When the auditing
is positively resolved, an incoming invoice Claim is created.
This incoming invoice can (for traceability reasons) relate via
the original invoice number to the invoice the supplier has
issued and that this Claim corresponds to. Also an internal
incoming invoice number is created and recorded for the Claim.
The materialization of that Claim is defined by an article
receipt Event, which (for the trading company) always is the
benchmark for related processes. In REAlist the accountant
Participant (the Agent responsible for executing the invoice
auditing) is of type cashier. In the case that articles have
been returned to the supplier, a purchase credit Event is
recorded that relates to a credit Resource (this recording allows
extracting the correct accounting record later), as well as,
through an article position Stockflow to the articles that have
been returned.

Definition 6 (from [6]): “The major task of the accounts
payable task is handling payments [. . .]. Credit notes and
subsequent billings may need to be booked. [. . .] ”

Synopsis: In terms of REA, payment is recorded by a set
of events (cf. Fig. 9): a payment decrement event can be
accompanied by an increment event recording a received cash
discount.

Accounts payable completes the purchase Duality by
recording the Events that settle the incoming invoice Claim
created in the previous step. The most obvious Event is
payment, where a certain amount of money is transferred from
a specific money Resource to the supplier. Specific situations
might require additional or different events: purchase cash
discount is a common concept where a percentage discount is
granted by the supplier in case the payment has been realized
before a given time limit (both the percentage and the time
limit ar usually negotiated in the contracting process and stored

Fig. 10: REA entities relevant for warehousing (and partly also
for goods receipt), modeled at runtime on the type layer.

in the corresponding Policy entities). The quantity of the cash
discount is noted in the cash discount Stockflow and recorded
on the cash discount Resource.

B. Warehousing

Definition 7 (from [6]): “Warehousing performs the bridging
function between the procurement side and the sales side. [. . .]
subtasks involve updating the warehouse master data, stock
transfers and posting transfers, stocktaking in the warehouse
or in the branch and warehouse control. [. . .] ”

Synopsis: REAlist models warehouses that contain shelves that
in turn contain bins (this setup does not correspond exactly to
the warehouse model of Retail-H due to requirements from
our business partner, but a structural change to the Retail-H
model could be realized at runtime in case this model would
be preferred).

Warehousing in REAlist is modeled as presented in Fig. 10:
a tenant, i.e. a trading company, can be in control of multiple
warehouse Locations. warehouses can be related to shelf Loca-
tions via warehouse shelf Dependencies. shelves in turn can be
related to bin Locations by shelf bin Dependencies. This results
in a setup where a warehouse comprises multiple shelves and
each shelf comprises multiple bins. It is the responsibility of
the application built on top of the REA model to make sure
that a certain shelf belongs to only one warehouse, etc. In
order to retrieve the recorded current state of a warehouse, the
Dependencies of type article storage area need to be inspected
as they hold the mappings of articles to storage areas.

Stock transfers can be realized by utilizing the stock
transfer transformation Duality: a warehouse keeper in the role
of a picker picks articles from a pick location (a bin) and puts it
in the role of a putter to another bin related by the put location.
The corresponding article storage area Dependencies need to
be updated accordingly.

122

C. Distribution

Definition 8 (from [5, translated]): Distribution summarizes
decisions and operations that affect the path of goods to
a customer. In Retail-H it is structurally analogue to the
procurement process.

Synopsis: In relation to this definition we have mirrored the
procurement side to the distribution side of REAlist. Thus we
are not showing the details here, as most of the statements
would be repetitions of previous statements but “with opposite
sign”.

VI. EVALUATION

We have put the REAlist prototype to the test by run-
ning through actual business cases that have occurred at our
business partner. For that, we have rebuilt those business in
REAlist cases to see, whether the data we can receive from the
system conforms to the data expected. Suppliers and customers
have been added to the system, together with their master data
and the set of policies that has been agreed on (list prices,
list discounts, cash discounts, etc.). Then, a few business
cases have been inserted, by following the building blocks
of Retail-H. After each step a PDF5 file was generated: a
purchase order, a goods receipt slip, a return note and an
incoming invoice for procurement and a sales order, a delivery
slip and an outgoind invoice for distribution. In order to check
whether incoming invoices have been settled, a balance list
can be generated showing unsettled claims for both suppliers
and customers. The PDF files were compared to the ones from
real business cases and successfully checked for congruency.
Also intermediate states, e.g. after invoice auditing but before
accounts payable have been compared to expected values
by looking at the generates balance lists—again, the values
matched.

The accounting meta-information that was added to se-
lected REA entities via type or object properties enables a
mapping onto standard accounting software with regards to
profit and loss accounts that are related to the business cases
that are part of our Retail-H. When accounting related REA
events occur (in our prototype these are the events related to
the purchase and the sale duality), an accounting record is
created and pushed on a “booking stack” (a database table)
from where it can be grabbed by standard accounting software.
The accounting records are created in a way that typically
there is an accounting record per each stockflow instead of
per each event—the accounting records are therefore very fine-
grained. Manual checks of the booking stack reveiled that the
accounting records are created as expected.

VII. CONCLUSION

A prototypical retail information system was implemented
with a generic REA engine at its core that is used to record all
occurring business data and that is capable of being configured
at runtime. That way the REA engine could be left completely
domain agnostic, and specific business models are defined at
runtime by using a tree based modeling tool in the browser. We
have presented one such domain specific model: the data model
of Retail-H. The developed prototype is capable of driving

5Portable Document Format

multiple clients (tenants) in parallel, each with its own REA
model. Tenants that use the presented Retail-H framework
as a basis for their business model can further refine it by
adding new agent or resource types, by adding or manipulating
participants or stockflows in events, etc.

As all information of the business is recorded in REA
structures, and since REA is at its roots an accounting frame-
work, it is possible to generate balance lists “by the press of
a button”. All that is required is the quering of the relevant
events for a given balance and time frame. In REAlist some
of this functionality has been implemented by balance lists
that show unsettled claims. One could go even further and
potentially create a financial statement for a given time frame
(currently this is not possible due to some missing structures
and functions, as noted below). REAlist also provides an initial
set of key performance indicators (KPIs) that are relevant for
the retail domain, including sales share, stock coverage, stock
turnover, stock turnover rate and turnover period. The values
for these KPIs are calculated on demand by iterating through
all relevant business cases and executing the corresponding
calculations.

Coming back to the Retail-H model: REAlist has mod-
eled and implemented large parts of the structural entities of
Retail-H’s “H”, accompanied by a web frontend that provides
a workflow to insert business cases. The basement and the roof
of the Retail-H have not been dealt with in that detail: human
resources (HR) are not covered apart from the fact that REA
agents can be modeled and equipped with master data and
that they participate in diverse events. REAlist has not imple-
mented labor costs or HR planning. Cost accounting, general
accounting and asset management have been approached in
a superficial way that enables some specific functionality
but is far from a complete accounting system. Of the three
components of the roof only the controlling part has been
partly addressed by providing online retrievable KPIs. Caused
by the lack of functional support for HR costs, many parts of
the roof and the basement are not realized yet, in the current
state of the prototype. Improved support for warehousing and
HR are the logical next steps in the development of REAlist
and will provide an even better data basis for the recording of
accountable artefacts and for planning and controlling.

ACKNOWLEDGMENT

This work was supported as part of the BRIDGE program
of the Austrian Research Promotion Agency (FFG) under grant
number 841287—a joint research effort of Vienna University
of Technology and Eventus.

REFERENCES

[1] W. E. McCarthy, “The REA accounting model: A generalized frame-
work for accounting systems in a shared data environment,” The
Accounting Review, vol. 57, no. 3, pp. 554–578, 1982.

[2] P. Hrubỳ, J. Kiehn, and C. V. Scheller, Model-Driven Design using
Business Patterns. Springer, 2006.

[3] W. S. A. Schwaiger and M. Abmayer, “Accounting and management
information systems: A semantic integration,” in Proceedings of
the 15th International Conference on Information Integration and
Web-based Applications & Services (iiWAS2013). New York,
NY, USA: ACM, 2013, pp. 346:346–346:352. [Online]. Available:
http://doi.acm.org/10.1145/2539150.2539214

123

[4] R. Haugen and W. E. McCarthy, “REA, a semantic model for internet
supply chain collaboration,” in 6th Int’l Workshop on Business Object
Component Design and Implementation, 2000.

[5] J. Becker and R. Schütte, Handelsinformationssysteme, 2nd ed. MI
Wirtschaftsbuch, 2004.

[6] ——, “Reference model for retail enterprises,” in Reference Modeling
for Business Systems Analysis, P. Fettke and P. Loos, Eds. Idea Group
Inc., 2007, pp. 182–205.

[7] G. L. Geerts and W. E. McCarthy, “An accounting object infrastructure
for knowledge-based enterprise models,” IEEE Intelligent Systems,
vol. 14, no. 4, pp. 89–94, 1999.

[8] ——, “The ontological foundation of REA enterprise information
systems,” in Annual Meeting of the American Accounting Association,
2000, pp. 127–150.

[9] ——, “An ontological analysis of the economic primitives of the
extended-REA enterprise information architecture,” International Jour-
nal of Accounting Information Systems, vol. 3, no. 1, pp. 1–16, 2002.

[10] ——, “Policy-level specifications in REA enterprise information sys-
tems,” Journal of Information Systems, vol. 20, no. 2, pp. 37–63, 2006.

[11] ISO and IEC, Business Transaction Scenarios—Accounting and
Economic Ontology, International Organization for Standardization
(ISO) and International Electrotechnical Commission (IEC) Std., Rev.
ISO/IEC 15944-4:2007(E), 2007, ISO/IEC 15944-4:2007(E).

[12] D. Mayrhofer, “REA-DSL: Business model driven data engineering,”
PhD Thesis, Vienna University of Technology, 2012.

[13] M. Al-Jallad, “REA business modeling language: Toward a REA based
domain specific visual language,” Thesis, KTH Royal Institute of
Technology, 2012.

[14] V. Meister, Grundlagen betrieblicher Anwendungssysteme: Integrative
Lösungsansätze für die betriebliche Praxis, ser. Kontakt & Studium.
expert Verlag, 2011, no. 703.

[15] N. Gronau, Enterprise Resource Planning: Architektur, Funktionen und
Management von ERP-Systemen (in German), 2nd ed., ser. Lehrbücher
Wirtschaftsinformatik. Oldenbourg Verlag, 2010.

[16] J. A. Gulla and T. Brasethvik, “A model-driven ERP environment with
search facilities,” Data & Knowledge Engineering, vol. 42, no. 3, pp.
327–341, 2002.

[17] P. Dugerdil and G. Gaillard, “Model-driven ERP implementation,” in
2nd International Workshop on Model-Driven Enterprise Information
Systems (MDEIS 2006), at ICEIS 2006, 2006.

[18] A. Dreiling, M. Rosemann, W. M. P. van der Aalst, W. Sadiq, and
S. Khan, “Model-driven process configuration of enterprise systems,”
in Wirtschaftsinformatik 2005. Physica-Verlag, 2005.

[19] R. E. Johnson and B. Woolf, “Type object,” in Pattern Languages
of Program Design 3, R. C. Martin, D. Riehle, and F. Buschmann,
Eds. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1997, ch. Type Object, pp. 47–65. [Online]. Available:
http://dl.acm.org/citation.cfm?id=273448.273453

[20] B. Wally, A. Mazak, B. Kratzwald, C. Huemer, P. Regatschnig, and
D. Mayrhofer, “REAlist—a tool demo,” in 9th International Workshop
on Value Modeling and Business Ontology (VMBO 2015), February
2015.

124

